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Summary

A new computational framework for large strain elasticity in principal stretches is
presented. Distinct from existing literature, the proposed formulation makes direct
use of principal stretches rather than their squares i.e. eigenvalues of Cauchy-Green
strain tensor. The proposed framework has three key features. First, the eigen-
decomposition of the tangent elasticity and initial (geometric) stiffness operators is
obtained in closed-form from principal information alone. Crucially, these newly
found eigenvalues describe the general convexity conditions of isotropic hyperelastic
energies. In other words, convexity is postulated concisely through tangent eigen-
values supplementing the original work of J. M. Ball1. Consequently, this novel
finding opens the door for designing efficient automated Newton-style algorithms
with stabilised tangents via closed-form positive semi-definite projection or spectral
shifting that converge irrespective of mesh resolution, quality, loading scenario and
without relying on path-following techniques. A critical study of closed-form tan-
gent stabilisation in the context of isotropic hyperelasticity is therefore undertaken in
this work. Second, in addition to high order displacement-based formulation, mixed
Hu-Washizu variational principles are formulated in terms of principal stretches
by introducing stretch work conjugate Lagrange multipliers that enforce principal
stretch-stress compatibility. This is similar to enhanced strain methods. However,
the resulting mixed finite element scheme is cost-efficient, specially compared to
approximating the entire strain tensors since the formulation is in the scalar space of
singular values. Third, the proposed framework facilitates simulating rigid and stiff
systems and those that are nearly-inextensible in principal directions, a constituent
of elasticity that cannot be easily studied using standard formulations.
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1 INTRODUCTION

Large or finite strain elastic analysis by finite elements is now well established in many technical fields such as engineering
analysis of materials and structures, study of soft biological tissues and simulation of purely animated response in computer
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FIGURE 1 Selective examples of extreme deformations simulated using our proposed framework: infinite twist of a bar, slime
morphing, complex buckling of a floating ball and wrinkling of an elastomeric sheet.

graphics, to name but a few. One aspect of large strain elasticity that has received considerable attention over the past is
modelling of quasi-incompressible and truly incompressible media since many applications of practical interest happen in the
quasi-incompressible regime. Away from quasi-incompressibility, computational aspects of large strain elasticity have received
relatively less attention. In particular, two distinct issues still require further study, specifically in the nonlinear finite element
community: 1) physically accurate and robust modelling of extreme deformations. Typically, a system is characterised to have
undergone extreme deformation when the amount of displacements experienced by the system is orders of magnitude higher
than the applied load2. A myriad of such examples can be found in nature such as the emergence of hierarchical wrinkles on
elastomeric sheets and morphology of slime as seen in Fig. 1. Today’s engineering and scientific simulation suites that are even
equipped with continuation techniques and post-buckling analysis routines experience non-convergence when faced with such
extreme deformations. 2) Simulation of rigid, stiff and inextensible systems. Like quasi-incompressibility, stiff materials have
been traditionally modelled by decomposing the deformation into a rotation and a stretch component and by penalising the latter
part3. Intuitively, and as studies in rigid body dynamics have shown, simulating stiff materials poses the same challenge as that
of incompressibility, since rigidifying a deformable system through large penalty terms eventually either blows up the numerical
routine and/or the accuracy of secondary variables, which reflects in stresses remains oscillatory or at best poor.
Recent advances in polyconvex large strain elasticity4,5,6,7 provide a systematic way for designing strain energy functions that

are ab-initio materially stable and hence, capable of modelling materials that can undergo extreme deformation. On one hand,
polyconvexity guarantees both: 1) existence of real wave speeds within the medium, which has been shown to correspond to the
fulfilment of Legendre-Hadamard condition, and 2) existence of unique minimisers when equipped with appropriate coercivity
conditions1. On the other hand, polyconvexity eliminates all sources of constitutive instabilities which manifest themselves in
the form of artefacts such as pathological mesh dependencies and visually odd-looking deformation patterns that emerge as a
result of strain localisation. Polyconvexity is also a weaker restriction on strain energies implying that polyconvex energies can
be easily constructed without limiting realistic response of the system. Material or constitutive instabilities are however, only
one source of system instability. For systems undergoing extreme deformations, the other problematic source of instability (from
a computational point of view), typically emanates from the structure itself, and is commonly known as geometric instability.
Examples of geometric instability include, buckling, snap-throughs, wrinkles and pull-ins or a complex combination of these.
Models that preclude geometric instabilities are often too limiting. It is well known that indiscriminately pruning instabilities

from material models leave out only linear and convex energies. Convexity (as opposed to polyconvexity) is a much stronger
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and significantly hard-to-meet requirement for real-world applications. Lack of convexity (or non-convexity) on the other hand,
leads to even more challenging numerical issues particularly in the context of second-order computational methods (such as
Newton-Raphson like schemes) that take advantage of the Hessians and tangent operators since (in)-definiteness of the tangents
dictates (non)-convergence of the nonlinear solvers. Traditionally, overcoming convergence issues while solving for non-convex
problems has been tackled numerically after finite element discretisation and not in the smooth setting. Multiple techniques have
been designed in this regard but, it is worth mentioning the two most powerful categories of techniques. In the first category
lie path-following techniques and arc-length-based methods, which are typically employed by commercial finite element pack-
ages8,9,10,11. Generally, arc-lengthmethods retain the quadratic convergence of Newton but they are hard to automate for complex
deformation scenarios and across different finite element mesh resolutions. Manually modifying loading patterns is a common
task between stress analysts in the FEA industry. The second category comprises of more prudent techniques as they modify the
underlying energy and/or its derivatives through the commonly known technique called tangent stabilisation. Many stabilisa-
tion techniques have been proposed in the literature with some merits and shortcomings. Generally, stabilisation techniques drop
the quadratic convergence of Newton in favour of a fully automatedminimisation routine. However, they still remain second order
(depending on the technique) in convergence. A rather simple but popular form of tangent stabilisation is Laplacian stabilisation
employed for instance in ANSYS8 and in many other works12,13. A more sophisticated tangent stabilisation technique, which
to the best our knowledge was first advocated by Teran et. al.14 in the context of nonlinear elasticity, is the notion of projection
of tangent operators to positive semi-definite (PSD) cone. Originally, such projection relied on per-element numerical eigen-
decomposition by clamping the negative eigenvalues of tangent operator to a small positive number �. A plethora of projection
techniques have since been proposed for hyperelastic energies15,16,17,13,18,19,20. Amongst these, the most powerful method is the
one recently presented in20, which obtains the tangent and initial stiffness operators eigen-decomposition in closed-form and in
essence, comes cost-free. Finally, it is worth mentioning that, dynamic simulations have also been used as a means of stabilisa-
tion as the inclusion of always-positive inertia (mass) and damping (viscosity) terms stabilises the tangent21,22,23,24. However,
such techniques in general do not guarantee that the tangent operators are always positive semi-definite and non-convergence is
still expected. Moreover, they are mesh dependent in that, the time step has to be significantly decreased with mesh resolution.
Tangent stabilised large strain elasticity also finds application in many new promising fields away from engineering sim-

ulations, specifically in areas where elasticity is used as an analogy, for instance, in curved high order meshing17,16,25, mesh
smoothing and grid generation26, surface parametrisation18 and volumetric polycube parametrisation27, to name but a few. In
fact, many of these applications require only the constitutive tangent operator that is responsible for minimising certain distortion
metrics, and the initial (geometric) terms are often discarded entirely.
In addition to the aforementioned issue, an area less studied in the nonlinear finite elements of solids is modelling of partially

rigid and stiff (close-to-rigid) systems. Partially rigid systems (i.e. systems that are rigid in one or less than d principal direc-
tion(s)) in general cannot be modelled using strain invariants such as Cauchy-Greens. Nor can they be described in terms of the
usual squares of principal stretches (i.e. eigen-values of Cauchy-Green), as rigidity constraint is linear in principal stretches. As
mentioned earlier, penalty style techniques that enforce rigidity often lead to numerical issues similar to that of incompressibil-
ity. Intuitive numerical judgement suggests that rigid and stiff systems require Hu-Washizu-style mixed formulations in each
principal direction. As will be discussed, our proposed formulation makes it particularly easy to simulate such systems.
This work describes a novel framework for large strain elasticity in principal stretches. The point of departure and a criti-

cal component of our formulation is the Singular-Value-Decomposition (SVD) of the deformation gradient tensor from which
principal stretches are obtained. We then show that, knowing the principal stretches it is possible to obtain concise closed-form
formula for the eigen-decomposition of both constitutive tangent operator and initial (geometric) stiffness operator. To this end,
we start with the recently introduced stretch tensor invariants of Smith, B. et. al.20 whose ingredients facilitate concise formula-
tion for large strain elasticity in principal stretches without relying on SVD differentials. However, the realisation is that gradient
and Hessian of energies when expressed in terms of singular-values are even simpler than those obtained through stretch tensor
invariants. In fact, as will be shown later, the eigenvalues of tangent elasticity and initial stiffness operators obtained through our
workflow are precisely the characterisation of convexity for isotropic hyperelastic energies. Our workflow has multiple novel
features: 1) if a displacement-based formulation is desired, then numerical perturbation of the deformation gradient is avoided
in case of equal principal stretches as performed in other works28,29,30, and 2) the closest to our work and to the best of our
knowledge the only other formulation of large strain elasticity directly in terms of principal stretches of the deformation gradient
tensor appears in the work of Xu et. al.29 for computer graphics applications, which relies on SVD differentials. In particu-
lar, the aforementioned work relies on numerically solving multiple 2 × 2 matrices for the directional derivatives of left and
right singular matrices. Such SVD differentials are bypassed, unnecessary and contrary to the goal of our formulation. Due to
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this numerical treatment, the work of29 completely missed the notion of finding tangent eigen-decomposition from principal
stretches. As a result, efforts to find analytic eigensystems using this line of work appear to be bolt-on31 and missing the cru-
cially revealing linkage to the underlying convexity conditions of energy. Furthermore, this formulation was developed for linear
triangle/tetrahedral meshes to the point that the formulation cannot be easily decoupled from its corresponding discretisation.
Our formulation is noticeably cleaner, and generalises to general polyhedral and arbitrary high order finite element meshes.
Having established the bases for large strain elasticity formulation in principal stretches suitable for standard displacement-

based formulation, we further develop a series of mixed Hu-Washizu variational principles. More specifically, two further
variational principles are presented namely: 1) a 7-field (5-field in 2-dimensions) mixed formulation by considering each princi-
pal stretch as a variable and introducing their energetically work conjugates and by imposing their compatibility through standard
Lagrange multipliers. This results in a formulation similar to enhanced strain methods usually developed to alleviate bending
and volumetric lockings. However, in addition to alleviating such locking phenomena, this formulation also accurately mod-
els rigidity and in-extensibility in principal directions, and 2) An initially 4-field (3-field in 2-dimensions) displacement-stretch
formulation which further reduces to a simple formulation for truly rigid models suitable for rigid body simulations.
It is worthmentioning that, finite element simulations based on stretch formulations for finitely deformable solids have become

more common in geometry processing applications and specifically in surface parametrisation29,32,18,33. In this regard, a set of
popular algorithms have emerged over the past two decades commonly referred to as the "local-global“ algorithms34,35,33,3,36. On
cursory examination, these algorithms have a noteworthy resemblance to P1-P0 mixed finite elements wherein displacements
and rotations (from the polar decomposition of deformation gradient) are treated as separate variables. The rotations are then
solved locally (discontinuously from a mixed variational formulation point of view) and displacements are solved globally.
However, closer inspection reveals that these algorithms have emerged rather as a work-around for energies that explicitly feature
the rotation tensor (in order to avoid its directional derivatives) than a full-fledged mixed variational formulation for rotation
accurate analyses. In that, these algorithms cannot be recast as a second-order (e.g. Newton-Raphson) minimisation problem
as rotations and displacements are solved in alternating fashion. Hence, they are at best first order staggered algorithms. Once
again, given the application area, they are all designed for linear simplicial meshes which make them unsuitable for engineering
simulation purposes. Moreover, when seen from a mixed variational formulation point, the stability of linear-constant ansatz
functions for such displacement-rotation discretisations is not clear and has never been studied37,38,39,40,41. Our mixed variational
framework in fact also formalises these approaches and provides a second-order alternative to them.
To summarise, the proposed framework introduces the following key contributions:

• A new formulation for large strain isotropic elasticity based on principal stretches (and not their squares).

• Closed-form eigensystems for both constitutive tangent and initial stiffness operators determined solely from principal
information and consequently an optional tangent stabilisation technique to tackle extreme deformations beyond the onset
of geometrical instabilities.

