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Abstract

In this paper, a new computational framework is introduced for the analy-
sis of three dimensional linear piezoelectric beams using hp-finite elements.
Unlike existing publications, the framework is very general and suitable for
static, modal and dynamic scenarios; it is not restricted to either actua-
tion or energy harvesting applications and, moreover, it can cope with any
anisotropy or electric polarisation orientation. Derived from first principles,
namely the fundamental equations of continuum piezoelectricity, a new set of
beam balance equations is presented based on a Taylor series expansion for
the displacement and electric potential across the cross section of the beam.
The coupled nature of the piezoelectric phenomenon at a beam level arises
via a series of mechanical (and electrical counterparts) stress and strain cross
sectional area resultants. To benchmark the numerical algorithm, and in or-
der to aid prospective researchers, a new closed-form solution is presented for
the case of cantilever type systems subjected to end tip mechanical/electrical
loads. To the best of the authors’ knowledge, the analytical solution for this
prototypical example has not been previously presented. Finally, some nu-
merical aspects of the hp-discretisation are investigated including the expo-
nential convergence of the hp-refinements and the consideration of linear or
quadratic electric potential expansions across the cross section of the beam.
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1. Introduction

Piezoelectric materials are exploited mainly for two major applications:
actuation and sensing/energy harvesting. Energy harvesting implies induced
electric polarisation as a result of mechanical straining (direct effect), whereas
actuation implies induced mechanical straining as a result of electric polar-
isation (reverse effect) [1]. Certainly, these two phenomena can be viewed
as unrelated, where different theoretical and numerical approaches can be
employed. For instance, models of piezoelectric actuators have been devised
with only mechanical degrees of freedom [2, 3, 4] and models of energy har-
vesters have been developed with more emphasis on electrical unknowns or,
essentially, the final power output [1, 5, 6].

In this paper, by starting from the fundamental equations of continuum
piezoelectricity, a unified static and dynamic computational framework is
presented for three-dimensional piezoelectric beams, focussing on small strain
theory (small electric fields) and straight beam axis. Mathematically, many of
the well-established piezoelectric actuator models in the literature [4, 2, 3, 7]
can be regarded as special cases which sit within this unified formulation.
The merit of approaching the problem in this fashion is that the strengths
and limitations of the formulation can be easily identified for both actuators
and energy harvesters applications, without placing a distinction upon one
or the other.

Some approaches can be found in the literature in the form of simplified
single degree of freedom systems or two-dimensional beams, which are often
referred to as lumped parameter and distributed parameter models, respec-
tively [1, 6, 8, 9, 10, 11]. In the lumped parameter model, the piezoelectric
device is constructed via a mass-spring-damper system coupled with a ca-
pacitor and a resistor [12, 6, 13]. However, this simplified model lacks some
important aspects of the coupled physical system, such as the consideration
of high dynamic modes, an accurate distribution of the strain field and the
effects of the former two into the overall electrical response [1]. The dis-
tributed parameter model, on the other hand, is based upon Euler-Bernoulli
beam theory, neglecting rotation of the cross section with respect to the beam
axis, possible shear deformation and rotational inertia [14, 5].

One of the main simplifying assumptions in almost all of these approaches
is that of vanishing electric field in certain directions, depending on the ori-
entation of polarisation [6, 3, 8, 9, 4, 10]. In piezoelectric beam literature,
these are normally referred to as different modes of coupling and are denoted
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by dij, i, j = 1 . . . 6 where d is the piezoelectric coupling parameter and the
subscripts i and j indicate the poling direction and applied stress direction
(in Voigt notation), respectively [15], with i = 3 or j = 3 representing the
axial direction. In this setting, the two most common coupling mechanisms
[2, 3, 4] are the d31 mode (shear actuation), which implies a coupling between
the transverse electric field and axial strain and the d33 mode (extension ac-
tuation), which stands for coupling between the axial electric field and axial
strain [6], with other coupling field mechanisms normally assumed to be zero.

On the mathematical modelling front, Benjeddou [3] attempts to build
a unified two-dimensional (planar) beam finite element model for extension
and shear actuation mechanisms. Tabesh [13] attempts to solve the problem
of energy harvesting piezoelectric planar beams by employing Euler-Bernoulli
theory with quadratic electric potential distribution across the height of the
beam. As stated in [13, 16], a linear electric potential assumption is not
sufficient to describe the electrostatics of the model as it violates Gauss’s law,
although many conventional models in the literature rely on this assumption
[4, 6, 17].

Available literature on the numerical modelling of three-dimensional piezo-
electric beams is scarce, specifically in the context of energy harvesting.
Whilst a two-dimensional approach is sufficient for bending dominated en-
ergy harvesters, it is not satisfactory for capturing accurately piezoelec-
tric (anisotropic) behaviour. Indeed, energy harvesters undergoing coupled
bending-torsion [10] require a three-dimensional description. Moreover, there
are actuators specifically designed to function in torsional modes such as he-
lical springs [18, 19], for which two-dimensional descriptions cannot be used.

Wagner and co-workers [19, 20, 21] introduce a sophisticated
three-dimensional beam finite element model with linear and nonlinear strain
measures, including hysteresis, using a six field variational formulation and
assuming a quadratic electric potential distribution across the cross sectional
area. The work is restricted to static analysis only and requires a prepro-
cessing stage to compute the warping patterns by solving a two-dimensional
boundary value problem, using a separate finite element discretisation.

Another three-dimensional finite element formulation for piezoelectric
beams is reported by Touratier [22]. Touratier’s formulation is based on
higher order shear deformation theory and trigonometric expansion of the
displacement field, where for C1 continuity, a mixture of Hermite, quadratic
and linear shape functions are utilised. A similar technique is also followed to
incorporate the warping functions in the beam model. As a result, each beam
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finite element has three nodes along the length with 27 electrical degrees of
freedom and 21 mechanical degrees of freedom. The work is restricted to
static analysis and hence cannot be used for energy harvesting. Along the
same lines, Koutsawa [23] attempts to solve the problem of static piezoelec-
tric beams by using higher order displacement theories for beams.

This paper aims to present a simple three-dimensional finite element com-
putational framework for linear piezoelectric beams, derived from first prin-
ciples, in order to bridge the gap between existing simplified lumped or dis-
tributed parameter models [1, 6, 8, 9, 10, 12, 13] and the most sophisticated
nonlinear warping beam models [19, 20, 21, 22, 23]. In the process, inter-
esting new physical magnitudes, such as the coupled shear or the coupled
bending/torsional moment introduced as a result of an electric displacement,
will naturally arise. A similar approach to the one presented in this paper is
pursued by Kushnir [7], with the difference that Kushnir’s formulation is on
ferro-electricity and is restricted to two-dimensions and static analysis only.

The linearised kinematics of the beam follows the first order shear defor-
mation theory of Timoshenko and the electric potential field is assumed to
vary quadratically across the height and thickness of the beam section. The
electric potential distribution is expanded in terms of the electric potential,
its gradient and its Hessian, all being evaluated at the centre of mass of the
cross section (i.e. second order Taylor expansion about the centre of mass).
Following [24, 25], the postulated beam kinematics and electric field distri-
bution are embedded into the variational form of the continuum piezoelectric
problem. Standard beam integration across the cross sectional area can then
be carried out to yield a set of partial differential equations (e.g. time and
beam axis as independent variables) that are expressed in terms of stress
and electric displacement beam resultants (e.g. shear force and moments).
Crucially, a consistent use of anisotropic elastic, piezoelectric and dielectric
constitutive tensors, enables strains and electric fields to be coupled in all
three spatial directions, with no preference to a specific orientation.

From the spatial discretisation standpoint, locking effects are eliminated
through the use of higher order as well as hierarchical basis functions [26,
27, 28]. The resulting hp-finite element discretisation has eleven degrees of
freedom per node 1 in three-dimensions and five degrees of freedom per node

1Strictly speaking, for hierarchical basis functions, the degrees of freedom are not as-
sociated with nodes but, instead, with polynomial coefficients.
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in two-dimensions, namely displacements, rotations, electric potential, gradi-
ent of electric potential and Hessian of electric potential. The computational
framework is valid for static, modal and dynamic scenarios, the latter be-
ing of interest for energy harvesting. The set of resulting partial differential
equations have also been solved analytically with the purpose of obtaining
closed-form solutions, which, to the best of the authors’ knowledge, are pre-
sented here for the first time and are suitable for the benchmarking of the
finite element computational framework.