• High order displacement based and mixed Hu-Washizu variational formulations (and the subsequent finite element imple-
mentations) by treating principal stretches as independent variables and enforcing principal stretch-stress compatibility
through additional Lagrange multipliers for locking-free and stress-accurate analyses.

The structure of the paper is as follows. In Section. 2, the mapping and kinematics of motion is introduced, followed by
the ingredients that make up our formulation, mainly the SVD and polar decomposition of deformation gradient and how the
principal stretches are obtained. Here, we briefly review the stretch tensor invariants of20, the directional derivatives of principal
stretches and explicit forms of tangent and initial stiffness operators. In Section. 3, we review general convexity conditions
and other restrictions imposed on assumed strain energies such as growth conditions and coercivity which are critical to our
development. We also lay out the tangent stabilisation strategy in this section. In Section. 4, the various variational principals
described earlier are presented. Section. 5, describes finite element discretisation of the variational principles. The standard
displacement-based formulation is discretised using arbitrary high order finite elements, whereas suitable finite element spaces
are considered for the corresponding mixed formulations. In Section. 6, we describe a generalised Newton-Raphson procedure
with a line search scheme that encompasses both standard Newton-Raphson and Quasi-Newton techniques such as Projected
Newton and Modified Newton, tailored for simulating extreme deformation scenarios and the choice quadrature rules for further
guaranteeing positive semi-definiteness in nonlinear elastic simulations. Various numerical examples are presented in Section. 7.
Finally Section. 8 concludes the paper.
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dv = JdV

da = HdA

dx = FdX

{dX,dA,dV } {dx,da,dv}

FIGURE 2 Mapping original and deformed configurations and fundamental kinematic measures of motion in ℝ3 Euclidean
space. {F ,H , J} map edges, areas and volumes from original {dX, dA, dV } to deformed {dx, da, dv} configuration, respec-
tively.

2 CONTINUUMMECHANICS PRELIMINARIES

2.1 Motion and deformation
Consider the 3-dimensional deformation of an elastic medium from its initial configuration occupying a volume V , of boundary
)V , into a final configuration at volume v, of boundary )v (see Fig. 2). Following Bonet et. al.4,5 the standard notation and
definitions for fundamental kinematic measures namely, the deformation gradient F , its cofactor H and its determinant J are
used 1

F = )x
)X

= (0x, H = JF −T = 1
2
F F , J = detF . (1)

where x represents the current position of a particle originally atX and (0 denotes the gradient with respect to material coordi-
nates and is the tensor cross product operator [A B]ij = ijkIJKAjJBkK where  is the third order Levi-Civita tensor42,5.
Virtual and incremental variations of x will be denoted by �u and Δu, respectively. It is assumed that x, �u and Δu satisfy
appropriate displacement based boundary conditions in )uV . Additionally, the body is under the action of certain body forces
per unit undeformed volume f 0 and traction per unit undeformed area t0 in )tV , where )tV ∪ )uV = )V and )tV ∩ )uV = ∅.
Crucial to our development is the left polar decomposition of the deformation gradient tensor

F = RU , (2)

into a rotation tensor R and a stretch tensor U . This decomposition is often obtained from the Singular-Value-Decomposition
(SVD) of F as follows

F = Û�V̂ T
, R = Û V̂ T

, U = V̂ �V̂ T
, (3)

where Û and V̂ are orthogonal tensors namely left and right singular-matrices, respectively and the tensor � encodes the
singular-values of F i.e. the principal stretches namely �1 ≥ �2 ≥ �3 ≥ 0 such that �i = Λii (we have used the symbol Û for left
singular matrix (and accordingly V̂ for right singular matrix) to distinguish with the stretch tensor U ). Note that, in mechanics

1Unless stated otherwise, throughout this work, lower case bold letters (a) denote vectors, capital bold letters (A) second order tensors and capital blackboard-bold
letters (A) fourth order tensors. Calligraphic letters () are used to represent tangent elasticity operators, �is are used to denote the singular-values of the deformation
gradient tensor (i.e. principal stretches) and �̄is are used to denote the eigenvalues of Hessian and tangent elasticity operators. Square brackets around bold letters with
subscripts such as ([N]i) indicate distinct vectors/tensors spanning in d-dimensional space as opposed to indices of the stated vector/tensor (Ni).
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literature, the more standard definition for the stretch tensor U appears as

U =
d
∑

i=1
�i[N]i ⊗ [N]i, (4)

where [N]i are the material principal directions in fact corresponding to the columns of V̂ which is obtained from the SVD
and d denotes the Euclidean space dimension (i.e. 1,2,3). It follows that, the deformation gradient tensor F can be expressed
alternatively as

F =
d
∑

i=1
�i[n]i ⊗ [N]i, (5)

where [n]i are the spatial principal directions obtained from push-forward operation [n]i = R[N]i.

2.2 An overview of stretch tensor invariants
To facilitate the development of large strain elasticity formulation directly in terms of principal stretches (as opposed to their
squares) it is necessary to first highlight the stretch tensor invariants. Recently, in Smith. B et. al.20 a new set of invariants
for nonlinear mechanics were introduced. These invariants are simply the trace, Frobenius norm (double contraction) and the
determinant of the stretch tensor U , respectively, in that,

I1 = tr(U ) =
d
∑

i=1
�i, I2 = U ∶ U = F ∶ F =

d
∑

i=1
�2i , I5 = detU = J =

d
∏

i=1
�i. (6)

Remark 1. Since orthogonality dictates that, [N]i ⋅ [N]i = 1 and det(V̂ ) = 1 the stretch tensor invariants work out as

I1 = tr(U ) = U ∶ I =
d
∑

i=1
�i[N]i ⋅ [N]i =

d
∑

i=1
�i, (7a)

I2 = U ∶ U =
d
∑

i=1
�i([N]i ⋅ [N]i)�i([N]i ⋅ [N]i) =

d
∑

i=1
�2i , (7b)

I5 = det(U ) = det
(

V̂ �V̂ T)
= det (�) =

d
∏

i=1
�i. (7c)

It is important to note that, compared to the more traditional invariants (such as Cauchy-Green C = F TF ) used in nonlinear
mechanics the stretch tensor invariants are “low-order” in that, I1 being the sum of singular-values is linear in F and in essence
represents a linear strain measure and I2 is the first invariant of Cauchy-Green I2 = IC = C ∶ I . To incorporate the remaining
Cauchy-Green invariants and in light of the polyconvex strain measures {F ,H , J}6,4,5,43 Poya et. al.44 further introduced the
extended stretch tensor invariants family which also included the cofactor invariants as follows

I3 = tr(UH ) =
d
∑

i,j;i≠j
�i�j , I4 = H ∶ H =

d
∑

i,j;i≠j
�2i �

2
j , (8)

where UH is the stretch tensor of the cofactorH in that the following relationships hold

H = Û�H V̂
T
= RUH ; UH = JU−1; ΛHii

= Λ−1ii
d
∏

j=1
�j = JΛ−1ii , (9)

Revealing that, the polar decomposition ofH is already available given the polar decomposition of F since F andH are coaxial.
Further note that, I4 represents the second Cauchy-Green invariant i.e. I4 = IIC = I5C−1 ∶ I . As presented in44, the two
cofactor invariants are however redundant in 2-dimensions since H ∶ I = F ∶ I and H ∶ H = F ∶ F hence, I3 = I1 and
I4 = I2 and in 3-dimensions they can be expressed as a combination of the other three invariants as

I3 =
1
2
(I21 − I2), (10a)

I4 = I23 − 2I1I5. (10b)
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The first directional derivative of these invariants with respect to geometry changes can be obtained in a straight-forward fashion.
The most important one which would be used heavily in our development is the first and second directional derivatives of I1 20

DI1[�u] = R ∶ (0�u, (11)

which reveals that the first directional derivative of I1 yields the rotation tensor R itself. Similarly, the second directional
derivative follows20

D2I1[�u,Δu] = (0�u ∶ TR ∶ (0Δu, (12)

where TR is to be defined below. Critical to the development of stretch tensor invariants in20 was the discovery that rotation
gradients are orthogonal to the deformation gradient tensor ( )R

)F
∶ F = 0) which led to novel concise expressions for derivatives

and rates of rotation and stretch tensors. SuchGateaux derivatives had previously been found to be forbiddingly long and complex
to numerically implement45,46,47,48. In particular, the fourth order tensor TR has the following succinct form

TR =
)R
)F

=
k
∑

i=1
�̄i[T ]i ⊗ [T ]i, where k = 1 in 2D; k = 3 in 3D (13)

such that

[T ]1 =
1
√

2
Û
[

0 −1
1 0

]

V̂ T
, in 2D, (14a)

[T ]1 =
1
√

2
Û
⎡

⎢

⎢

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

V̂ T
, [T ]2 =

1
√

2
Û
⎡

⎢

⎢

⎣

0 0 −1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

V̂ T
, [T ]3 =

1
√

2
Û
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

V̂ T
, in 3D, (14b)

where [T ]is are called the twist tensors and the corresponding eigenvalues �̄ are

�̄1 =
2

�1 + �2
in 2D, (15a)

�̄1 =
2

�2 + �3
, �̄2 =

2
�1 + �3

�̄3 =
2

�1 + �2
, in 3D. (15b)

As will be discussed in the next section, the analytic eigensystem of all isotropic hyperelastic energies feature the structure of
tensor TR.

2.3 Directional derivatives of principal stretches
With the above algebra we have essentially obtained the directional derivatives of rotation and stretch tensors. This information
is critical as it allows us to formulate problems directly in terms of principal stretches. The directional derivatives of principal
stretches can now be obtained in a straight-forward fashion. In 2-dimensions the first directional derivatives take the form

D�1[�u] =
)�1
)F

∶ (0�u,
)�1
)F

= [n]1 ⊗ [N]1 = Û
[

1 0
0 0

]

V̂ T

D�2[�u] =
)�2
)F

∶ (0�u,
)�2
)F

= [n]2 ⊗ [N]2 = Û
[

0 0
0 1

]

V̂ T

(16a)

(16b)

and similarly in 3-dimensions

D�1[�u] =
)�1
)F

∶ (0�u,
)�1
)F

= [n]1 ⊗ [N]1 = Û
⎡

⎢

⎢

⎣

1 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

V̂ T

D�2[�u] =
)�2
)F

∶ (0�u,
)�2
)F

= [n]2 ⊗ [N]2 = Û
⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

V̂ T

D�3[�u] =
)�3
)F

∶ (0�u,
)�3
)F

= [n]3 ⊗ [N]3 = Û
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 1

⎤

⎥

⎥

⎦

V̂ T

(17a)

(17b)

(17c)
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Notice that, the derivatives )�i
)F

include simple rank-one (only one non-zero column) scaling tensors which are indeed useful
in the study of rank-one convexity. From above equations it is apparent that principal stretches are linear in F . The second
directional derivatives can be worked out further in 2-dimensions as

D2�1[�u; Δu] = (0�u ∶
)2�1
)F )F

∶ (0Δu,
)2�1
)F )F

= 1
�1 − �2

(

Ī − �2TR
)

,

D2�2[�u; Δu] = (0�u ∶
)2�2
)F )F

∶ (0Δu,
)2�2
)F )F

= −1
�1 − �2

(

Ī − �1TR
)

.

(18a)

(18b)

Similarly in 3-dimensions we obtain

D2�1[�u; Δu] = (0�u ∶
)2�1
)F )F

∶ (0Δu,
)2�1
)F )F

= 1
(�1 − �2)(�1 − �3)

(

�1 Ī − (�1�2 + �1�3)TR + ℍJ
)

,

D2�2[�u; Δu] = (0�u ∶
)2�2
)F )F

∶ (0Δu,
)2�2
)F )F

= −1
(�1 − �2)(�2 − �3)

(

�2 Ī − (�1�2 + �2�3)TR + ℍJ
)

,

D2�3[�u; Δu] = (0�u ∶
)2�2
)F )F

∶ (0Δu,
)2�2
)F )F

= 1
(�1 − �3)(�2 − �3)

(

�3 Ī − (�1�3 + �2�3)TR + ℍJ
)

,

(19a)

(19b)

(19c)

where Ī is a simple fourth order tensor Ī = I −
∑d
i=1

)�i
)F
⊗ )�i

)F
(where I is the fourth order identity tensor, with [I]iIjJ = �iI�jJ ,

where �ab represents the ab-th component of the Kronecker delta tensor) and ℍJ = I F is the Hessian of J = I5. Note that,
the above relationships are obtained in a straight-forward fashion by realising that

)2I1
)F )F

=
)2

(

�1 + �2 + �3
)

)F )F
= TR;

)2I2
)F )F

=
)2

(

�21 + �
2
2 + �

2
3

)

)F )F
= 2I;

)2I5
)F )F

=
)2

(

�1�2�3
)

)F )F
= ℍJ . (20)

As will be revealed later however, these second directional derivatives can be expressed alternatively in a more concise form
via an analytic eigen-decomposition.

2.4 Isotropic large strain elasticity in principal stretches
There is often a set of fundamental mathematical requirements that must be satisfied by admissible strain energy functions used
to describe elastic materials in the large strain regime. One such requirement is polyconvexity which dictates that, the strain
energy e per unit undeformed volume must be a function of the deformation gradient F via a convex multi-variable functionW
such as

e((0x) = Ŵ (F ,H , J ) (21)

where Ŵ is convex with respect to its 19 variables, namely, J and the 3 × 3 components of F and H . Suitable formulations
and numerical implementations have been developed for polyconvex elasticity for instance in Bonet. et. al.4,5. To facilitate our
development, it is desirable to start with ab-initio polyconvex energies such as Ŵ , to be then re-expressed in terms of principal
stretches, taking advantage of the isotropy of the material. In what follows, we work out the directional derivatives of these
re-expressed energies in a 3-dimensional Euclidean space and then give out the general expressions in d-dimensions in boxed
equations. Following this rationale, an energyW (�1, �2, �3) can be expressed as

e((0x) = Ŵ (F ,H , J ) = W (�1, �2, �3) = W (), (22)

where for brevity we have defined the set of principal stretches as  = {�1,⋯ , �d}. Furthermore, a set of work conjugate
stresses  = {Σ�1 ,⋯ ,Σ�d} can be introduced for each principal stretch such that

Σ�1 =
)W
)�1

, Σ�2 =
)W
)�2

, Σ�3 =
)W
)�3

. (23)

The conjugate stresses defined above can now be used to obtain the more standard first Piola-Kirchhoff stress tensor P . To do
so, recall first that the first Piola-Kirchoff tensor is defined by the equation

De[�u] = P ∶ (0�u; P = )e
)F

|

|

|

|F=(0x
. (24)
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With the help of theses equations, the chain rule and Eqns. 16-17 it is possible to express the virtual internal work as

P ∶ (0�u = De[�u]
= DW [D�1[�u], D�2[�u], D�3[�u]]

= Σ�1
)�1
)F

∶ (0�u + Σ�2
)�2
)F

∶ (0�u + Σ�3
)�3
)F

∶ (0�u

=
(

Σ�1
)�1
)F

+ Σ�2
)�2
)F

+ Σ�3
)�3
)F

)

∶ (0�u. (25)

which leads to the evaluation of the first Piola-Kirchhoff tensor in d-dimensions as

P =
d
∑

i=1
Σ�i

)�i
)F

=
d
∑

i=1
Σ�i[n]i ⊗ [N]i = Û�P V̂

T (26)

where ΛPii = Σ�i is the diagonal principal stress tensor revealing that, the first Piola Kirchhoff stress tensor P is coaxial with F .
In the context of second order optimisation methods, such as Newton-Raphson-like schemes, the tangent elasticity operator is
also often required. To evaluate this, first recall that, the fourth order tangent elasticity tensor is defined as

D2e[�u; Δu] = (0�u ∶ DP [Δu] = (0�u ∶  ∶ (0Δu;  = )P
)F

|

|

|

|F=(0x
= )2e
)F )F

|

|

|

|F=(0x
. (27)

With the help of theses equations, the chain rule and Eqns. 18-19 and further using Eqn. 26 we obtain:

D2e[�u; Δu] = (0�u ∶ DP [Δu]

=
(

Σ�1
)�1
)F

∶ (0�u
)

DΣ�1[Δu] +
(

Σ�2
)�2
)F

∶ (0�u
)

DΣ�2[Δu] +
(

Σ�3
)�3
)F

∶ (0�u
)

DΣ�3[Δu]

+ (0�u ∶
(

Σ�1
)2�1
)F )F

+ Σ�2
)2�2
)F )F

+ Σ�3
)2�3
)F )F

)

∶ (0Δu. (28)

In general, the above equation can be grouped into two set of terms namely, the first derivatives and the second derivatives of
energy

D2e[�u; Δu] =
[(

)�1
)F

∶ (0�u
)

,
(

)�2
)F

∶ (0�u
)

,
(

)�3
)F

∶ (0�u
)]

[HW ]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

)�1
)F

∶ (0Δu
)

(

)�2
)F

∶ (0Δu
)

(

)�3
)F

∶ (0Δu
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+(0�u ∶
( 3
∑

i=1
Σ�i

)2�i
)F )F

)

∶ (0Δu (29)

whereHW denotes the d ×d Hessian operator containing the second derivatives ofW with respect to principal stretches which
by Clairaut’s theorem is always symmetric

HW =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

)2W
)�1)�1

⋯
)2W
)�1)�d

⋱ ⋮

sym )2W
)�d)�d

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

and the last term in Eqn. 29 is the “initial stress” term. In comparison to the fourth order Hessian operator that emerges in
polyconvex formulations in terms {F ,H , J} (see Bonet et. al.4 for instance) the above operator is only second order and hence
simpler to understand its structure. Eqn. 29 leads to the evaluation of total elasticity operator as an algebraic summation of
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constitutive k and initial stiffness p components such that

 = k + p =
[

)�1
)F

, ⋯ ,
)�d
)F

]

[HW ]

⎡

⎢

⎢

⎢

⎢

⎣

)�1
)F
⋮
)�d
)F

⎤

⎥

⎥

⎥

⎥

⎦

+
d
∑

i=1
Σ�i

)2�i
)F )F

=
d
∑

i=1

d
∑

j=1

)2W
)�i�j

)�i
)F

⊗
)�j
)F

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
k

+
d
∑

i=1
Σ�i

)2�i
)F )F

.

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
p

(31)

The initial stiffness operator p involves second directional derivatives of principal stretches but as mentioned earlier, it is not
necessary to compute them through Eqns.18-19. This is due to the fact that, the eigensystem of the initial stiffness operator can
be obtained in closed-form. To obtain it, we once again, refer to the stretch tensor invariants and their analytical eigensystem
presented in20. Note that, for brevity, we have refrained from presenting the analytical eigensystem of elasticity operators in terms
of stretch tensor invariants and refer the interested reader to Smith. B.20. Using the ingredients of20 however, and reworking
them through some lengthy but simple algebra by using Eqn. 20, it turns out that the analytical eigensystem of the initial stiffness
operator is simpler than that of the stretch tensor invariants. Unlike the analytical eigensystem obtained through stretch tensor
invariants in20, the initial stiffness operator and the constitutive tangent operator are completely decoupled in principal stretch
formulation. The initial stiffness has a null space of 2 in 2-dimensions and a null space of 3 in 3-dimensions. More specifically,
in 2-dimensions the only two eigenvalues of the initial stiffness can be written concisely as

�̄p1 =
Σ�1 − Σ�2
�1 − �2

, �̄p2 =
Σ�1 + Σ�2
�1 + �2

(32)

and similarly in 3-dimensions the 6 eigenvalues of the initial stiffness can be written concisely as

�̄p1 =
Σ�2 − Σ�3
�2 − �3

, �̄p2 =
Σ�1 − Σ�3
�1 − �3

, �̄p3 =
Σ�1 − Σ�2
�1 − �2

�̄p4 =
Σ�2 + Σ�3
�2 + �3

, �̄p5 =
Σ�1 + Σ�3
�1 + �3

, �̄p6 =
Σ�1 + Σ�2
�1 + �2

(33)

(34)

The fourth order initial stiffness operator is then obtained simply as an algebraic summation of the eigenvalues multiplied with
their corresponding eigen-matrices as

p =
k
∑

i=1
�̄pi [L]i ⊗ [L]i +

k
∑

i=1
�̄pi+k[T ]i ⊗ [T ]i, where k = 1 in 2D; k = 3 in 3D (35)

where [T ]i are twist tensors already described in Eqn. 14 and [L]i are flip tensors which have similar structure only with signs
switched

[L]1 =
1
√

2
Û
[

0 1
1 0

]

V̂ T
, in 2D, (36a)

[L]1 =
1
√

2
Û
⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

V̂ T
, [L]2 =

1
√

2
Û
⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

V̂ T
, [L]3 =

1
√

2
Û
⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

V̂ T
, in 3D. (36b)

As the names suggest, the twist and flip tensors contribute to geometrical behaviour of the system and are detached from
deformation caused by the constitutive term.

2.5 Partially rigid, truly rigid and stiff material models in principal stretches
Similar to the notion of incompressibility, materials that exhibit inextensibility in one or more principal directions are called
partially rigid (truly rigid or just rigid if not deformable at all). Analogously, materials with very high shear modulus which are
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close-to-rigid are called stiff. A classic mathematical example of such a model is the so-called As-Rigid-As-Possible (ARAP)
model34 commonly used in geometry processing applications35

WARAP(�i) =
Cc
2

d
∑

i=1
(�i − 1)2 =

Cc
2

d
∑

i=1
(�2i − 2�i) +

Ccd
2
, (37)

where Cc is a rigidity constant. It is evident that, this behaviour can be easily modelled using our proposed principal stretch
formulation. On the other hand, it is forbiddingly complex to model this behaviour using principal stretch formulations based on
the singular-values of Cauchy-Green strain tensor (i.e. squares of principal stretches) since the energy has terms that are linear
in �is (as opposed to quadratic).
Notice that, similar to isochoric-volumetric splits in incompressibility, the polar decomposition of the deformation gradient

itself serves as the multiplicative decomposition of F into a deformable (stretch) and non-deformable (rotation) component.
Hence, as will be shown in Section 4 variational formulation for such models is straight-forward.

3 GENERAL CONVEXITY CONDITIONS

3.1 Convexity, rank-one convexity, and polyconvexity
The notion of polyconvexity was already hinted in the previous section when we made the assumption onW () as a suitable
energy functional. In particular, the assumption of W () being a re-expression of a polyconvex energy Ŵ (F ,H , J ) implies
that W is convex in F , H , and J , independently. However, and unfortunately, this notion does not extend to when W is
expressed in terms of principal stretches in that,W is not multi-variable convex in individual principal stretches in the sense of
Gil and Ortigosa49. In order to formalise a framework for convex large strain elasticity, we first recall some definitions:

Convexity: Convexity implies that for energy function e(F ) the following condition should be met50,51,52

e(�F 1 + (1 − �)F 2) ≤ �e(F 1) + (1 − �)e(F 2); ∀F 1,F 2; � ∈ [0, 1]. (38)

which for differentiable functions can be expressed alternatively as
(

)e(F 1)
)F

−
)e(F 2)
)F

)

∶
(

F 1 − F 2
)

≥ 0; ∀F 1,F 2 ∈ ℝd×d (39)

and for twice differentiable functions can be expressed alternatively as

D2e(F )[�F ; �F ] = �F ∙  ∙ �F ≥ 0; ∀F , �F , (40)

where ∙ is the dual product. Eqn. 40 essentially mandates positive definiteness of the elasticity tensor  in Eqn. 27. For energies
expressed in terms of the principlal stretches, convexity with respect to the latter (which is not to be confused with convexity
with respect to F ) requires53,54 the following condition onW ()

W (�1 + (1 − �)2) ≤ �W (1) + (1 − �)W (2); ∀1,2; � ∈ [0, 1], (41)

which once again for twice differentiable functions can be expressed alternatively as

D2W ()[�; �] = � ∙ [HW ] ∙ � ≥ 0; ∀, �. (42)

Equation 42 mandates positive definiteness of the Hessian operator [HW ], which entails positive definiteness of the constitutive
component k in 31. Similarly to equation 39, an equivalent condition to 42 can be established as

(

(W (1) − (W (2)
)

⋅
(

1 −2
)

≥ 0; (W =
[

)W
)�1

… )W
)�n

]T

, p =
[

(�p)1… (�p)n
]T (43)
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As already stated, convexity with respect to principal stretches and with respect to F is not equivalent. This can clearly be
observed by replacing � with D[�F ] in 42, yielding

D2W ()[�[�F ]; �[�F ]] = �F ∙

[

[

)�1
)F

, ⋯ ,
)�d
)F

]

[HW ]

⎡

⎢

⎢

⎢

⎢

⎣

)�1
)F
⋮
)�d
)F

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
k

+
d
∑

i=1
Σ�i

)2�i
)F )F

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
p

]

∙ �F ≥ 0; ∀F , �F . (44)

Clearly, Eqn. 44 mandates positive definiteness of the elasticity tensor  in Eqn. 31, and hence, of both constitutive and initial
contributions k and p . In general, this is a stringent condition to meet since in most cases it prohibits realistic behaviour of
material away from the origin.
For energies which are convex with respect to the principal stretches, the constitutive component k is always positive semi-
definite4 (implied by Eqn. 42). Despite the non-realistic physical behaviour of convex energies with respect toF , in the following,
we will derive the conditions thatW () need to satisfy, by carefully analysing the initial stiffness contribution p, forW ()
to be convex with respect to F . Essentially, this entails the following condition to be satisfied

�F ∶ p ∶ �F = �F ∶

[ d
∑

i=1
Σ�i

)2�i
)F )F

]

∶ �F ≥ 0. (45)

Substituting for Eqn. 35 in the above equation leads to

�F ∶ p ∶ �F = �F ∶

[ k
∑

i=1
�̄pi [L]i ⊗ [L]i +

k
∑

i=1
�̄pi+k[T ]i ⊗ [T ]i

]

∶ �F

=
k
∑

i=1
�̄pi

(

�F ∶ [L]i
)2 +

k
∑

i=1
�̄pi+k

(

�F ∶ [T ]i
)2

(46)

From the above relations we observe that above inequality holds (i.e. positive semi-definiteness of initial stiffness is guaranteed)
if �̄pi ≥ 0. This is evident since, �̄pi are the eigenvalues of the initial stiffness operator. This result permits to establish the
conditions that guarantee convexity with respect to F for energies written in terms of the principal stretches, i.e.W ().