The structure of the paper is as follows. Section 2 describes the balance
equations of electromechanics and in Section 3 we introduce the kinemat-
ics and electrostatics of three-dimensional piezoelectric beams. Section 4
describes the variational formulation from which the mechanical and electri-
cal cross sectional balance equations are obtained in Section 5. Analytical
solutions for planar piezoelectric beams are presented in Section 6 and the
hp-finite element discretisation of the variational formulation is presented in
Section 7. Finally, in Section 8 a series of numerical simulations ranging from
static to modal and dynamic analyses are reported.

2. Balance equations of electromechanics

Let Ω ⊂ R3 be a bounded contractible domain occupied by a continuum
during the time interval [0,T] and Γ be its boundary, equipped with a unit
outward normal n, as shown in Figure 1. In this case, the static Faraday
and Gauss laws can be summarised as follows

curlE = 0 and divD + ρe = 0 in Ω× [0,T], (1)

where E denotes the electric field intensity vector, D is the electric displace-
ment vector and ρe is the volume charge density. As Ω is a contractible
domain, the electric field vector E can be reformulated as E = −∇φ, where
φ is a scalar potential field. Dirichlet and Neumann boundary conditions can
then be introduced as

φ = ψ̄ on Γψ × [0,T], (2a)

D · n = ω on ΓD × [0,T]. (2b)

where Γ = ΓD ∪ Γψ and ΓD ∩ Γψ = ∅. In the context of small deformations,
the motion of the continuum can be defined by a displacement field u :
Ω × [0,T] → R3, such that (x, t) 7→ u(x, t), where x ∈ Ω represents a
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material point and t ∈ [0,T] the time. The conservation of linear momentum
equation is defined as

divσ + ρb = ρü in Ω× [0,T], (3)

where ρ is the density of the continuum, σ is the symmetric (conservation of
angular momentum) Cauchy stress tensor, b is a body force per unit of mass
and a superimposed dot (double dot) indicates partial (double) differentiation
with respect to time (e.g. ˙ := ∂

∂t
and¨:= ∂2

∂t2
). Dirichlet, Neumann and initial

conditions can be introduced as

u = ū on Γu × [0,T], (4a)

σn = t on Γσ × [0,T], (4b)

u = u0 in Ω̄× 0, (4c)

u̇ = u̇0 in Ω̄× 0, (4d)

where Γ = Γσ ∪ Γu and Γσ ∩ Γu = ∅. The coupled electro-mechanical initial
boundary value problem, defined by equations (1) to (4), must be comple-
mented with two closure equations related to the electro-mechanical nature
of the continuum. For a conservative material, the closure equations can be
derived from the enthalpy density of the system Ψ defined in terms of the
electric field vector E and the small strain tensor ε as follows

σ(ε,E) :=
∂Ψ(ε,E)

∂ε
and D(ε,E) := −∂Ψ(ε,E)

∂E
, ε :=

1

2

(
∇u+∇uT

)
,

(5)
expressing the total Cauchy stress tensor σ and the electric displacement
vector D in terms of the electric field E and the small strain tensor ε. A va-
riety of electro-mechanical constitutive models are available in the literature
defined in terms of different enthalpy expressions [28, 29]. In the case of lin-
ear piezoelectricity, σ and D obtained this way render algebraic summations
of mechanical (·)m and electrical (·)e components. 2

The electric displacement D can be expanded as

D = Dm +De; Dm := P : ε, De := εE, (6)

2Throughout the paper, the symbol (·) is used to indicate the scalar product or con-
traction of a single index a ·b = aibi; the symbol (:) is used to indicate double contraction
of two indices A : B = AijBij ; the symbol (×) is used to indicate the cross product
[a× b]i = εijkajbk via the third order permutation tensor εijk and the symbol (⊗) is used
to indicate the outer or dyadic product [a⊗ b]ij = aibj .
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where ε is the symmetric second order dielectric permittivity tensor and P
is the third order piezoelectric tensor verifying [P ]ijk = [P ]ikj. Analogously,
the total Cauchy stress tensor σ can be decomposed additively as

σ = σm + σe; σm := C : ε, σe := −E ·P . (7)

Piezoelectric materials exhibit anisotropic behaviour and, hence, C is the
general fourth order anisotropic elasticity tensor satisfying [C]ijkl = [C]jikl =
[C]ijlk = [C]klij. It is important to emphasise that the conservation of angular
momentum requires the symmetry of σ but not of its individual components
σm and σe. Finally, the initial boundary value problem of the coupled prob-
lem is defined by equations (1)-(4), (6)-(7).

Γ
σ

Γ
un

Ω

ρb

Γ
D

Γ
ψn

Ω

qe

(a) (b)

Figure 1: Decomposition of (a) Mechanical Boundary Γ = Γσ ∪ Γu and Γσ ∩ Γu = ∅ and
(b) Electrical Boundary Γ = ΓD ∪ Γψ and ΓD ∩ Γψ = ∅

3. Kinematics and electrostatics of three-dimensional piezoelectric
beams

3.1. Kinematics

Let us consider the motion of a beam Ω ⊂ R3 as shown in Figure 2 [30].
The beam in the undeformed configuration has a straight axis of length l and
is completely characterised with an orthonormal reference triad {e1, e2, e3},
where e3 is parallel to the beam axis and {eα}(α = 1, 2) lie in the plane
which defines the cross sectional area A (with boundary ∂A) of the beam
Ω = A × l3. Assuming for simplicity that this reference frame (placed at

3Throughout the remainder of the paper, any Greek indices will be assumed to vary in
the integer interval [1,2] and Latin indices to vary in the integer interval [1,2,3].
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[0, 0, x3]T ) coincides with the global one (placed at [0, 0, 0]T ), as shown in
Figure 2, the beam current configuration x = [x1, x2, x3]T can be defined
through a mapping ϕ : Ω× [0, T ]→ R3 as

x1

x2

x3

e1

e2

e3

c1

c2

c3

ϕ(x, t)

O

Figure 2: Motion of Beam in R3. The initial orthonormal triad {e1, e2, e3} transforms
to the orthonormal triad {c1, c2, c3}.

(x, t) 7→ ϕ(x, t) = x3e3 +w(x3, t) + Λ(x3, t)p(x1, x2), (8)

where p(x1, x2) := xαeα is the position vector of a material point within the
cross section A with respect to the origin of the triad {e1, e2, e3}4, w(x3, t) is
the displacement vector of the reference triad origin and Λ(x3, t) is an orthog-
onal tensor evaluated at the triad origin and representing the transformation
of the reference orthonormal triad {e1, e2, e3} to a new orthonormal triad
{c1, c2, c3} according to ci = Λei. It is well known, this rotation tensor Λ
can be obtained in terms of the exponential mapping of a skew symmetric
second order tensor θ̂ and can be expanded in the form

Λ = exp(θ̂) = I + θ̂ +
1

2!
θ̂2 +

1

3!
θ̂3 + . . . as ‖θ̂‖ → 0 (9)

where ‖ · ‖ denotes the standard Euclidean vector norm and θ̂ is the skew-
symmetric tensor associated with θ [24]. Note that for any arbitrary vector

4Note that unless otherwise stated, Einstein’s summation convention will be assumed.
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v ∈ R3 the following identity is fulfilled5

θ × v = θ̂v. (10)

In the case of small rotations and neglecting high order terms, the rotation
tensor can be approximated as Λ ' I + θ̂ yielding a final displacement field
u : Ω× [0, T ]→ R3 (refer to equation (8)) defined as

(x, t) 7→ u(x, t) = w(x3, t) + θ(x3, t)× p(x1, x2), (11)

where the vectors w = wiei and θ = θiei are collectively called the gen-
eralised beam displacements. Expression (11) represents a time dependent
affine mapping for any material point contained within the cross sectional
area A of the beam. Noticing that ∇u = ∂u

∂xi
⊗ ei and ∂p

∂xα
= eα, the small

strain tensor ε can be rewritten as

ε =
1

2

[
(εm + κm × p)⊗ e3 + e3 ⊗ (εm + κm × p)

]
, (12)

where

εm :=
∂w

∂x3

+ e3 × θ, κm :=
∂θ

∂x3

, (13)

are called the strain resultants of the linear beam model, which characterise
translational deformation and rotational deformation, respectively.

3.2. Electrical Mapping

Similar to the previous section, we postulate a Taylor series expansion for
the electric potential φ : Ω× [0, T ]→ R in the form

(x, t) 7→ φ(x) =φ |(0,0,x3,t) + p(x1, x2) ·∇φ |(0,0,x3,t) +

1

2
p(x1, x2) ·Hφ |(0,0,x3,t) p(x1, x2) + . . . as ‖p(x1, x2)‖ → 0

(14)

in terms of the time dependent electric potential φ, its vector gradient ∇φ
and its second order tensor Hessian Hφ defined at the reference triad origin

5In general, given any vector a ∈ R3, the corresponding skew symmetric second order
tensor â may be defined according to equation (??).