Corollary 1: A sufficiently smooth and twice differentiable two-dimensional energy function e(F ) is convex in F if and only if
there exists a functionW (�1, �2) = e(F ) that satisfies

Σ�1 + Σ�2
�1 + �2

≥ 0,
Σ�1 − Σ�2
�1 − �2

≥ 0, )2W
)�1)�1

)2W
)�2)�2

≥
(

)2W
)�1)�2

)2

. (47)

Corollary 2: A sufficiently smooth and twice differentiable three-dimensional energy function e(F ) is convex in F if and only
if there exists a functionW (�1, �2, �3) = e(F ) that satisfies

Σ�1 + Σ�2
�1 + �2

≥ 0,
Σ�1 + Σ�3
�1 + �3

≥ 0,
Σ�2 + Σ�3
�2 + �3

≥ 0,

Σ�1 − Σ�2
�1 − �2

≥ 0,
Σ�1 − Σ�3
�1 − �3

≥ 0,
Σ�2 − Σ�3
�2 − �3

≥ 0,

)2W
)�1)�1

)2W
)�2)�2

)2W
)�3)�3

+ 2 )2W
)�1)�2

)2W
)�1)�3

)2W
)�2)�3

≥

)2W
)�1)�1

(

)2W
)�2)�3

)2

+ )2W
)�2)�2

(

)2W
)�1)�3

)2

+ )2W
)�3)�3

(

)2W
)�1)�2

)2

. (48)

The proof of above convexity condition is presented in Appendix A.

Rank-one convexity, ellipticity condition and Legendre-Hardamard condition: A weaker requirement than convexity is that
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of rank-one convexity of e(F ), which implies that for energy function e(F ), the following condition should be met50,51,53

e(F + �u⊗ V ) ≤ �e(F + u⊗ V ) + (1 − �)e(F ); ∀F ∈ ℝd×d , u,V ∈ ℝd ; � ∈ [0, 1], (49)

Notice that (49) is simply a particularisation of (38) using F 1 = F + u⊗V and F 2 = F . For twice differentiable functions this
condition can be expressed alternatively as

D2e(F )[u⊗ V ; u⊗ V ] = (u⊗ V ) ∙  ∙ (u⊗ V ) ≥ 0; ∀u,V ∈ ℝd . (50)

Similarly, following53,54, the rank-one convexity condition in Eqn. 50 can also be written for energies expressed in terms of
principal stretches such asW () which for twice functions leads to

D2W ()[D[u⊗ V ];D[u⊗ V ]] = (u⊗ V ) ∙
[

[

)�1
)F

, ⋯ ,
)�d
)F

]

[HW ]

⎡

⎢

⎢

⎢

⎢

⎣

)�1
)F
⋮
)�d
)F

⎤

⎥

⎥

⎥

⎥

⎦

]

∙ (u⊗ V )

+ (u⊗ V ) ∙
[ d
∑

i=1
Σ�i

)2�i
)F )F

]

∙ (u⊗ V ) ≥ 0; ∀u,V ∈ ℝd .

(51)

The condition in Eqn. 51 is analogously referred to as the Legendre-Hadamard condition or ellipticity of W , linked to the
propagation of travelling plane wave within the material defined by a vector V at speed c. Clearly, convexity ofW with respect
to principal stretches automatically yields positiveness of the constitutive term (i.e. first term on the right-hand side of 51).
However, convexity in principal stretches is not a sufficient condition guaranteeing the rank-one condition, as it can be seen by
inspecting the initial term (i.e. second term on the right-hand side of 51), i.e.

(u⊗ V ) ∙
[ d
∑

i=1
Σ�i

)2�i
)F )F

]

∙ (u⊗ V ) =
k
∑

i=1
�̄pi

(

u ⋅ [L]iV
)2 +

k
∑

i=1
�̄pi+k

(

u ⋅ [T ]iV
)2 , (52)

whose positiveness is subject to positiveness of the eigenvalues of the initial component of the constitutive model, which are
essentially the same conditions required for the satisfaction of convexity.

Polyconvexity: It is well-known that, polyconvexity is a sufficient condition guaranteeing the ellipticity condition in 501,50.
Polyconvexity requires e((0x) to be expressed as

e((0x) = Ŵ ();  = {F ,H , J}, (d = 3) (53)

where Ŵ () must be convex with respect to its arguments, namely

Ŵ (�1 + (1 − �)2) ≤ �Ŵ (1) + (1 − �)Ŵ (2); ∀1,2, � ∈ [0, 1], (54)

which for twice differentiable functions can be expressed alternatively as

D2Ŵ ()[� ; �] = � ∙ [HŴ ] ∙ � ≥ 0; ∀� ; HŴ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

)2Ŵ
)F )F

)2Ŵ
)F )H

)2Ŵ
)F )J

)2Ŵ
)H)H

)2Ŵ
)H)J

sym )2Ŵ
)J 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (55)

Eqn. 55 essentially mandates positive definiteness of the Hessian operator HŴ . It is well-known that polyconvexity does not
entail convexity with respect to F . This can clearly be observed when particularising � with D[�F ] in 55, yielding 2.

D2Ŵ ()[�[�F ]; �[�F ]] = �F ∙

[

[

I, I F , H
]

[HŴ ]
⎡

⎢

⎢

⎣

I
I F
H

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
̂k

+ I
()Ŵ
)H

+ )Ŵ
)J

F
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
̂p

]

∙ �F ≥ 0; ∀�F . (56)

2Refer to 55 for a derivation of the tangent operator shown in equation 56.
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It is possible to see the similarity between the principal stretch representationW () and the polyconvex representaton Ŵ ().
This is reflected in the additive split of the tangent operator of both representations between constitutive and initial components,
namely {k,p} in 44 and {̂k, ̂p} in 56. Clearly, the constitutive contributions in both representations, namely k and ̂k
would yield a positive contribution provided that W () is convex with respect to  and Ŵ () is convex with respect to  .
However, polyconvexity of Ŵ () entails a crucial difference from the rank-one convexity standpoint. This can be seen when
replacing �F with rank-one tensors u ⊗ V in 56. As shown by56, this specification yields a vanishing contribution from ̂p,
which permits to particularise 56 to rank-one tensors as

D2Ŵ ()[u⊗ V ; u⊗ V ] = u⊗ V ∙ ̂k ∙ u⊗ V ≥ 0; ∀u,V . (57)

Above equation 57 is consequence that polyconvexity is a sufficient condition that fulfils the ellipticity condition, since the
constitutive component is always positive semi-definite4. However, for the principal stretch representation W (), the initial
stiffness operator in 51 (second term on the right-hand side) does not necessarily vanish (unlike in polyconvex formulations)
which implies the ellipticity condition cannot be met based on the positive semi-definiteness of the Hessian operator HW
alone. While certainly ellipticity condition cannot be determined based on the Hessian alone in the principal stretch setting, the
separation of constitutive and initial stiffness operators in 44 are still advantageous since it lets us study their eigen structure
individually. It is straight-forward to determine that the Hessian operator HW is not always ositive semi-definite through a
counter-example.

Example 1: Consider the plane strain volumetric function f (J ) = �
2
(J − 1)2 convex ∀J ≥ 0 such that f ∶ ℝ → ℝ and � > 0.

For simplicity, consider a purely scaling deformation F = [
1, 0; 0, 
2]. The re-expressed function in terms of principal stretches
i.e. W̃ = �

2
(�1�2 − 1)2 is not semi-positive definite for all ranges of deformation (i.e. ∀
1, 
2) as we have

HW̃ =

⎡

⎢

⎢

⎢

⎣

)2W̃
)�1)�1

)2W̃
)�1)�2

)2W̃
)�2)�1

)2W̃
)�2)�2

⎤

⎥

⎥

⎥

⎦

= �
[


22 2
1
2 − 1
2
1
2 − 1 
21

]

, (58)

whose positive semi-definiteness leads to the inequality (
1
2)2 ≥ (2
1
2 − 1)2 which clearly does not hold for 
1
2 = J <
1
3
.

3.2 Stabilisation of the HessianHW

One advantage of the principal stretch formulation is that the resulting Hessian operator HW is only a second order tensor of
dimensions d×d and simple to manipulate. In fact, it is possible to find the exact points of Hessian indefiniteness by performing
closed-form eigenvalue analysis. In the following, we describe multiple possible approaches that such energies can be stabilised.

1. Stabilisation through Laplacian stabilisation: One popular technique to stabilise the Hessian operator is through Laplacian
stabilisation. This can be achieved in many ways. For instance, by adding a fraction of the Laplacian matrix to the Hessian
or even to the resulting tangent elasticity tensor or even to the per-element resulting finite element stiffness matrix8. A more
consistent technique in our setting would be to add or increase the contribution of the term I2 = F ∶ F in the energy as the
Hessian of I2 is the Laplacian. Consider the functionWLapl() in 2-dimensions

WLapl() =
�
2
I2 =

�
2
(�21 + �

2
2); HWLapl

=

⎡

⎢

⎢

⎢

⎢

⎣

)2WLapl

)�1)�1

)2WLapl

)�1)�2
)2WLapl

)�2)�1

)2WLapl

)�2)�2

⎤

⎥

⎥

⎥

⎥

⎦

= �
[

1 0
0 1

]

= �I ,

whose Hessian is a constant scaling matrix and where � serves as the stabilisation parameter. The downside of Laplacian
stabilisation however is that, it is a rule-of-thumb procedure as the exact amount of stabilisation to add to the system is not
known in advance.

2. Stabilisation through spectral shifting: A method recently advocated by Poya et. al.44 spectrally shifts the singular-values of
F from �i to �i + � to obtain a regularised deformation gradient F r = Û�rV̂

T (s.t. Λrii = �i + �) through a carefully chosen
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constant �. Consequently, performing linearisation around the regularised deformation gradient F r results in energies that are
convex in a selected range. For instance, using such arrangement the volumetric term considered earlier in Example 1 leads to
inequality (
1 + �)2(
2 + �)2 ≥

(

2(
1 + �)(
2 + �) − 1
)2 which can be convexified for J ∈ [0, 1

3
] by choosing � = − 1

3
. The

benefit of this approach is that it retains the quadratic convergence of Newton-Raphson. However, such spectral shifts cannot
be applied globally as they adversely affect other deformation ranges wherein the energy may have been already convex. Poya
et. al.44 advocates locally applying the shift and considering different �s for different ranges of deformation.

3. Stabilisation through projection to positive semi-definite cone: A more prudent way to guarantee positive semi-definiteness
of HW is by performing an L2 projection to positive semi-definite cone. This has traditionally been achieved numerically by
performing eigen-decomposition on the much larger tangent elasticity tensor k and clamping the negative eigenvalues to
zeros14,15. This technique has been applied successfully for many optimisation problems and it leads to a second order method
usually referred to as the Projected Newton or PN in short.