9



[0, 0, x3]T . It is possible to neglect high order terms O(‖p(x1, x2)‖3) by as-
suming that the spatial variation of the electric potential in the cross section
of the beam is sufficiently well defined via ∇φ andHφ, in line with references
[19, 7]. Notice that any lower order electric potential interpolation across the
section of the beam would yield a non-varying electric field vector E across
A. With this assumption in place, we can introduce an approximate electric
potential field ψ : Ω× [0, T ]→ R defined as

(x, t) 7→ ψ(x, t) := φ(x3, t)+p(x1, x2)·β(x3, t)+
1

2
p(x1, x2)·γ(x3, t) p(x1, x2),

(15)
where ψ represents a parabolic expansion across the cross sectional area A
of the beam, completely defined in terms of φ, β and γ, namely scalar,
vector and symmetric second order tensor beam axis-varying functions. It is
important to remark that the only approximation for the distribution of the
electric potential is established across the section of the beam (see Figure 3).
The variation along the beam axis remains without any approximation.

The electric field vectorE can now be obtained by computing the gradient
of the newly introduced electric potential ψ as E := −∇ψ yielding (refer to
equation (15)), after some algebraic manipulation

E = −εe − (e3 ⊗ p)κe − V : ςe −W : γ, (16)

where

εe :=
∂φ

∂x3

e3 + β, κe :=
∂β

∂x3

, ςe :=
∂γ

∂x3

, (17)

with the third order tensors V and W defined by

V := e3 ⊗
1

2
(p⊗ p) , W := eα ⊗

1

2
(p⊗ eα + eα ⊗ p) . (18)

Considering equation (16), it is interesting to notice the similarities with
the definition of the small strain tensor ε (12). Notice how the first two terms
on the right hand side of equation (16) stem from the linear contribution in
(15) (as in formula (12)) whereas the last two terms stem from the quadratic
contribution in (15).
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Piezoelectric Layer

Polarisation in x1 Direction

l

h

b

Piezoelectric Layer

Polarisation in x2 Direction

l

h
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Piezoelectric Layer
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l

h

b

e1

e2

e3

Figure 3: Electrostatics of a three-dimensional piezoelectric beam

The new initial boundary value problem, adapted to a three-dimensional
beam problem, is then defined by equations (1-7) and (11,15), which com-
bine the governing equations of both elastodynamics and electrostatics, ini-
tial and boundary conditions, the coupling electro-mechanical equations for
σ and D, the beam kinematics assumption u and the electric potential spa-
tial distribution ψ. Notice that the initial and boundary conditions must be
compatible with the assumptions for the beam kinematics and the electric po-
tential spatial distribution. The variables of the resulting electromechanical
beam model in a general three-dimensional beam problem are {w,θ, φ,β,γ}
defined in l × [0, T ].

4. Variational formulation

In order to establish the variational formulation of the problem, the fol-
lowing spaces of admissible trial functions u and ψ are considered:

Vu
ū := {u | u := w + θ × p, u = ū on Γu × [0, T ]}, (19)

Vψ
ψ̄

:=

{
ψ | ψ := φ+ p · β +

1

2
p · γ · p, ψ = ψ̄ on Γψ × [0, T ]

}
, (20)

with the component functions {(w·ei), (θ·ei), φ, (β·eα), (eα ·γeβ)} ∈ H1(Ω).
Following a standard variational methodology [28, 29], the variational form
(virtual work) of the initial boundary value problem is given as:
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Find (u, ψ) ∈ Vu
ū × V

ψ

ψ̄
such that

δW (u, ψ; δu, δψ) := δWiner + δWm
int + δW e

int − δWm
ext − δW e

ext = 0, (21)

for all (δu, δψ) ∈ Vu
0 × V

ψ
0 where

δWiner :=

∫
Ω

ρü · δu dΩ, (22a)

δWm
int :=

∫
Ω

σ : δε dΩ, (22b)

δWm
ext :=

∫
Ω

ρb · δu dΩ +

∫
Γσ
t · δu dΓ, (22c)

δW e
int := −

∫
Ω

D · δE dΩ, (22d)

δW e
ext :=

∫
Ω

ρeδψ dΩ +

∫
ΓD
ωδψ dΓ, (22e)

represent the different contributions (e.g. inertial, internal, external, me-
chanical, electrical) to the total virtual work and

δε =
1

2

(
∇δu+ (∇δu)T

)
, δE = −∇δψ. (23)

Substituting the expressions for δu (19) and δψ (20) into equation (23) results
in

δε =
1

2

[
(δεm + δκm × p)⊗ e3 + e3 ⊗ (δεm + δκm × p)

]
, (24a)

δE = −δεe − (e3 ⊗ p)δκe − V : δςe −W : δγ, (24b)

where

δεm :=
∂δw

∂x3

+ e3 × δθ, δκm :=
∂δθ

∂x3

, (25a)

δεe :=
∂δφ

∂x3

e3 + δβ, δκe :=
∂δβ

∂x3

, δςe :=
∂δγ

∂x3

, (25b)

represent the virtual mechanical and electrical beam strains.
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Substituting the expressions for u (11) and δu (19) into (22a) yields (after
integration over the cross sectional area A) the inertial virtual work

δWiner =

∫
l

[
δw ·

(
ADẅ + SDθ̈

)
+ δθ ·

(
STDẅ + IDθ̈

)]
dx3, (26)

where

AD :=

∫
A

ρIdA, SD :=

∫
A

ρp̂ dA, ID :=

∫
A

ρp̂p̂TdA, (27)

represent the mass AD, first area moment SD and second area moment ID
tensors of the cross sectional area A. Notice that p̂ represents the skew
symmetric tensor associated with the position vector p. When considering
a reference frame whose origin coincides with the centre of mass of the cross
sectional area A, then SD = 0. Moreover, if the reference frame is aligned
along the so-called principal directions, the second area moment tensor ID
becomes diagonal.

Analogously, substituting the expression for δε (24a) into (22b) yields
(after integration over the cross sectional area A) the internal mechanical
virtual work

δWm
int =

∫
l

[δεm ·Qm + δκm ·Mm] dx3, (28)

with

Qm :=

∫
A

σe3dA, Mm :=

∫
A

p× (σe3)dA. (29)

In above equation (28), Qm represents the internal shear/axial force
whereas Mm represents the internal bending/torsion moment.

Substituting the expression for δu (19) into (22c) yields (after integration
over the cross sectional area A) the mechanical external virtual work

δWm
ext = [δw ·Qm + δθ ·Mm]l0 +

∫
l

[δw · qm + δθ ·mm] dx3, (30)

where

qm :=

∫
A

ρbdA+

∫
∂A

tdΓ, mm :=

∫
A

(p× ρb) dA+

∫
∂A

(p× t) dΓ. (31)

In above equations (30) and (31), qm and mm represent a possible exter-
nal distributed force and moment, respectively, acting along the beam axis.
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The first term in squared brackets on the right hand side of equation (30)
represents mechanical actions (force and moment) applied at both ends of
the beam, namely x3 = 0 and x3 = l.

From the electrical point of view, substituting the expression for δE (24b)
into (22d) yields (after integration over the cross sectional area A) the internal
electrical virtual work

δW e
int =

∫
l

[δεe ·Qe + δκe ·M e + δςe : Oe + δγ : P e] dx3, (32)

where

Qe :=

∫
A

DdA, M e :=

∫
A

(D · e3)p dA, (33a)

P e :=

∫
A

D ·WdA, Oe :=

∫
A

D · VdA. (33b)

In above equations (32) and (33a), it is very interesting to observe the simi-
larities between Qe and M e and their mechanical counterparts (29), namely
Qm and Mm, respectively. In addition, due to the quadratic nature of the
electric potential distribution, two extra second order tensors arise, that is
P e and Oe expressed in terms of the third order tensors W and V already
defined in (18).

Finally, substituting the expression for δψ (20) into (22e) yields (after
integration over the cross sectional area A) the electrical external virtual
work as

δW e
ext = [δφ (Qe · e3) + δβ ·M e + δγ : Oe]l0+

∫
l

[δφ qe + δβ ·me + δγ : oe] dx3,

(34)
where

qe :=

∫
A

ρedA+

∫
∂A

ω dΓ, (35a)

me :=

∫
A

ρep dA+

∫
∂A

ωp dΓ, (35b)

oe :=

∫
A

ρe

2
(p⊗ p) dA+

∫
∂A

ω

2
(p⊗ p) dΓ. (35c)

Again, it is interesting to note the similarities between the above expres-
sions qe, me (35) and those of qm, mm (31). In above equation (34), qe,
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me and oe represent possible distributed electrical effects per unit of length.
Moreover, (Qe · e3), M e and Oe represent electrical actions applied at both
ends of the beam, namely x3 = 0 and x3 = L.

For completeness, the final virtual work expression characterising the be-
haviour of the piezoelectric beam can be written as

Find (u, ψ) ∈ Vu
ū × V

ψ

ψ̄
such that

δW := δWiner + δWint − δWext = 0, (36)

for all (δu, δψ) ∈ Vu
0 × V

ψ
0 where

δWiner =

∫
l

[
δw ·

(
ADẅ + SDθ̈

)
+ δθ ·

(
STDẅ + IDθ̈

)]
dx3, (37a)

δWint =

∫
l

[δεm ·Qm + δκm ·Mm] dx3

+

∫
l

[δεe ·Qe + δκe ·M e + δςe : P e + δγ : Oe] dx3, (37b)

δWext = [δw ·Qm + δθ ·Mm]l0 +

∫
l

[δw · qm + δθ ·mm] dx3

+ [δφ(Qe · e3) + δβ ·M e + δγ : Oe]l0 +

∫
l

[δφ qe + δβ ·me + δγ : oe] dx3.

(37c)

5. Mechanical and electrical cross sectional balance equations

5.1. Beam balance equations

As it is well known in standard beam theory [24], further manipulation of
the above variational form (36)-(37) can lead to the so-called beam balance
equations, which are indeed written as,
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∂Qm

∂x3

+ qm = ADẅ + SDθ̈, in l × [0, T ], (38a)

∂Mm

∂x3

−Qm × e3 +mm = STDẅ + IDθ̈, in l × [0, T ], (38b)

∂(Qe · e3)

∂x3

+ qe = 0, in l × [0, T ], (38c)

∂M e

∂x3

− (I − e3 ⊗ e3)Qe +me = 0, in l × [0, T ], (38d)

∂Oe

∂x3

− P e + oe = 0, in l × [0, T ], (38e)

The above set of equations represent a set of balance equations in terms of
internal area resultants Qm, Mm, Qe, M e, P e and Oe. Initial conditions
(4c-4d), boundary conditions (2a,4a), mechanical strains (12-13) and their
electrical counterparts (16-17) complement the above system of partial differ-
ential equations (38) to form the initial boundary value problem of the three-
dimensional piezoelectric beam. Specifically, compatible initial conditions
can be defined in terms of axis varying functions w0, ẇ0,θ0, θ̇0 : [0, l] → R3

as

u(x1, x2, x3, t) = w0(x3) + θ0(x3)× p(x1, x2) in Ω× 0, (39a)

u̇(x1, x2, x3, t) = ẇ0(x3) + θ̇0(x3)× p(x1, x2) in Ω× 0, (39b)

Dirichlet (and corresponding Neumann) boundary conditions can be defined
at either end of the beam x3 = 0 or x3 = l by

w = w̄, θ = θ̄, φ = φ̄, β = β̄, γ = γ̄, (40a)

Qm = Q̄m, Mm = M̄m, Qe · e3 = Q̄e, M e = M̄ e, Oe = Ōe. (40b)

Naturally, wherever a Dirichlet boundary condition is defined, a correspond-
ing Neumann boundary condition cannot be used. Finally, in order to close
the system defined by (12-13), (38), (39) and (40), it is necessary to es-
tablish relationships between the internal area resultants and the mechani-
cal/electrical strains.

5.2. Internal area resultants

From the mechanical standpoint, having introduced the additive decom-
position of the total Cauchy stress tensor σ in equation (7), we now proceed
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to find the traction vector acting in a cross sectional area A of the beam
defined by the outward unit normal e3, namely σe3. For the mechanical
contribution σm, combining equations (7) and (12), it yields

σme3 = Ξ(εm + p̂Tκm), [Ξ]ij = [C]ikjl[e3]k[e3]l. (41)

Analogously, for the electrical contribution σe, combining equations (7)
and (16), it yields

σee3 = Θ (εe + (e3 ⊗ p)κe + V : ςe + W : γ) , [Θ]ij = [P ]jik[e3]k.
(42)

The first internal area resultant Qm, also known as the axial/shear force, can
now be computed from equations (29), (41) and (42) as

Qm = Amεm + Smκm +Ae
1ε
e + Se1κ

e + Se2 : γ + Ie1 : ςe, (43)

where

Am :=

∫
A

Ξ dA, Sm :=

∫
A

Ξp̂TdA, Ae
1 :=

∫
A

ΘdA,

Se1 :=

∫
A

Θ(e3 ⊗ p)dA, Ie1 :=

∫
A

ΘVdA, Se2 :=

∫
A

ΘWdA,

The first two terms on the right hand side of (43) stem from strain contribu-
tions whereas the remainder stem from electrical contributions. The second
internal area resultantMm, also known as bending/torsion moment, can also
be computed from equations (29), (41) and (42) as

Mm = (Sm)T εm + Imκm + Se3ε
e + Ie2κ

e + Ie3 : γ +Ge
1 : ςe, (45)

where

Im :=

∫
A

p̂Ξp̂TdA, Se3 :=

∫
A

p̂ΘdA, Ie2 :=

∫
A

p̂Θ(e3 ⊗ p)dA,

Ge
1 :=

∫
A

p̂ΘVdA, Ie3 :=

∫
A

p̂ΘWdA.

From the electrical standpoint, having introduced the additive decomposition
of the electric displacement D in equation (6), we can obtain after combining
equations (6), (12) and (16)

Dm = ΘT (εm + p̂Tκm), (47)
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and
De = −ε(εe + (e3 ⊗ p)κe + V : ςe + W : γ). (48)

The third internal area resultant Qe can now be computed from equations
(33a), (47) and (48) as

Qe = (Ae
1)T εm + (Se3)T κm −Ae

2ε
e − Se4κe − Se5 : γ − Ie4 : ςe, (49)

where

Ae
2 :=

∫
A

εdA, Se4 :=

∫
A

ε(e3 ⊗ p)dA,

Ie4 :=

∫
A

εVdA, Se5 :=

∫
A

εWdA.

Analogously, the fourth M e, fifth P e and sixth Oe internal area resultants
can be computed from equations (33a-33b), (47) and (48) as

M e = (Se1)T εm + (Ie2)T κm − (Se4)T εe − Ie5κe − Ie6 : γ −Ge
2 : ςe,

P e = (Se2)T εm + (Ie3)T κm − (Se5)T εe − (Ie6)T κe − Ie7 : γ −Ge
3 : ςe,

Oe = (Ie1)T εm + (Ge
1)T κm − (Ie4)T εe − (Ge

2)T κe − (Ge
3)T : γ − J e : ςe,

(51)
where

Ie5 :=

∫
A

(p⊗ e3)ε(e3 × p)dA, J e :=

∫
A

V∗TεVdA, Ie6 :=

∫
A

(p⊗ e3)εWdA,

Ge
2 :=

∫
A

(p⊗ e3)εVdA, Ge
3 :=

∫
A

W∗TεVdA, Ie7 :=

∫
A

W∗TεWdA.

Finally, we can summarise all of the above relationships between internal
area resultants and mechanical/electrical strains in the following table matrix
format6

6Notice that the entries in columns one to four correspond to second order tensors
whereas the entries in columns five and six correspond to third order tensors.
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Qm

Mm

Qe

M e

P e

Oe

 =


Am Sm Ae

1 Se1 Se2 Ie1
Im Se3 Ie2 Ie3 Ge

1

−Ae
2 −Se4 −Se5 −Ie4
−Ie5 −Ie6 −Ge

2

−Ie7 −Ge
3

Sym −J e




εm

κm

εe

κe

: γ
: ςe

 . (53)

As expected, the resulting matrix is symmetric and has a saddle point struc-
ture due to its derivation from the enthalpy density of the system. In the
case of dealing with a homogeneous material across the section of the beam,
namely constant mechanical and electrical properties within the area section
A, if the origin of the reference triad {e1, e2, e3} is chosen as the centre of
mass of the section, then the tensors Sm, Sek (k = 1 . . . 5) andGe

k (k = 1 . . . 3)
vanish (e.g. their integrand is of odd order in the position vector p). Finally,
we note that the initial boundary value problem representing the behaviour
of a piezoelectric three-dimensional beam is defined by equations (12), (13),
(38), (39), (40) and (53).