HPSD
W =

d
∑

i=1
max(�̄HW

i , 0) ei ⊗ ei, (59)

where �̄HW
i are the eigenvalues and ei are the eigenvectors of the Hessian HW . Fortunately, the eigenvalues of the constitu-

tive part of the elasticity tensor k can be found in closed-form through analytic eigen-decomposition of HW since k has
a null space of 2 in 2-dimensions and 6 in 3-dimensions. In particular, the eigen-decomposition of HW is simple to find in
2-dimensions:

�̄HW
1 = 1

2

(

)2�1�1W + )2�2�2W −

√

(

)2�1�1W − )2�2�2W
)2
+ 4)2�1�2W

)

�̄HW
2 = 1

2

(

)2�1�1W + )2�2�2W +

√

(

)2�1�1W − )2�2�2W
)2
+ 4)2�1�2W

)

(60a)

(60b)

with the eigenvectors ei emerging as

e1 = [
�̄HW
1 − )2�2�2W

)2�1�2W
, 1]Tn , e2 = [

�̄HW
2 − )2�2�2W

)2�1�2W
, 1]Tn (61)

where we have used the notation )2)�i)�jW = )2W
)�i)�j

and the subscript n indicates normalisation of the eigenvectors. Similar
albeit more lengthy formula exist for closed-form eigen-decompositions in 3-dimensions (i.e. for 3 × 3 symmetric matrices) as
shown in the Appendix in Eqns. B13-B16; c.f. Golub and Van Loan57 and Deledalle et. al.58. For certain isotropic modelsHW
is already diagonal and the above decomposition is not needed. Finally, onceHPSD

W has been obtained the positive semi-definite
constitutive tangent elasticity tensor PSD

k can be built in d-dimensions simply as

PSD
k =

[

)�1
)F

, ⋯ ,
)�d
)F

]

[HPSD
W ]

⎡

⎢

⎢

⎢

⎢

⎣

)�1
)F
⋮
)�d
)F

⎤

⎥

⎥

⎥

⎥

⎦

(62)

Given the scaling nature of
)�i
)F

presented in Eqns. 16 - 17 such reconstruction is trivially obtained.

3.3 Stabilisation of initial stiffness operator (total stabilisation)
The hallmark of the proposed formulation is the fact that, eigenvalues of both the initial stiffness and Hessian operators are
found analytically. Hence, a similar positive semi-definite projection can be performed on the initial stiffness term. This is an
easier case as the eigensystem of initial stiffness operator is already obtained in a decomposed form as presented in Eqn. 35.
Consequently, positive semi-definite projection is obtained via

PSD
p =

k
∑

i=1
max(�̄pi , 0)[L]i ⊗ [L]i +

k
∑

i=1
max(�̄pi+k, 0)[T ]i ⊗ [T ]i. (63)
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Finally the positive semi-definite total tangent elasticity operator is constructed as

PSD = k
PSD + p

PSD =
[

)�1
)F

, ⋯ ,
)�d
)F

]

[HPSD
W ]

⎡

⎢

⎢

⎢

⎢

⎣

)�1
)F
⋮
)�d
)F

⎤

⎥

⎥

⎥

⎥

⎦

+
k
∑

i=1
max(�̄pi , 0)[L]i ⊗ [L]i +

k
∑

i=1
max(�̄pi+k, 0)[T ]i ⊗ [T ]i,

(64)

which leads to a complete stabilisation of the system. Unlike the standard nonlinear finite element procedures where loading is
applied in increments, the above stabilisation strategy enables solving nonlinear problems in a single loading increment. How-
ever, using single increment can result in an overtly smooth profile and applying increments is still advised. The observation
is that projecting the elasticity operators amounts to approximating the tangent direction as compared to using the actual one
and the resulting nonlinear minimisation algorithm falls under the umbrella of Quasi-Newton techniques. Hence, buckling
and other geometrical instabilities can then be simulated by using a small number of increments as shown in Fig. 4. Similar
nonlinear algorithms that use different flavours of approximated tangents with the use of increments have appeared in the
literature for instance the consistently linearised elasticity17 and electro-elasticity21. Finally, for clarity, the complete procedure
for obtaining the closed-form eigensystem of elasticity operators using principal stretch ingredients is consolidated in Fig. 3.

Growth condition and coercivity: Another restrictions imposed on hyperelastic energies is that of growth condition which
dictates that the assumed strain energy should satisfy

e(F )

{

≥ C (||F ||p + J r) if J > 0,
= +∞, otherwise

(65)

for p > 2, r > 1 and some constant C > 0. Casting this in terms of principal stretches results in

W ()
⎧

⎪

⎨

⎪

⎩

≥ C
(

∑d
i=d ||�i||

p +
(

∏d
i=1 �i

)r)
if
(

∏d
i=1 �i

)

> 0,

= +∞, otherwise
(66)

It is important to note that, a suitable growth condition and polyconvexity of W guarantees the existence of minimisers1.
Coercivity is a growth condition imposed on strain energies. Let Π(x) = ∫V e(F ) dV be the elastic potential energy functional.
Then, Π is said to be q-coercive (for q ≥ 1) whenever for all K > 0 there is some K̃ > 0 such that

||Π(x)|| ≤ K ⇐⇒ ||e(F )||Lq ≤ K̃, (67)

where ||
∙
||Lq denotes the q Sobolov norm. Coercivity has an important role in large strain elasticity as it dictates that the

energy increase should be bounded from above. Conformal energies that are used as isochoric part of incompressible elastic-
ity are well-known to be coercive50,53,54. Coercivity is even more important in the context of tangent stabilised large strain
elasticity since it is closely related to the notion of “flip-prevention” (energies that tend to infinity as J → 0 are often called
flip-preventing). In fact, coercivity is an indispensable part of tangent stabilised large strain elasticity as otherwise the stabilised
nature of the problem allows for simulations to proceed even when inter-penetration occurs which invalidates the fundamental
assumption of continuity of matter. The past decade has seen many applications of flip-preventing nonlinear material design
using stabilised tangents in geometry processing and computer graphics applications14,15,13,18,59,20.

Example 2: Inspired by the preceding discussion, for the rest of this work, we consider two material models and work out their
Hessian and initial stiffness eigensystems. The 2-dimensional case is worked out and written here as they are shorter. The
3-dimensional eigensystems can be similarly found symbolically using the script provided in the appendix. The first model
considered is the compressible Mooney-Rivlin energy defined as

WMR = �1I2 + �2I4 − 2(�1 + 2�2)ln(I5) +
�
2
(I5 − 1)2, (68)
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Eigensystem of tangent elasticity tensor (2D)

Given the Singular-Value-Decomposition (SVD) of F

F = ÛΛV̂
T
, with λi = Λii i = 1, 2

The first derivatives of principal stretches are

∂λ1
∂F

= Û

[
1 0
0 0

]
V̂
T
,

∂λ2
∂F

= Û

[
0 0
0 1

]
V̂
T

For a given isotropic energy W (λ1, λ2) expressed in terms of principal
stretches, the Hessian operator is

HW =

[
∂2λ1λ1

W ∂2λ1λ2
W

sym ∂2λ2λ2
W

]

If ∂2λ1λ2
W = 0, then the eigen-decomposition of the Hessian is simply

λ̄HW
1 = ∂2λ1λ1

W, e1 = [1, 0]T

λ̄HW
2 = ∂2λ2λ2

W, e2 = [0, 1]T

otherwise the eigen-decomposition of HW is obtained in closed-form as

λ̄HW
1 =

1

2

(
∂2
λ1λ1

W + ∂2
λ2λ2

W −
√(

∂2
λ1λ1

W − ∂2
λ2λ2

W
)2

+ 4∂2
λ1λ2

W

)

λ̄HW
2 =

1

2

(
∂2
λ1λ1

W + ∂2
λ2λ2

W +
√(

∂2
λ1λ1

W − ∂2
λ2λ2

W
)2

+ 4∂2
λ1λ2

W

)

e1 = [
λ̄HW
1 − ∂2

λ2λ2
W

∂2
λ1λ2

W
, 1]Tn , e2 = [

λ̄HW
2 − ∂2

λ2λ2
W

∂2
λ1λ2

W
, 1]Tn

The semi-positive definite Hessian operator is then constructed as

HSPD
W =

2∑

i=1

max(λ̄HW
i , 0) ei ⊗ ei

The semi-positive definite constitutive tangent elasticity operator CSPD
k is

then constructed as

CSPD
k =

[
∂λ1
∂F

,
∂λ2
∂F

]
[HSPD

W ]



∂λ1
∂F
∂λ2
∂F




For the initial stiffness tensor the eigenvalues cleanly separate as

λ̄
Cp

1 =
Σλ1 − Σλ2

λ1 − λ2
, λ̄

Cp

2 =
Σλ1 + Σλ2

λ1 + λ2

with eigenmatrices as

[L]1 =
1√
2
Û

[
0 1
1 0

]
V̂
T
, [T ]1 =

1√
2
Û

[
0 −1
1 0

]
V̂
T

where Σλi
= ∂λi

W .
The semi-positive definite initial stiffness operator CSPD

p is then con-
structed as

Cp
SPD = max(λ̄

Cp

1 , 0)[L]1 ⊗ [L]1 + max(λ̄
Cp

2 , 0)[T ]1 ⊗ [T ]1

Note that, in 2-dimensions F is assumed to be 2× 2 as for plane strain
problems

F PLANE STRAIN =

[
F 2D 0

0 1

]

the 3rd dimension decouples and does not contribute in SVD.

Eigensystem of tangent elasticity tensor (3D)

Given the Singular-Value-Decomposition (SVD) of F

F = ÛΛV̂
T
, with λi = Λii i = 1, 2, 3

The first derivatives of principal stretches are

∂λ1

∂F
= Û




1 0 0
0 0 0
0 0 0


 V̂

T
,
∂λ2

∂F
= Û




0 0 0
0 1 0
0 0 0


 V̂

T
,
∂λ3

∂F
= Û




0 0 0
0 0 0
0 0 1


 V̂

T

For a given isotropic energy W (λ1, λ2, λ3) expressed in terms of principal
stretches, the Hessian operator is

HW =



∂2λ1λ1

W ∂2λ1λ2
W ∂2λ1λ3

W
∂2λ2λ2

W ∂2λ2λ3
W

sym ∂2λ3λ3
W




If ∂2λ1λ2
W = ∂2λ1λ3

W = ∂2λ2λ3
W = 0, then the eigen-decomposition of

the Hessian is simply

λ̄HW
1 = ∂2λ1λ1

W, e1 = [1, 0, 0]T

λ̄HW
2 = ∂2λ2λ2

W, e2 = [0, 1, 0]T

λ̄HW
3 = ∂2λ3λ3

W, e3 = [0, 0, 1]T

otherwise the eigen-decomposition of HW is obtained in closed-form as
(see Appendix B for analytical formula)

[λ̄HW
i , ei] = eig(HW )

The semi-positive definite Hessian operator is then constructed as

HSPD
W =

3∑

i=1

max(λ̄HW
i , 0) ei ⊗ ei

The semi-positive definite constitutive tangent elasticity operator CSPD
k is

then constructed as

CSPD
k =

[
∂λ1
∂F

,
∂λ2
∂F

,
∂λ3
∂F

]
[HSPD

W ]




∂λ1
∂F
∂λ2
∂F
∂λ3
∂F




For the initial stiffness tensor the eigenvalues cleanly separate as

λ̄
Cp

1 =
Σλ2
− Σλ3

λ2 − λ3
, λ̄

Cp

2 =
Σλ1
− Σλ3

λ1 − λ3
, λ̄

Cp

3 =
Σλ1
− Σλ2

λ1 − λ2
λ̄
Cp

4 =
Σλ2

+ Σλ3

λ2 + λ3
, λ̄

Cp

5 =
Σλ1 + Σλ3

λ1 + λ3
, λ̄

Cp

6 =
Σλ1 + Σλ2

λ1 + λ2

with eigenmatrices as

[L]1 =
1√
2
Û




0 0 0
0 0 1
0 1 0


 V̂

T
, [T ]1 =

1√
2
Û




0 0 0
0 0 −1
0 1 0


 V̂

T
,

[L]2 =
1√
2
Û




0 0 1
0 0 0
1 0 0


 V̂

T
, [T ]2 =

1√
2
Û




0 0 −1
0 0 0
1 0 0


 V̂

T
,

[L]3 =
1√
2
Û




0 1 0
1 0 0
0 0 0


 V̂

T
, [T ]3 =

1√
2
Û




0 −1 0
1 0 0
0 0 0


 V̂

T

where Σλi
= ∂λi

W .
The semi-positive definite initial stiffness operator CSPD

p is then con-
structed as

Cp
SPD =

3∑

i=1

max(λ̄
Cp

i , 0)[L]i ⊗ [L]i +
3∑

i=1

max(λ̄
Cp

i+3, 0)[T ]i ⊗ [T ]i

FIGURE 3 Complete procedure to construct closed-form eigensytems for constitutive tangent elasticity and initial stiffness
operators in 2 and 3 dimensions from principal information. Note that, tangent operators are symmetric. Using �̄pi and �̄HW

i

for buidling the operators results in a standard Newton-Raphson (NR) scheme whereas using max(�̄pi , 0) and max(�̄HW
i , 0)

results in Projected Newton (PN). In other words, the tangent stabilisation step is completely optional.

in 3-dimensions. We can further reduce this to (by noting that I4 = I2) in 2-dimensions

WMR = �I2 − 2�ln(I5) +
�
2
(I5 − 1)2, (69)

with �1, �2, �, � > 0 being material parameters. The energy further expands in terms of principal stretches to

WMR = �(�21 + �
2
2) − 2�ln(�1�2) +

�
2
(�1�2 − 1)2. (70)
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a) 1 increment b) 5 increments c) 10 increments d) 25 increments e) 50 increments

FIGURE 4 Simulating buckling of a pipe using tangent stabilised large strain elasticity. Tangent stabilisation makes it possible
to apply the entire load at once however, at times, due to severe nonlinearity, Newton with tangent stabilisation (or without)
can converge to a higher frequency eigen-mode of the system. However, the realisation is that stabilised tangent operators are
merely a tight approximation to the real ones. By coupling the concept of load increments with tangent stabilisation it becomes
possible to quickly recover the accurate buckling profile. In this example, buckled configuration is already captured within 3-5
load increments and the relative L2 norm of difference in displacements between 25 and 50 increment is less than 10−8.