6. Analytical solution of planar piezoelectric beams

The aim of this section is to present closed-form solutions for some par-
ticular cases of piezoelectric beams, which will enable the benchmarking of
the finite element implementation presented in a subsequent section of this
paper. In addition, the presentation of closed-form solutions is of interest
to prospective researchers in order to validate their piezoelectric beam mod-
els. To the best of our knowledge, closed-form solutions of two-way coupled
piezoelectric beams with quadratic distribution of electric potential within
the cross section do not exist in the literature.

We will focus on the analysis of two-dimensional beams (placed on the
plane defined by Ox1x3) where distributed effects along the beam will be
disregarded (i.e. qm = 0, mm = 0, qe = 0, me = 0, oe = 0) and we will seek
solutions to static problems where inertial terms are neglected (e.g. ρ = 0).
In addition, we will particularise our solutions to beams with homogeneous
cross sectional area where the origin of the reference frame coincides with
the centre of mass of the section.

For simplicity, the displacement w of the cross sectional reference frame
origin is considered perpendicular to the beam axis, namelyw·e3 = 0, and no
torsion along the beam axis is considered either, θ · e3 = 0. In this case, the
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problem is fully described by the following five variables {w := w · e1, θ :=
θ · e2, φ, β := β · e1, γ := e1 · γ · e1} : [0, l]→ R. Substitution of equations
(53) into the beam balance equations (38) yields, after redefinition of the
beam coordinate axis as x ∈ [0, l],

a1

(
dw

dx
− θ
)

+ a2β + a3
dφ

dx
+
a14

2

dγ

dx
= Q̄m, (54a)

a4
d2θ

dx2
− a5

d2β

dx2
− a15

dγ

dx
+ a1

(
dw

dx
− θ
)

+ a2β + a3
dφ

dx
+
a14

2

dγ

dx
= 0, (54b)

a6

(
dw

dx
− θ
)
− a7β − a8

dφ

dx
− a16

2

dγ

dx
= Q̄e, (54c)

a9
d2θ

dx2
+ a10

d2β

dx2
+
a17

2

dγ

dx
+ a11

(
dw

dx
− θ
)
− a12β − a13

dφ

dx
= 0, (54d)

d

dx

[
a18

2

(
dw

dx
− θ
)
− 1

2

(
a19β + a20

dφ

dx

)
− a21

4

dγ

dx

]
+a22

dθ

dx
+ a23

dβ

dx
+ a24γ = 0, (54e)

where coefficients ak (k = 1 . . . 24), expressed in terms of mechanical, electri-
cal and geometrical properties, are defined as

a1 := µA ks, a2 := P113A ks, a3 := P313A ks, a4 := EI,

a5 := P333I, a6 := P313A, a7 := ε13A, a8 := ε33A,

a9 := P333I, a10 := ε33I, a11 := P113A, a12 := ε11A,

a13 := ε13A, a14 := P313I, a15 := P133I, a16 := ε33I,

a17 := ε13I, a18 := P313I, a19 := ε13I, a20 := ε33I,

a21 := ε33J, a22 := P133I, a23 := ε13I, a24 := ε11I,

where A is the cross sectional area, I :=
∫
A

(x1)2dA is the second moment of
area of the section, J :=

∫
A

(x1)4dA is the fourth moment of area of the sec-
tion, E is the Young modulus, µ is the shear modulus, Pijk are piezoelectric
coefficients and εij are dielectric coefficients. ks represents a shear factor cor-
rection for the section [24] that will be taken as one unless otherwise stated.
Together with appropriate boundary conditions (40), the piezoelectric beam
problem is completely closed with the above set of equations (54). Note that
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we have assumed that all material and geometric beam properties remain
constant throughout the beam length.

The set of boundary conditions considered for a cantilever problem are

w = 0, θ = 0, φ = 0, β = 0, γ = 0, at x = 0, (55a)

Qm = Q̄m, Mm = 0, Qe = Q̄e, M e = 0, Oe = 0, at x = l, (55b)

where Qm := Qm ·e1, Mm := Mm ·e2, Qe := Qe ·e3, M e := M e ·e1 and Oe :=
e1 ·Oee1. As it is common in piezoelectric beam literature [1, 19, 21], for the
electrical part we have postulated similar Dirichlet and Neumann boundary
conditions to those of the mechanical problem i.e. all electric variables are
zero at the fixed end and the derivatives are specified at the free end in a
coupled fashion. From (54a) and (54c) we can deduce

(
dw
dx
− θ
)

and dφ
dx

as(
dw

dx
− θ
)

=
Q̄m

a1

− a2

a1

β − a3

a1

dφ

dx
− 1

2

a14

a1

dγ

dx
, (56a)

dφ

dx
=

a6

a1b2

Q̄m − Q̄e

b2

− b1

b2

β − b8

b2

dγ

dx
, (56b)

where coefficients b1, b2 and b8 are defined in Appendix A. After back sub-
stitution into (54b), (54d) and (54e), we obtain

a4
d2θ

dx2
− a5

d2β

dx2
− a15

dγ

dx
+ Q̄m = 0, (57a)

a9
d2θ

dx2
+ a10

d2β

dx2
+ b9

dγ

dx
− b5β + b6Q̄

m + b7Q̄
e = 0, (57b)

d2γ

dx2
+ k2

1γ +m1
dβ

dx
+m3

dθ

dx
= 0, (57c)

where coefficients b5, b6, b7, b9, m1, m1, m3 and k1 are defined in Appendix A.
The above three equations (57), together with relevant boundary conditions,
can be integrated to solve for θ, β and γ. Then, by using equations in (56),
the remaining variables w and φ can be obtained.

The solution of these equations would require four piezoelectric parame-
ters P113, P133, P313 and P333, three dielectric parameters ε11, ε13 and ε33 and
two mechanical parameters µ and E. From a practical viewpoint, piezoelec-
tric materials having all of the above material parameters non-zero are rare
and the solution obtained using this approach would be too lengthy to be
reported. For such closed-form solutions, the reader can refer to Poya [16].
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We identify two practically feasible scenarios for the above set of differen-
tial equations (57). Firstly, the case where the electric potential distribution
is assumed to vary linearly within the cross section. Secondly, the case where
the electric potential distribution is assumed to vary quadratically within the
cross section but the electric permittivity tensor ε is considered to be diagonal
and the piezoelectric component P133 = 0. The most notable piezoelectric
materials, such as PZT-5H, PZT-5A, Quartz and many others, share these
features.

6.1. Linear electric potential distribution within the cross section

In this case, the equations in (57) reduce to

a4
d2θ

dx2
− a5

d2β

dx2
+ Q̄m = 0, (58a)

a9
d2θ

dx2
+ a10

d2β

dx2
− b5β + b6Q̄

m + b7Q̄
e = 0, (58b)

with the following set of boundary conditions

θ|x=0 = 0, β|x=0 = 0, (59a)

dθ

dx

∣∣∣∣
x=l

= 0,
dβ

dx

∣∣∣∣
x=l

= 0. (59b)

The final closed-form solution of this problem yields
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β(x) :=
(Q̄mb3 + Q̄eb4)

k2
g(x),

φ(x) :=

(
Q̄ma6

a1b2
− Q̄e

b2

)
x− b1(Q̄mb3 + Q̄eb4)

b2 k3
f(x),

θ(x) :=
Q̄mlx

a4
− Q̄mx2

2a4
+
a5(Q̄mb3 + Q̄eb4)

a4k2
g(x),

w(x) :=

[
Q̄m

a1
+
a3(Q̄ea1 − Q̄ma6)

a2
1b2

]
x+

Q̄mLx2

2a4
− Q̄mx3

6a4
+
(
Q̄mb3 + Q̄eb4

)
h(x),

f(x) :=
sinh(kl − kx)− sinh(kl) + kx cosh(kl)

cosh(kl)
,

g(x) := 1− cosh(kl − kx)

cosh(kl)
,

h(x) :=
(a1a5b2 − a2a4b2 + a3a4b1) [sinh(kl − kx)− sinh(kl) + kx cosh(kl)]

a1a4b2k3 cosh(kl)
,

where the new coefficients b3, b4 and k are defined in Appendix A.