TheHW tensor for this energy is then simply obtained as

HWMR
=
⎡

⎢

⎢

⎣

�(1 + 1
�21
) + ��22 �

(

2�1�2 − 1
)

�
(

2�1�2 − 1
)

�(1 + 1
�22
) + ��21

⎤

⎥

⎥

⎦

, (71)

and the two eigenvalues of the initial stiffness tensor are given by

�̄pMR1
= �(1 − 1

�1�2
) + �(�1�2 − 1), (72a)

�̄pMR2
= �(1 + 1

�1�2
) − �(�1�2 − 1). (72b)

The second energy which we will use for most of the example is the polyconvex, coercive, incompressible Moony-Rivlin model

WIMR = �1I5−2∕3I2 + �2I5−2I
3∕2
4 + �(I�5 + I

−�
5 − 2), (73)

where � > 1 and U (I5) = �(I�5 + I
−�
5 − 2) is the volumetric part. One specialisation of this energy in 2-dimensions is given

by60,61,62,44.

WIMR = �I5−1I2 + �(I5 + I−15 − 2), (74)

which in the context of quasi-conformal mappings63,64 is typically referred to as MIPS energy65. This energy further expands
in terms of principal stretches in dimensions to

WIMR = �(
�1
�2
+
�2
�1
) + �

(

(�1�2) + (�1�2)−1 − 2
)

. (75)

TheHW tensor for this energy is then simply obtained as

HWIMR
=
⎡

⎢

⎢

⎣

2
(

��2
�31
− �

�2�31

)

, �
(

1 + 1
�21�

2
2

)

− �( 1
�21
+ 1

�22
),

�
(

1 + 1
�21�

2
2

)

− �( 1
�21
+ 1

�22
) 2

(

��1
�32
− �

�1�32

)

⎤

⎥

⎥

⎦

, (76)

and the two eigenvalues of the initial stiffness tensor are given by

�̄pIMR1
= �

(

−1
�21

+ −1
�22

+ 2
�1�2

)

+ �

(

1 − 1
�21�

2
2

)

, (77a)

�̄pIMR2
= �

(

1
�21
+ 1
�22
+ 2
�1�2

)

− �

(

1 − 1
�21�

2
2

)

. (77b)

In Figs. 5 and 6 we show the convex regions for compressible (first model) and incompressible (second model) Mooney-Rivlin
material by plotting det(HW ) =

∏

�̄HW
i as function of principal stretches �1 and �2 for standard (i.e. non-stabilised) and
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 5 Effect of tangent stabilisation : original (non-convex) compressible Mooney-Rivlin model with indefinite Hessian
HWMR

(a,b,e,f) from Eqn. 71 and stabilised version with projected HessianHPSD
WMR

(c,d,g,h) as a function of principal stretches.
Plots (a,b,c,d) are for Poisson’s ratio � = 0.45 and (e,f,g,h) for Poisson’s ratio � = 0.49. Plots (a,c,e,g) are for compression
scenario �1, �2 < 1 and plots (b,d,f,h) for tension scenario �1, �2 > 1. Colours can be loosely interpreted as matrix conditioning
with regions above zero indicating positive semi-definiteness of the operator.

stabilised (i.e. PSD) Hessian for two Poisson’s ratios (� = 0.45 and � = 0.49) and fixed � = 1. As can be observed con-
vexity zone shrinks as Poisson’s ratio is pushed towards the incompressible limit and matrix conditioning also deteriorates but
stabilisation also helps with conditioning. Compression and tension scenarios are depicted separately. It can be seen that, stabil-
isation does not impact zones where energy is already convex which is advantageous from numerical stand-point as quadratic
convergence of Newton-Raphson is retained in such scenarios.
Similarly, In Figs. 7 and 8 we show the convexity of the initial stiffness operator p that is det(p) =

∏

�̄pi for compressible
(first model) and incompressible (second model) Mooney-Rivlin material as function of principal stretches �1 and �2 and the
subsequent stabilised (i.e. PSD) initial stiffness for two Poisson’s ratios (� = 0.45 and � = 0.49) and fixed � = 1. As can be
observed stabilisation does not impact zones where the initial stiffness is already positive definite however eliminates all sources
of geometric instability when the matrix is not positive semi-definite.

4 VARIATIONAL FORMULATIONS

4.1 Standard displacement-based variational principle
The solution of large strain elastic problems is often expressed by means of the total energy minimisation variational principle as

Π(x⋆) = min
x ∫

V

W (x) dV − ∫
V

f 0 ⋅ x dV − ∫
)tV

t0 ⋅ x dA, (78)
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE6Effect of tangent stabilisation : original (non-convex) incompressibleMooney-Rivlinmodel with indefinite Hessian
HWIMR

(a,b,e,f) from Eqn. 76 and stabilised version with projected HessianHPSD
WIMR

(c,d,g,h) as a function of principal stretches.
Plots (a,b,c,d) are for Poisson’s ratio � = 0.45 and (e,f,g,h) for Poisson’s ratio � = 0.49. Plots are (a,c,e,g) for compression
scenario �1, �2 < 1 and plots (b,d,f,h) for tension scenario �1, �2 > 1. Colours can be loosely interpreted as matrix conditioning
with regions above zero indicating positive semi-definiteness of the operator.

where x⋆ denotes the exact solution. The stationary condition of this functional leads to the principle of virtual work, commonly
written as

DΠ[�u] = ∫
V

P x ∶ �(0u dV − ∫
V

f 0 ⋅ �u dV − ∫
)tV

t0 ⋅ �u dA = 0. (79)

In this expression, the first Piola-Kirchhoff tensor P x is evaluated in the standard fashion using Eqn. 26 in terms of the gradient
of the deformation (0x and in our setting its singular-values. For better clarification of the notation, it is useful to introduce the
definition of the geometrically compatible strain and stretch measures as

Fx = Ûx�xV̂x
T
= (0x, Rx = ÛxV̂x

T
, Ux = V̂x�xV̂x

T
, and �xi = Λxii . (80)

In this manner, the first Piola-Kirchhoff tensor P x becomes

P x =
d
∑

i=1
Σx�i

)�xi
)Fx

= Ûx�P x V̂x
T
, (81)

where the superscript (subscript) x is used for stresses (strains) to indicate that they are evaluated in terms of geometry

Σx�i = Σ�i(�xi). (82)

An iterative Newton-Raphson process to converge towards the solution is usually established by solving a linearised system for
the increment Δu as

D2Π[�u; Δu] = −DΠ(x)[�u], xk+1 = xk + Δu, (83)
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 7 Effect of initial stiffness stabilisation : original (non-convex) compressible Mooney-Rivlin model with indefinite
initial stiffness PMR

(a,b,e,f) from Eqn. 72 and stabilised version with projected initial stiffness PSD
PMR

(c,d,g,h) as a function of
principal stretches. Plots (a,b,c,d) are for Poisson’s ratio � = 0.45 and (e,f,g,h) for Poisson’s ratio � = 0.49. plots (a,c,e,g) are
for compression scenario �1, �2 < 1 and Plots (b,d,f,h) for tension scenario �1, �2 > 1. Colours can be loosely interpreted as
matrix conditioning with regions above zero indicating positive semi-definiteness of the operator.

where, in the absence of follower forces, the second derivative of the total energy functional is given by

D2Π[�u; Δu] = ∫
V

D2e[�u,Δu] dV . (84)

The tangent operator is evaluated taking Fx = (0x and �xi concisely as it appears in Fig. 3.

4.2 Mixed variational principle
An equivalent but alternative expression for the total energy variational principle can be written in terms of the geometry and
principal stretches as a constrained minimisation problem in the form:

Π(x⋆) = min
x, ∫

V

W () dV − ∫
V

f 0 ⋅ x dV − ∫
)tV

t0 ⋅ x dA. (85)

Using a standard Lagrange multiplier approach to enforce the compatibility constraints gives the following augmented mixed
variational principle:

ΠM (x⋆,⋆,⋆) = min
x,

{

max


{

∫
V

W () dV +
d
∑

i=1
∫
V

Σ�i(�xi − �i) dV − ∫
V

f 0 ⋅ x dV − ∫
)tV

t0 ⋅ x dA
}}

. (86)

This expression belongs to the general class of Hu-Washizu type of mixed variational principles which have been widely used
for the development of enhanced finite element formulations. Note that, the conjugate variables Σ�i in this expression, at this
stage, are simply Lagrange multipliers and are as yet unconnected to the principal stretch variables. The stationary condition of
the above augmented Lagrangian with respect to the first variable enforces equilibrium in the form of the principle of virtual
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 8 Effect of initial stiffness stabilisation : original (non-convex) incompressible Mooney-Rivlin model with indefinite
initial stiffness PIMR

(a,b,e,f) from Eqn. 77 and stabilised version with projected initial stiffness PSD
PIMR

(c,d,g,h) as a function
of principal stretches. Plots (a,b,c,d) are for Poisson’s ratio � = 0.45 and (e,f,g,h) for Poisson’s ratio � = 0.49. Plots (a,c,e,g) are
for compression scenario �1, �2 < 1 and plots (b,d,f,h) for tension scenario �1, �2 > 1. Colours can be loosely interpreted as
matrix conditioning with regions above zero indicating positive semi-definiteness of the operator.

work as

D1ΠM [�u] = ∫
V

PM ∶ (0�u dV − ∫
V

f 0 ⋅ �u dV − ∫
)tV

t0 ⋅ �u dA = 0, (87)

where the first Piola-Kirchhoff stress now emerges as

PM =
d
∑

i=1
Σ�i

)�xi
)F

= Ûx�P V̂x
T
. (88)

Note that, in sharp contrast to enhanced formulations in terms of F (and/or its minors) as pursued in6,4 in our setting the left and
right singular-matrices namely Ûx and V̂x are still computed from the geometry. The stationary conditions with respect to the
principal stretches enforce the constitute relationships between the conjugates and the derivatives of the energy in a weak form

D2ΠM [�] =
d
∑

i=1
∫
V

(

)W
)�i

− Σ�i

)

⋅ ��i dV = 0. (89)

Finally, the stationary conditions with respect to the stress variables enforce the geometric compatibility conditions between
strains and geometry

D3ΠM [�] =
d
∑

i=1
∫
V

�Σ�i ⋅ (�xi − �i) dV . (90)

Once again, for second order iterative methods the appropriate tangent operators are needed. An equivalent process to
displacement-based formulation can be followed for the extended set of variables to obtain a linear system for the increments of
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variables {Δu,Δ,Δ} as

D2
1,2,3;1,2,3ΠM [�u, �, �; Δu,Δ,Δ] = −D1,2,3ΠM [�u, �, �]. (91)

The second derivatives that make up the linear operator in equation (97) can be derived with relative ease component by com-
ponent. For instance, the second derivative with respect to the geometry, is obtained differentiating again the principle of virtual
work, equation (92), with the help of equation (93) to give the “initial stress” component of the tangent operator as

D2
1;1ΠM [�u; Δu] = ∫

V

(0�u ∶
( d
∑

i=1
Σ�i

)2�xi
)Fx)Fx

)PSD

∶ (0Δu dV

= ∫
V

(0�u ∶
( k
∑

i=1
max(�̄pxi , 0)[L]i ⊗ [L]i +max(�̄pxi+k , 0)[T ]i ⊗ [T ]i

)

∶ (0Δu dV , (92)

where �̄pxi indicates the evaluation initial stiffness eigensystem with respect to geometry. More specifically, this implies that in
2-dimensions the initial stiffness eigenvalues should be computed as

�̄px1 =
Σ�1 + Σ�2
�x1 + �x2

, �̄px2 =
Σ�1 − Σ�2
�x1 − �x2

, (93)

and in 3-dimensions

�̄px1 =
Σ�2 + Σ�3
�x2 + �x3

, �̄px2 =
Σ�1 + Σ�3
�x1 + �x3

, �̄px3 =
Σ�1 + Σ�2
�x1 + �x2

, (94a)