6.2. Quadratic electric potential distribution within the cross section

In the case of quadratic electric potential distribution, a diagonal electric
permittivity tensor and piezoelectric component P133 = 0, which is the case
for a major class of piezoceramics [31] and, specifically, the ones used in
piezoelectric beam literature [6, 10, 5, 1, 3, 8, 9, 21], the three differential
equations (57) take the form,

a4
d2θ

dx2
− a5

d2β

dx2
+ Q̄m = 0, (60a)

a9
d2θ

dx2
+ a10

d2β

dx2
− b5β + b6Q̄

m + b7Q̄
e = 0, (60b)

d2γ

dx2
+ k2

1γ +m1
dβ

dx
= 0, (60c)

with the following set of boundary conditions,

θ|x=0 = 0, β|x=0 = 0, γ|x=0 = 0, (61a)

dθ

dx

∣∣∣∣
x=l

= 0,
dβ

dx

∣∣∣∣
x=l

= 0,
dγ

dx

∣∣∣∣
x=l

= m2, (61b)
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where m2 is a coefficient which depends on the electromechanical loading and
the electric gradient β at x = l, as given in Appendix A. The final closed
form of this problem is defined for the electrical variables as

φ(x) :=

(
Q̄ma6

a1b2
− Q̄e

b2

)
x+ f1(x) + f2(x) + f3(x) + f4(x) + f5(x),

β(x) :=
(Q̄mb3 + Q̄eb4)

k2

[
1− cosh(kl − kx)

cosh(kl)

]
,

γ(x) :=
m2 sinh(k1x)

(
k2 − k1

2
)

cosh(k1l)
(
k2 k1 − k1

3
) +

m1(Q̄mb3 + Q̄eb4) sinh(kl − k x)

cosh(kl)
(
k k1

2 − k3
) + f6(x),

f1(x) := −
b1
(
Q̄mb3 + Q̄eb4

)
b2

[
sinh(kl − kx) + kx cosh(kl)− sinh(kl)

k3 cosh(kl)

]
,

f2(x) := −b8
b2

[
m2 sinh(k1x)

(
k2 − k1

2
)

cosh(k1l)
(
k2 k1 − k1

3
) +

m1

(
Q̄mb3 + Q̄eb4

)
sinh(kl − kx)

cosh(kl)
(
k k1

2 − k3
) ]

,

f3(x) := −
b8m1

(
Q̄mb3 + Q̄eb4

)
b2

[
2k sinh(k1x)− sinh(kl)

(
e(kl+2k1x) + k1ek1(l−x)

)
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

) ]
,

f4(x) :=
b8m1

(
Q̄mb3 + Q̄eb4

)
b2

[
sinh(kl)

cosh(kl)
(
k k1

2 − k3
)] ,

f5(x) := −
b8m1

(
Q̄mb3 + Q̄eb4

)
b2

[
sinh(kl)

(
ekl + k1ek1l

)
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

)] ,
f6(x) :=

m1

(
Q̄mb3 + Q̄eb4

) [
2k sinh(k1x)− sinh(kl)

(
e(kl+2k1x) + k1 ek1(l−x)

)]
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

) ,

and for the mechanical variables as
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θ(x) :=
Q̄mlx

a4

− Q̄m x2

2 a4

+
a5

(
Q̄mb3 + Q̄eb4

)
a4k2

[
1− cosh(kl − kx)

cosh(kl)

]
,

w(x) :=
Q̄mx

a1

+
Q̄mlx2

2a4

− Q̄mx3

6 a4

+
a5

(
Q̄mb3 + Q̄eb4

)
x

a4 k2
+ g1(x) + g2(x) + g3(x)

+ g4(x) + g5(x) + g6(x) + g7(x) + g8(x) + g9(x) + g10(x) + g11(x) + g12(x),

g1(x) :=
a5

(
Q̄mb3 + Q̄eb4

)
[sinh(kl − kx)− sinh(kl)]

a4 k3 cosh(kl)
,

g2(x) := −
a2

(
Q̄mb3 + Q̄eb4

)
a1

[
sinh(kl − kx) + kx cosh(kl)− sinh(kl)

k3 cosh(kl)

]
,

g3(x) := −a3

a1

(
a6Q̄

m

a1b2

− Q̄e

b2

)
x,

g4(x) :=
a3b1

(
Q̄mb3 + Q̄eb4

)
a1b2

[
sinh(kl − kx) + kx cosh(kl)− sinh(kl)

k3 cosh(kl)

]
,

g5(x) :=
a3b8

a1b2

[
m2 sinh(k1x)

(
k2 − k1

2
)

cosh(k1l)
(
k2 k1 − k1

3
) +

m1

(
Q̄mb3 + Q̄eb4

)
sinh(kl − kx)

cosh(kl)
(
k k1

2 − k3
) ]

,

g6(x) := −
a3b8m1

(
Q̄mb3 + Q̄eb4

)
a1b2

[
2k sinh(k1x)− sinh(kl)

(
e(kl+2k1x) + k1 ek1 (l−x)

)]
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

) ,

g7(x) :=
a3b8m1

(
Q̄mb3 + Q̄eb4

)
a1b2

[
sinh(kl)

(
ekl + k1ek1l

)
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

)] ,
g8(x) := −

a3b8m1

(
Q̄mb3 + Q̄eb4

)
a1b2

[
sinh(kl)

cosh(kl)
(
k k1

2 − k3
)] ,

g9(x) := − a14

2 a1

[
m2 sinh(k1x)

(
k2 − k1

2
)

cosh(k1l)
(
k2 k1 − k1

3
) +

m1

(
Q̄mb3 + Q̄eb4

)
sinh(kl − kx)

cosh(kl)
(
k k1

2 − k3
) ]

,

g10(x) := −
a14m1

(
Q̄mb3 + Q̄eb4

)
2 a1

[
2k sinh(k1x)− sinh(kl)

(
e(kl+2k1x) + k1 ek1(l−x)

)
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

) ]
,

g11(x) :=
a14m1

(
Q̄mb3 + Q̄eb4

)
2 a1

[
sinh(kl)

cosh(kl)
(
k k1

2 − k3
)] ,

g12(x) := −
a14m1

(
Q̄mb3 + Q̄eb4

)
2 a1

[
sinh(kl)

(
ekl + k1 ek1l

)
2 cosh(kl) cosh(k1l)

(
k k1

3 − k3 k1

)] ,
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where the new coefficients m1 and k are defined in Appendix A.

7. The Finite Element Discretisation

The finite element discretisation of (36) follows naturally by introducing
a non–overlapping partition of l into a series of one–dimensional elements. In
particular, we choose to employ the hp-version of the finite element method
as it is known to overcome the problems of locking associated with low-order
approaches [26, 27, 28]. We introduce a set of H1 conforming interpolatory
functions, Vhp ⊂ H1(Ω), where the subscript h refers to the mesh spacing and
p to the polynomial degree. In the hp-finite element method it is possible to
construct a discretisation where the order of the elements varies throughout
the mesh but, in our case, we adopt the simplest configuration and fix the
polynomial degree to be uniform. The corresponding discrete weak varia-
tional statement is: Find (uhp, ψhp) ∈ Vu

ū ∩ Vu
hp × V

ψ

ψ̄
∩ Vψhp such that

δW := δWiner + δWint − δWext = 0, (62)

for all (δuhp, δψhp) ∈ Vu
0 ∩ Vu

hp × V
ψ
0 ∩ V

ψ
hp where

Vu
hp := {uhp | uhp := whp + θhp × p}, (63)

Vψhp :=

{
ψhp | ψhp := φhp + p · βhp +

1

2
p · γhp · p

}
, (64)

with the component functions {(whp·ei), (θhp·ei), φhp, (βhp·eα), (eα·γhpeβ)} ∈
Vhp.

Discussions of suitable sets of hierarchic basis functions for Vhp, which
have implementation advantages over standard Lagrangian nodal basis func-
tions, can be found in a range of texts (e.g. [32, 33, 34]) and, therefore, will
not be discussed further here. For details of the numerical treatment of these
elements, and our specific implementation, we refer to the aforementioned
references and [16].

8. Numerical examples

The numerical examples presented in this section have been carried out
using FEAPB, a cross-platform hp-finite element analysis program for piezo-
electric beams [35], developed based on the theoretical formulation outlined

26



in this paper and distributed as a free software under the terms of GNU
General Public License at https://github.com/romeric/FEAPB.

The piezoelectric material properties used in Examples 8.1 and 8.2 are
presented below in Voigt notation and taken from [3]. Note that for shear
actuator problems, the electric permittivity tensor is not required since the
problem is purely mechanical.

C =


126 79.5 84.1 0 0 0
79.5 126 84.1 0 0 0
84.1 84.1 117 0 0 0

0 0 0 23.3 0 0
0 0 0 0 23.3 0
0 0 0 0 0 23.25

GPa,

ε =

1.505 0 0
0 1.505 0
0 0 1.3

 10−8 C

Vm
,

P =

 0 0 0 0 17 0
0 0 0 17 0 0
−6.5 −6.5 23.3 0 0 0

 C

m2
.

The material properties of AT-cut Quartz, of density ρ = 2649 kg
m3 , used

in Example 8.3, are given below [31].