�̄px4 =
Σ�2 − Σ�3
�x2 − �x3

, �̄px5 =
Σ�1 − Σ�3
�x1 − �x3

, �̄px6 =
Σ�1 − Σ�2
�x1 − �x2

. (94b)

The terms involving second derivatives with respect to the strain variables emerge from the Hessian of the energy function
W () as

D2
2;2ΠM [�; Δ] = ∫

V

[��i,⋯ , ��d][HPSD
W ]

⎡

⎢

⎢

⎣

Δ�1
⋮
Δ�d

⎤

⎥

⎥

⎦

dV . (95)

The second derivative with respect to stresses vanishes as the functional is linear with respect to the stress tensors. There are,
however, a number of cross derivative terms that do not vanish. These are, the cross derivatives with respect to stretches and
stresses and their symmetric counterpart, which are easily derived from either Equation (89) or (90) to give:

D2
2;3ΠM [�; Δ] = −

d
∑

i=1
∫
V

��i ⋅ ΔΣ�i dV , (96)

D2
3;2ΠM [�; Δ] = −

d
∑

i=1
∫
V

�Σ�i ⋅ ��i dV . (97)

And the cross derivatives with respect to geometry and stresses, which emerge after some simple algebra

D2
1;3ΠM [�u; Δ] =

d
∑

i=1
∫
V

()�xi
)Fx

(0�u
)

∶ ΔΣ�i dV , (98)

D2
3;1ΠM [�; Δu] =

d
∑

i=1
∫
V

�Σ�i ∶
()�xi
)Fx

(0Δu
)

dV , (99)

where )�xi
)Fx

are simply the scaling vectors from Eqns. 16-17.
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4.2.1 Variational principles for partially rigid, truly rigid and stiff material models
Avariational principle can be easily established as particular case of the already described one for the case of truly rigidmaterials
as

ΠRM (x
⋆,⋆) = min

x

{

max


{

∫
V

W̄ (x) dV +
k
∑

i=1
∫
V

Σ�i(�xi − 1) −
1
2Cc

Σ2�i dV − ∫
V

f 0 ⋅ x dV − ∫
)tV

t0 ⋅ x dA
}}

, (100)

where k ≤ d implies partial rigidity i.e. rigidity can be considered in a particular principal direction(s) too. The most practically
relevant case is however, the truly rigid (or just rigid) and stiff formulation (k = d). Rigid models in generals do not have
a deformable part and as mentioned earlier the polar decomposition of F itself provides the right (deformational-rotational)
decomposition and it possible to drop the W̄ (x) all together to arrive at

ΠRM (x
⋆,⋆) = min

x

{

max


{ d
∑

i=1
∫
V

Σ�i(�xi − 1) −
1
2Cc

Σ2�i dV − ∫
V

f 0 ⋅ x dV − ∫
)tV

t0 ⋅ x dA
}}

, (101)

where Cc > 0 is an additional penalty term to avoid saddle point problem and the formulation above falls under the general
category of Perturbed Lagrangian formulation. Note that, this formulation can be treated as linear in �is and Σ�is hence, resulting
in an efficient implementation. The stationary conditions of this hybrid functional is evaluated in the same fashion as previous
formulation. For instance, the first derivative with respect to geometry gives the principle of virtual work as

D1ΠRM [�u] = ∫
V

P R ∶ (0�u dV − ∫
V

f 0 ⋅ �u dV − ∫
)tV

t0 ⋅ �u dA = 0, (102)

where the first Piola-Kirchoff stress tensor is now evaluated as

P R =
d
∑

i=1
Σ�i

)�xi
)Fx

. (103)

The first derivative with respect to Σ�i enforces the rigidity constraint

D2ΠRM [�Σ�i] =
d
∑

i=1
∫
V

�Σ�i

(

(�xi − 1) −
1
Cc
Σ�i

)

dV . (104)

The evaluation of second derivatives required for a Newton-Raphson process proceeds along the same lines. For instance, the
second derivative with respect to geometry leads to the initial stiffness operator

D2
1;1Π

R
M [�u; Δu] = ∫

V

(0�u ∶
( d
∑

i=1
Σ�i

)2�xi
)Fx)Fx

)PSD

∶ (0Δu dV

= ∫
V

(0�u ∶
( k
∑

i=1
max(�̄pxi , 0)[L]i ⊗ [L]i +max(�̄pxi+k , 0)[T ]i ⊗ [T ]i

)

∶ (0Δu dV , (105)

which is exactly the same as Eqn. 92. The second derivative with respect to Σ�i has a standard Galerkin mass matrix format

D2
2;2Π

R
M [�Σ�i ; ΔΣ�i] = −

1
Cc

d
∑

i=1
∫
V

�Σ�i ⋅ ΔΣ�i dV , (106)

and the cross terms are also exactly the same as Eqns. 98-99

D2
1;3Π

R
M [�u; Δ] =

d
∑

i=1
∫
V

()�xi
)Fx

(0�u
)

∶ ΔΣ�i dV , (107)

D2
3;1Π

R
M [�; Δu] =

d
∑

i=1
∫
V

�Σ�i ∶
()�xi
)Fx

(0Δu
)

dV . (108)
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5 FINITE ELEMENT DISCRETISATION

The implementation of the various variational principles described in the previous section is based on a finite element partition
of the domain into a set of elements. Inside each element the problem variables are interpolated in terms of a set of shape
functionsNa as

x =
nx
∑

a=1
xaNx

a , �i =
n�i
∑

a=1
�iaN

�i
a , Σ�i =

nΣ�i
∑

a=1
�iaN

Σ�i
a , (109)

where a denotes the nodes or other degrees of freedom used in the interpolation of the above variables. In general, different
interpolations are often used to describe different variables. However, the same interpolation space will invariably be used
for strain-stress conjugate pairs; that is, N�i

a = N
Σ�i
a , etc. The virtual and incremental equivalents of the variables are also

interpolated using the same spaces as

�u =
nx
∑

a=1
�uaNx

a , ��i =
n�i
∑

a=1
��iaN

�i
a , �Σ�i =

nΣ�i
∑

a=1
�Σ�iaN

Σ�i
a ,

Δu =
nx
∑

a=1
ΔuaNx

a , Δ�i =
n�i
∑

a=1
Δ�iaN

�i
a , ΔΣ�i =

nΣ�i
∑

a=1
ΔΣ�iaN

Σ�i
a . (110)

Finite element equations are derived by simply substituting the above expressions into the functional expressions provided in the
previous section. In many cases this is a rather standard process and leads to well established equations. For instance, substituting
the above interpolation for the virtual displacements into any of the virtual work statements given in the previous section leads
to residual forces as

D1Π[�u] =
∑

a
Rx
a ⋅ �u, Rx

a = ∫
V e

P(0Nx
a dV e − ∫

V e

f 0Nx
a dV e − ∫

)tV e

t0Nx
a dAe, (111)

where the first Piola-Kirchhoff stress tensor above will be evaluated in accordance with each of the formulations presented in the
previous section and V e and Ae denote the volume and area of element e in the original configuration. Similar expressions for
other residual terms can be easily derived. For instance, the geometric compatibility residualsR�i

a emerge from the discretisation
of Eqns. 89 and 90 and similar equations emerge in the case of the mixed potential for the constitutive equation residuals RΣ�i

a

R�i
a = ∫

V e

⎡

⎢

⎢

⎢

⎣

( )W
)�1

− Σ�1)N
�1
a

⋮
( )W
)�d

− Σ�d )N
�d
a

⎤

⎥

⎥

⎥

⎦

dV e, RΣ�i
a = ∫

V e

⎡

⎢

⎢

⎢

⎣

(�x1 − �1)N
Σ�1
a

⋮

(�xd − �d)N
Σ�d
a

⎤

⎥

⎥

⎥

⎦

dV e. (112)

In order to complete the finite element formulation it is necessary to derive equations for the components of the tangent matrix
by discretising the tangent operators defined in the previous section. For the case of principal stretch mixed formulation for
instance, the resulting tangent operator can be represented as

D2ΠM [�u, �, �; Δu,Δ,Δ] =
[

�u � �
]

⎡

⎢

⎢

⎣

Kxx 0 Kx
0 K K
Kx K 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δu
Δ
Δ

⎤

⎥

⎥

⎦

. (113)

The individual matrices terms in the above tangent matrix are straightforward to obtain. The Kxx is the initial stiffness matrix
which is obtained in indicial form as

[Kab
xx]ij = ∫

V e

[(0Nx
a ]k

[ k
∑

i=1
max(�̄pxi , 0)[L]i ⊗ [L]i +max(�̄pxi+k , 0)[T ]i ⊗ [T ]i

]

ikjl

[(0Nx
b ]ldV

e. (114)

Similarly, the term relating to the Hessian, namely K can be written in indicial form

Kab
 = ∫

V e

⎡

⎢

⎢

⎢

⎣

N�1
a N

�1
b )

2
�1�1

W ⋯ N�1
a N

�d
b )

2
�1�d

W
⋮ ⋱ ⋮
sym ⋯ N�d

a N
�d
b )

2
�d�d

W

⎤

⎥

⎥

⎥

⎦

PSD

dV e, (115)
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or alternatively in matrix form

Kab
 = ∫

V e

MHPSD
W MT dV e, (116)

whereM is the commonly used matrix of shape functions arranged as

M =

⎡

⎢

⎢

⎢

⎣

N1 0 0 N2 0 0 ⋯ Nn�1
0 0

0 N1 0 0 N2 0 ⋯ 0 Nn�2
0

0 0 N1 0 0 N2 ⋯ 0 0 Nn�3

⎤

⎥

⎥

⎥

⎦

, (117)

in 3-dimensions and

M =

[

N1 0 N2 0 ⋯ Nn�1
0

0 N1 0 N2 ⋯ 0 Nn�2

]

, (118)

in 2-dimensions. Finally, the two cross terms in the principal stretch mixed formulation are obtained as

Kab
 = −∫

V e

⎡

⎢

⎢

⎢

⎣

N�1
a N

Σ�1
b

⋱

N�d
a N

Σ�d
b

⎤

⎥

⎥

⎥

⎦

dV e, (119)

Kab
x = ∫

V e

[)�x1
)F x

(0Nx
a ,⋯ ,

)�xd
)F x

(0Nx
a

]

N
Σ�i
b dV e. (120)

For rigid and stiff formulations a slightly modified residual R and a diagonal term relating to the perturbed Lagrangian Kab


also emerge

Rab
 = − 1

Cc ∫
V e

⎡

⎢

⎢

⎢

⎣

(

(�x1 − 1 −
Σ�1
Cc
)
)

N
Σ�1
a

⋮
(

(�xd − 1 −
Σ�d
Cc
)
)

N
Σ�d
a

⎤

⎥

⎥

⎥

⎦

dV e, (121)

Kab
 = −

1
Cc ∫

V e

⎡

⎢

⎢

⎢

⎣

N
Σ�1
a N

Σ�1
b

⋱

N
Σ�d
a N

Σ�d
b

⎤

⎥

⎥

⎥

⎦

dV e. (122)

The equations provided above can be implemented using a variety of finite element spaces. Certainly, not all choices will lead to
effective or valid finite element formulations37,39,40,41,66,67,68,69,70,71. Moreover, the cost of implementation of mixed formulation
may be significantly higher than that of standard displacement based approaches given the number of additional unknowns
created. However, careful analysis of the continuity required for each of the variables, shows that only displacements need to
be continuous across elements72,73,74,75. Stretches and their work conjugate variables can be discretised independently on each
element of the mesh. This enables a static condensation process to be carried out before assembly of the global tangent matrix.
The choice of function spaces are shown in Fig. 9 for triangular and tetrahedral elements. In particular, quadratic bases are used
for the geometry discretisation, with linear element by element interpolations for the stretches and their conjugates. To illustrate
the static condensation procedure, let us consider the mixed variational formulation with independent principal stretches whose
linear system at an element level can be written as

⎡

⎢

⎢

⎣

Kxx 0 Kx
0 K K
Kx K 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δu
Δ
Δ

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−Rx
−R
−R

⎤

⎥

⎥

⎦

, (123)

In this case, the generalised displacement tangent operator obtained after static condensation for mixed variational formulation
with independent principal stretches look like

KG = Kxx +KxK−1
KK−1

Kx, (124a)
RG = Rx −KxK−1


(

R −KK−1
R

)

, (124b)
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ξ2

ξ1

Quadratic-continuous Linear-discontinuous

ξ2

ξ3
Quadratic-continuous Linear-discontinuous

ξ1

FIGURE 9 Mixed finite elements in 2 and 3 dimensions. Piece-wise continuous quadratic basis functions are used for
displacements and piece-wise discontinuous linear basis functions for principal stretches and the corresponding Lagrange
multipliers.