C =


86.74 −8.25 27.15 −3.66 0 0

129.77 −7.42 5.7 0 0
102.83 9.92 0 0

38.61 0 0
68.81 2.53

sym 29.01

× 109 N

m2
,

ε =

39.21 0 0
39.82 0.86

sym 40.42

× 10−12 C

Vm
,

P =


0.171 0 0
−0.152 0 0
−0.0187 0 0

0.067 0 0
0 0.108 −0.0761
0 −0.095 0.067


C

m2
.
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In order to benchmark the hp-finite element scheme proposed, we define for
a tensor (e.g. scalar, vector or second order) field ζ : [0, l] × t → Rn, where
n is the dimension of the tensor field, the following L2 and H1 norms

‖ζ‖L2 :=

[∫
l

ζ : ζdx3

]1/2

,

‖ζ‖H1 :=

[∫
l

(
ζ : ζ +

∂ζ

∂x3

:
∂ζ

∂x3

)
dx3

]1/2

,

(65)

associated with the magnitude of the tensor field ζ. In our case, ζ can be
any of the mechanical and electrical unknowns, namely w, θ, φ, β and γ. In
addition, the following energy norm can be defined

‖π‖E :=

[∫
l

1

2
(εm ·Qm + κm ·Mm + εe ·Qe + κe ·Qe + ςe : P e + γe ·Oe) dx3

]1/2

,

(66)
where π gathers all the mechanical and electrical unknowns. This enables the
definition of the following error norms ‖ζhp−ζ‖L2/‖ζ‖L2 , ‖ζhp−ζ‖H1/‖ζ‖H1

and ‖πhp − π‖E/‖π‖E, which can then be used to assess the convergence of
the algorithm under h- or p-refinement.

8.1. The benchmark problem

To begin our numerical examples, we first benchmark the finite element
implementation against the analytical solution provided in Section 6 and
Appendix A. The example considered for the benchmark problem is a two
dimensional cantilever beam, of height 1mm and length 10mm, under the
action of a unit tip load Q̄m = 1N and zero electric displacement resultant
Q̄e = 0C. The beam is assumed to be of a single fibre polarised along the
length as shown in Figure 4, with material properties as given above.
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Electrodes

Figure 4: Cantilever beam polarised along the length

To quantify the error incurred in all the variables {w, θ, φ, β, γ} of the
finite element implementation, we compute the L2, H1 and energy norms
of the error (as described above) for various mesh sizes and polynomial en-
hancements. In Figures 5 and 6, each line represents a fixed polynomial
degree p and each data point on a given line represents a mesh size h. Unless
otherwise stated, for this analysis, the basis functions of degree p = 1, 2, 3, 4
with equally-spaced mesh sizes have been used namely h = 0.4, 0.2, 0.133, 0.1
which correspond to 25, 50, 75 and 100 elements, respectively.

For hp-refinement, we put emphasis on the case of quadratic electric po-
tential distribution within the cross section whose closed-form solution is
provided in subsection 6.2. The solution for a linear electric potential dis-
tribution model can be considered as a special case of the quadratic one
for which we only list the tip values of non-zero variables, {w, θ, β} and
their point-wise percentage error, see Table 1 and 2. Also note that for the
quadratic case only, to get non-zero γ and φ and show their convergence,
we tune an additional piezoelectric parameter i.e. P333 = 20C/m2. In the
following plots, slope indicates the rate of convergence. The absolute relative
L2 norm of the error in all the variables is shown in Figure 5.
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Table 1: Convergence of Numerical Scheme for Tip Values

hp-Refinement wx=L (mm) θx=L (rad) βx=L (rad)

h = 5, p = 1 0.019382 0.002871 20.090531
h = 5, p = 2 0.034576 0.005128 47.566588
h = 5, p = 3 0.034623 0.005128 35.849481

Exact 0.034623 0.005128 35.849481

Table 2: Point-wise % Error Incurred in Table 1

hp-Refinement % Error w % Error θ % Error β

h = 5, p = 1 44.018998 44.019046 43.958656
h = 5, p = 2 0.134194 4.550137e-05 32.684178
h = 5, p = 3 8.161727e-07 2.385000e-12 4.784048e-07

These convergence rates are in good agreement with theoretical predic-
tions [33, 34]. In fact, in some cases, the convergence rate is far superior, for
instance, as it can be observed in the convergence of the electric potential
(Figure 5b) with quadratic basis function p = 2. The stagnation in con-
vergence occurs when the numerical solution reaches the analytical solution
(Figure 5a), which normally happens at a higher value than the computer
language floating-point precision.

A similar trend is observed with the convergence of the H1 norm of the
error, shown in Figure 6. Again, the convergence rate is in agreement with
theoretical predictions [33].

To further elaborate the overall convergence of the problem, we compute
the energy norm of the error for both linear and quadratic electric potential
distributions, but this time with a fixed mesh size and uniformly increased
interpolation degree. In other words, we report the energy norm of the
error with p-refinement, as shown in Figure 7. In addition, by means of
the error measured in the energy norm, we also compare the convergence of
the problem and the ability to overcome locking by increasing the degree of
interpolation.

This is an important advantage of hp-finite element analysis and, although
well known in the context of linear elasticity [33, 28, 29], we believe to the
best of our knowledge it is missing in the piezoelectric literature.
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Figure 5: Convergence of the error measured in the L2 norm for the variables (a) w; (b)
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Figure 6: Convergence of the error measured in the H1 norm for the variables (a) w; (b)
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(a) (b)
Figure 7: Convergence of the energy norm of the error under p-refinement and with
different numerical integration techniques. (a) Linear electric potential distribution. (b)
Quadratic electric potential distribution.

8.2. Shear actuator problem

In this example, we consider a composite piezoelectric beam that has a
well-established solution. The shear actuator initially proposed by Zhang
and Sun [2] has been analysed analytically in [2, 4], numerically in [4, 3,
19] and experimentally in [36]. In our presentation, we wish to make the
distinction that our approach, unlike the majority of these models, is not
restricted to actuation-only scenarios. Indeed, the proposed beam model
incorporates electrical degrees of freedom and hence can also be applied to
energy harvesting scenarios. In fact, shear actuator models which consider
all composite layers as Timoshenko beams, can be regarded as a special case
of the present formulation. For instance, the closed form solutions presented
in [4] are based on equations (38a) and (38b).

The presented results correspond to when the shear actuator is analysed
in a two-dimensional setting where the width of the beam is assumed to be
1mm, the length of the beam as 100mm, thickness of piezoelectric layer as
2mm and thickness of each Aluminum layer as 8mm [2], as shown in Figure 8.
Piezoelectric material properties are given above. The modulus of elasticity
and Poisson’s ratio of Aluminum are 70.3 GPa and 0.345, respectively.
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PZT − 5H
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E1

Figure 8: Geometry of the shear actuator

Although shown here in a cantilever setting, the shear actuator has also
been analysed for various other mechanical end boundary conditions, such as
clamped-clamped and clamped-hinged situations, for instance by Aldraihem
[4]. The electric loading corresponds to an electric field E1 of 10V/mm
applied perpendicular to the polarisation direction, as shown in Figure 8. In
our setting, this requires prescribing all the electric degrees of freedom with
a value of β = 10V/mm and zero for the rest of the electrical unknowns in
all nodes.

The cross-sectional properties of the composite beam are calculated nu-
merically, which also makes the present finite element formulation amenable
to multi-layer composites and non-rectangular geometries. In the following,
finite element solutions are compared with the analytical solutions provided
by [4] for a Timoshenko model, for all the aforementioned boundary condi-
tions. The beam is discretised with 20 quadratic elements.

It should be pointed out that Zhang and Sun [2] and Benjeddou et al.
[3] model the non-electroactive layers of the shear actuator as an Euler-
Bernoulli beam, which further requires imposing compatibility constraints
in the interface between the various layers. Following [4], for a Timoshenko
model, a shear factor of ks = 2/3 or less is required to capture the results
of the Euler-Bernoulli model, as shown in Figure 9d. For the purpose of
comparison a shear factor of 5/6 has been used in the rest of the test cases
shown in Figure 9.
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Figure 9: Transverse deflection obtained with various models (Shear factor ks = 5/6). (a)
Clamped-free; (b) Clamped-clamped; (c) Clamped-hinged; (d) Clamped-free with shear
factor ks = 0.62.

8.3. Ambient vibration energy harvester undergoing coupled bending-torsion

In this example, we analyse a fully three-dimensional piezoelectric energy
harvesting beam undergoing coupled bending-torsion vibration. As reported
in [10], coupled bending-torsion energy harvesters can function on broader
frequency ranges and are advantageous in improving the efficiency of energy
harvesting. To this effect, we analyse a fibre of AT-cut Quartz with material
properties as given above and dimensions defined by length 40mm, height
0.9mm and width 12mm.

To start with, we first compute some selected natural frequencies of the
beam. The dimensions of the beam are chosen such that one of these modes
(i.e. sixth mode) correspond to twisting. To obtain the natural frequencies,
we employ 50 elements of degree p = 3. Unless otherwise stated, the results
reported here are with second order electric potential distribution across the
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cross section. The natural frequencies corresponding to modes 1, 2, 3 and
6 are listed in Table 3 and hardly vary with respect to those corresponding
to purely mechanical beam problem without any piezoelectric interaction.
Hence,the natural frequencies can be verified with closed-form formulas, for
instance those provided in [37]. Many researchers [1, 5, 6, 10] tend to place
a point mass at the tip of the beam in order to reduce the frequency spec-
trum. We have opted for using directly the frequencies as obtained from the
eigenvalue analysis of the beam problem.

Table 3: Natural frequencies of bending-torsion fibre (Hz)

Mode (i) 1 2 3 6

Frequency (fi) 17.897759 111.999935 224.776362 1006.096205

The mode shapes corresponding to these frequencies are shown in Fig-
ure 10. Note that for the purpose of plotting, the interior degrees of freedom
are condensed out and the colours in the plot, which essentially show the
absolute magnitude of mode deformation, are magnified appropriately.
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Figure 10: Selected modes of bending-torsion fibre

Once the fundamental modes of the piezoelectric fibre have been com-
puted, we perform static analyses and compare the results obtained by using
first order and second order electric potential distribution within the cross
section. We categorise the results into three cases, bending only, torsion only
and coupled bending-torsion. The loading scenarios are listed in Table 4,
where a negative sign indicates downward loading and a positive moment
stands for clockwise rotation. Loads and moments are applied at the tip.

Table 4: Loading Scenarios for Bending-Torsion Harvester

Cases/ Load Qm · e1 (N) Mm · e3 (Nmm)

Case 1 - Bending -5 0
Case 2 - Torsion 0 150

Case 3 - Bending-Torsion -5 150

The resulting electric potential is plotted in Figure 11. Note that, while
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the potential produced between end electrodes can be high for sensor appli-
cation, our aim here is to find optimum electric output for energy harvesting
purposes.
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Figure 11: Voltage Output for Three Loading Cases

To demonstrate how the results vary with the consideration of a linear
or quadratic electrical potential distribution across the cross section of the
beam, we compute the variation of the electric potential ψ at the tip cross
section and compare it through the height and through the thickness for both
cases.
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Figure 12: Variation of electric potential across the width. (a) Linear electric potential
distribution. (b) Quadratic electric potential distribution.
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Figure 13: Variation of electric potential across the height. (a) Linear electric potential
distribution. (b) Quadratic electric potential distribution.

Observe that the variation of the electric potential across the height is
constant in the linear electrical potential distribution case, due to β ·e1 being
zero. In the case of quadratic electrical potential distribution, the Hessian
contribution e1 ·γe1 is small across the height. The differences between cases
(a) and (b) for Figures 12 and 13 are expected, as the coupling mechanisms
certainly differ in different directions.

Finally, a dynamic analysis is carried out, where the beam is subjected
to a harmonic end point load. The frequency of excitation of the external
forcing term is chosen sequentially equal to ωp ∈ [0.01, 0.1, 1.0, 10.0] rad/s.
While it is possible to excite the beam at different resonance frequencies, this
would lead to irreproducible results from the experimental standpoint, due
to the high value of the natural frequencies. In order to obtain a bounded
solution, a damped system is introduced where classical Rayleigh damping
[25] is used. The damping matrix C is obtained as a linear combination
of the mass M and stiffness matrices K, namely C = aM + bK, where
a = b = 0.01 are used for this analysis.

The damped system subjected to the external forcing term is then solved
via the Newmark’s method using 50 quadratic elements of Lagrange-Gauss-
Lobbato basis functions and the time-step size is chosen as 1/500 s. An
external forcing term defined by Qm · e1 = P0 sin(ωP t) is applied at the tip,
where ωP is the natural frequency of excitation (as listed above) and P0 the
amplitude of the excitation chosen in this case as 100N. Figure 14 shows
the time history of the external forcing term when ωP = 10rad/sec. Note
that the external force ωP = 0.01rad/sec corresponds to a pulse loading.
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As can be observed, the external forcing term is applied for the first 30s
and then removed (see Figure 14). The correct consideration of the multiple
degrees of freedom of the system enables the accurate capturing of the energy
of the beam model, superseding alternative approaches based on simplified
structural models.
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Figure 14: Harmonic vibration with frequency ωp = 10 rad/sec

The instantaneous electrical power P e can be computed (refer to equation
(32)) as

P e =

∫
l

(
ε̇e ·Qe + κ̇e ·M e + ς̇e : P e + γ̇e : Oe

)
dx3. (67)

In the finite element context, one needs to compute the electrical power
at each time step by carrying out the normal post-processing used in stress
recovery (i.e. perform numerical integration to obtain the desired quantity at
Gauss points, while looping over elements). Due to the linear nature of the
problem, the time derivative of the electrical variables (needed to evaluate
P e) can be computed directly from the Newmark’s method, without the
need to resort to an ad-hoc numerical differentiation within every time step.
Recall that whilst velocities and accelerations are part of the unknowns of
the dynamic problem, the time rates of the electrical variables are not. The
harvested power for the case of the damped system is shown in Figure 15,
for the four different excitation frequencies listed above.
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It should be noted that this power corresponds to an instantaneous power
where it is assumed that the electrodes are not attached to an external re-
sistor. In all the cases, the power history decreases dramatically after 30s,
which is when the external forcing term is removed.

9. Conclusion

In this work, a complete three-dimensional linear piezoelectric beam for-
mulation and its hp-finite element implementation has been presented. A
Timoshenko model, used to describe the kinematics of a straight axis beam,
is complemented with a quadratic description of the electric potential across
the cross section of the beam. The formulation is suitable to deal with static,
modal and dynamic actuation and harvesting scenarios. Starting from the
continuum level, a very clear description of the beam balance equations is
presented by means of the introduction of suitable mechanical (and electrical
counterparts) stress and strain resultants defined along the beam axis.

The paper includes the closed-form solution for a two-dimensional piezo-
electric cantilever beam, subjected to static end tip mechanical and electrical
loads, and used to benchmark the numerical simulations through the use of
suitable L2, H1 and energy error norms. In addition, the formulation has
been also compared against existing literature [2, 4, 3] yielding excellent
agreement in all cases. For shear-driven problems, a shear factor of 0.62 is
suggested for the Timoshenko based solution in order to comply with that of
layer-wise Euler-Bernoulli’s approaches.
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Figure 15: Harvested power at various frequencies: (a) ωP = 0.01 rad/sec; (b) ωP =
0.1 rad/sec; (c) ωP = 1 rad/sec; (d) ωP = 10 rad/sec
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Appendix A. Coefficients of the closed-form solution

The coefficients used in the analytical solution presented in Section 6 are
as follows

b1 :=
a2 a6

a1

+ a7, b2 :=
a3 a6

a1

+ a8,

c1 := a13 +
a3 a11

a1

, c2 := a8 +
a3 a6

a1

,

c3 := a10 +
a5 a9

a4

, c4 :=
a9

a4

− a11

a1

+
a6 c1

a1 c2

,

b3 := −c4

c3

, b4 :=
c1

c2 c3

,

b5 := a12 −
b1 c1

c2

+
a2 a11

a1

, b6 :=
a11

a1

− a6 c1

a1 c2

,

b7 :=
c1

c2

, b8 :=
1

2

(
a14a6

a1

+ a16

)
,

b9 :=
a17

2
+
b8 c1

c2

− a11 a14

2 a1

, k :=

√
b5

c3

,

c5 :=
1

2

(
a20 +

a3 a18

a1

)
, c6 :=

b8 c5

c2

− a21

4
− a14 a18

4 a1

,

k1 :=

√
a24

c6

, c7 :=
a19

2
− c5 b1

b2

+
a2 a18

2 a1

,

c8 :=
a21

4
− b8 c5

b2

+
a14 a18

4 a1

, c9 :=
a18

2 a1

− a6 c5

a1 b2

,

m1 :=
c7 − a23

c8

, m2 := Q̄m c9

c8

+ Q̄e c5

b2 c8

− β|x=l

c7

c8

,

m3 := −a22

c8

.
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