which can be assembled into a global linear system of equations as

A{KG}Δx =A{−RG} (125)

whereA denotes assembly over elements. It is important to note that, given the linear shape functions for stretches and work
conjugates for triangular and tetrahedral elements theK = K matrix is the standard Galerkinmassmatrix which is constant
(can be computed at initialisation) and whose inverse can be found analytically. More specifically, for a given component �i and
Σ�i from the sets and  , respectively this matrix is simply given by

K−1
�iΣ�i

= 3
V e

⎡

⎢

⎢

⎣

−3 1 1
1 −3 1
1 1 −3

⎤

⎥

⎥

⎦

, (126)

in 2-dimensions and by

K−1
�iΣ�i

= 4
V e

⎡

⎢

⎢

⎢

⎢

⎣

−4 1 1 1
1 −4 1 1
1 1 −4 1
1 1 1 −4

⎤

⎥

⎥

⎥

⎥

⎦

, (127)

in 3-dimensions where V e is once again the volume of the element in the original configuration. Hence, after having solved for
global displacement incrementsΔx at a givenNewton-Raphson iteration, the increments for local (per-element) variables namely
stretchesΔ and stress conjugatesΔ can be computed locally and efficiently through a few elementary matrix-multiplications
as

Δ = K−1


(

−R −KxΔxe
)

, (128a)
Δ = K−1


(

−R −KΔ
)

. (128b)

This implies that the proposed mixed principal stretch formulation does not require per-element matrix inversion or linear
system solution. As mentioned in the introduction, the solution strategy for this mixed finite elements is strikingly similar to
local-global algorithms used in geometry processing applications35,33 which solves for rotations locally and for displacements
globally. However, as mentioned such algorithms are first order alternating/staggered approaches and cannot be recast as a
second-order Newton-Raphson minimisation problem and from finite elements perspective they correspond to P1-P0 element
which is known to have locking and accuracy issues for secondary variables. Hence, our scheme in essence, generalises over
local-global approaches.
In general, given a positive semi-definite initial stiffness matrix Kxx and positive semi-definite matrices K and K the

resulting generalised tangent matrix KG is guaranteed to be positive semi-definite.
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Algorithm 1 Procedure for computing stabilised tangent operators at a quadrature point
1: procedure GetEnergyFirstPiolaProjectedTangents(F )
2: Compute SVD F = Û�V̂ T

⊳ Eqn. 3
3: Compute energyW () ⊳ Eqn. 53
4: Compute first Piola-Kirchhoff P ⊳ Eqn. 26
5: Compute analytical eigenvalues/vectors of the HessianHW : �̄HW

i ⊳ Eqns. 60-61
6: Build the HessianHPSD

W ←
∑

imax(�̄
HW
i , 0) ei ⊗ ei ⊳ Eqn. 59

7: Build the constitutive tangent PSD
k ⊳ Eqn. 62

8: Compute analytical eigenvalues/vectors of the initial stiffness p: �̄
p
i ⊳ Eqns. ??-??, 14-15, 36

9: Build the initial stiffness PSD
p ←

∑k
i=1max(�̄pi , 0)[L]i ⊗ [L]i +

∑k
i=1max(�̄pi+k, 0)[T ]i ⊗ [T ]i. ⊳ Eqn. 63

10: Build the total tangent PSD ← PSD
k + PSD

p
11: return PSD

12: end procedure

6 COMPUTATIONAL ASPECTS

In this section, we discuss some of the key implementation aspects of the proposed framework. In particular, we outline: 1) A
generalised Newton-Raphson procedure that encompasses standard Newton, Modified Newton and Projected Newton for the
simulation of stabilised and non-stabilised nonlinear systems. 2) A line search technique to overcome stalls and blows-up during
minimisation and finally 3) the choice of quadrature scheme to guarantee positive semi-definiteness for mixed and high order
elements.

6.1 Generalised Newton-Raphson with line search
As mentioned, the projected tangent operators can be seen as estimates (or proxies) to the real ones. Hence, it is also natural to
assume that it is not necessary to evaluate and assemble the global system at every iteration of Newton. This procedure is typically
called theModifiedNewton-Raphson or in the case of positive semi-definite projection, theModified ProjectedNewton-Raphson
scheme. However, as opposed to Projected Newton which is a tight approximation of the tangent (if not the tangent itself)
Modified Newton further loses the quadratic convergence of Newton-Raphson and typically converges much slower. For this
reason, all the examples presented in the next section are performed either with Newton or Projected-Newton. Nevertheless, a
generalised Newton-Raphson scheme can be formulated as shown in Algorithm 2. Mixed finite element implementations with
discontinuous local variables typically require a post-processing step to solve for the local variables at every iteration of Newton
which is shown in Algorithm 2.
Numerically, straight-forward application of Newton-Raphson is not sufficient to guarantee convergence without blows-up

even in the context of tangent stabilisation as a given loading increment might cause too big of a jump in residuals. As recently
reported in44, running Projected Newton over a large-scale database of over 10000 meshes of extremely challenging industrial
complexity suggests that a fully automated minimisation procedure is possible to pass such datasets with 100% success rate if
Projected Newton is coupled with a line search technique. Line search is a well-known technique to overcome blows-up and
non-convergence of Newton. Line search also helps ensure that every step of the iteration results in a flip-free configuration32,44.
A standard backtracking line search scheme is shown in Algorithm 3 although more sophisticated schemes that explicitly check
for element inversion do exist32.

6.2 Equal singular values, perturbation and convergence
The only time that equal singular-values can create numerical issue is while computing the initial stiffness matrix specifically
the first three eigen-values of the initial stiffness in 3D (and the first one in 2D) that involve �j − �k as shown in Eqns. ??-??.
However, as mentioned earlier, for displacement-based formulations this issue can be completely circumvented and not even the
usually employed L’Hôpital rule is necessary76,30. This is because for isotropic materials isotropy dictates symmetry in principal
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Algorithm 2 Generalised Newton-Raphson procedure
1: procedure Minimise
2: Initialise F,R,K
3: repeat ⊳ Increment loop
4: ΔF ← LoadFactor * ComputeExternalForces()
5: Get current load increment F ← F + ΔF
6: while ||R|| > threshold do ⊳ Newton-Raphson loop
7: if RequiresTangentEvaluation then ⊳ Newton or Modified Newton
8: Assemble global tangent operator K ←A{KG} ⊳ Newton or Projected Newton
9: end if
10: Assemble residuals R ←A{RG}
11: Add external loads R ← R + F
12: Solve linear system KΔx = −R
13: Post-process mixed discontinuous variables,
14: Obtain line search parameter � ← (x + �Δx) ⊳ Line search
15: Update geometry x← x + �Δx
16: end while
17: until LoadFactor = 1
18: end procedure

Algorithm 3 Line search procedure
1: procedure LineSearch(Δx)
2: Assemble energy0 ← (x)
3: Assemble residuals R0 at x
4: Compute curvature0 ← R0 ⋅ Δx
5: Initialise � ← 1, �min ← 10−16, � ← 0.5, c1 ← 10−4, c2 ← 0.95
6: repeat
7: Assemble energy� ← (x + �Δx)
8: Assemble residuals R� at x + �Δx
9: Compute curvature� ← R� ⋅ Δx
10: if � ≤ 0 + c1�0 then ⊳ Sufficient decrease condition
11: break
12: else if � ≤ c20 then ⊳ Curvature condition
13: break
14: else
15: � ← ��
16: end if
17: k← k + 1
18: until k ≥ numMaxIterations or � < �min
19: end procedure

stretches and using the analytical formula directly from Eqns. ??-?? results in expressions that cancels out the denominator.
More concretely, in our formulation we symbolically find the initial stiffness eigen-values from the script presented in Fig. B1.
For the case of mixed principal stretch formulation however, the singular-values are independent variables and if they happen

to be numerically close (or equal resulting in division by zero) perturbation of the deformation gradient would be required.
Certainly, L’Hôpital rule also does not apply in this context. In such cases, we follow the recommendation by30 by perturbing
(adding terms to) two diagonal entries of F by 2� and �. Unlike,30 we do not use � and −� style perturbation since in extreme
cases it can inadvertently result in an F with negative Jacobian J . We use � = 10−6.
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An interesting observation further cemented by the notion of tangent stabilisation is given that, we perturb principal stretches
merely to compute the eigenvalues of the initial stiffness, we can also discard these eigenvalues if principal stretches are numer-
ically equal and if away from the origin (F ≠ I). This further dampens the Newton method however, experiments show that
equal singular-values when F ≠ I occur rarely in select quadrature points. In our setting, we first perturb F if and only if at
least two singular-values are equal and then re-perform the SVD. Further, if Projected Newton is employed (as opposed to stan-
dard Newton) and the corresponding eigenvalues of the initial stiffness are still too big > 106 due to the denominator we simply
discard them.

6.3 On the choice of quadrature rules
Integration techniques have been extensive studied in the context of mixed finite elements77,78. Crucially, in the setting of tangent
stabilised elasticity with mixed variables, it is important to guarantee that the integrated tangent operators over the elements are
positive semi-definite. While the procedure outlined for positive semi-definite projection is an essential step towards this, care
should be taken during numerical integration specially in the case of high order and mixed elements as not all quadrature rules
necessarily have positiveweights79,80. This can at times have adverse effect and can yield stiffnessmatriceswhich are numerically
not positive semi-definite despite the projection. In this regard, one good choice is the reduced quadrature rules for general
polyhedral finite elements presented in81 which have guaranteed positive weights and in addition provide the minimum number
of integration points for cost-effective implementation. Algorithm 1 shows the procedure for computing positive semi-definite
tangents at a given quadrature point.

7 NUMERICAL EXAMPLES

In this section we present a series of benchmark examples to verify the correctness and robustness of various finite element
discretisations presented in the previous sections. Our focus, is primarily on high order displacement-based and the 7-field (5-
field in 2D) mixed principal stretch based implementations of large strain elasticity in principal stretches. Separate tests are
performed in 2 and 3 dimensions since the formulations based on principal stretch are different for planar and volumetric cases.

7.1 Patch test
We start with a standard three dimensional patch test in order to assess the correctness of the computational implementation.
The patch test is a necessary condition for the convergence of finite elements. It demands that an arbitrary patch of assembled
elements is able to reproduce a constant state of stress and strain if subjected to boundary conditions consistent with constant
straining. We follow the patch test problem presented in references6,4 where two meshes of 2 × 2 × 2 × 6 = 48 tetrahedral
elements are considered one comprising of regular tetrahedra (undistorted) Fig. 10(a) and one where the middle node is moved
randomly within the the volume (distorted) Fig. 10(b). The compressible Mooney-Rivlin materialWMR presented in Eqn. 68 is
used for this example with parameters �1 = 20kPa, �2 = 40kPa and � = 8000kPa.
A homogeneous deformationmapping is then defined through a stretchΔL∕L = 0.5 applied in the vertical direction Fig. 10(c)

and zero Dirichlet boundary conditions elsewhere on the boundary in other directions. The objective is to then demonstrate that
the same solution is obtained for both meshes. We observe a homogenous distribution of deformation gradient and principal
stretch (�max = �1 = 1.5) and a Cauchy stress of �zz = 4166.666kPa. Identical results (within machine accuracy) are obtained
for both meshes for the displacement-based and mixed principal stretch formulations hence, passing the patch test.

7.2 Cook’s membrane
In this example the properties of the two proposed finite element formulations are analysed and compared namely, the
displacement-based FEM formulated in principal stretches and the mixed principal stretch based FEM.
TheCook’smembrane is awell-known benchmark for testing finite element formulations82. Similar to the original benchmark,

a 2-dimensional model is set up but additionally a 3-dimensional model is also prepared. Three levels of mesh refinement (4 ×
4, 8 × 8 and 16 × 16) on the geometry is considered with triangular and tetrahedral meshes, respectively as shown in Fig. 11.
Refinements across the thickness are 2, 4 and 8 elements across the thickness for the volume mesh. The planar meshes have 32,
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(a) (b) (c)

FIGURE 10 Three dimensional patch test. (a) view of undistorted mesh in the reference configuration. (b) view of distorted
mesh in the reference configuration. (c) deformed geometry after stretching of ΔL∕L= 0.5.

48

10

60

16

~F

FIGURE 11 Cook type cantilever problem showing geometry of the problem and boundary conditions, where the dark orange
plate is fixed and a parabolic upwards shear stress distribution is applied on its right end. The corresponding 2D and 3D meshes
for the 3 levels of refinement are shown on the right.

128 and 512 elements, respectively and volumemeshes have 142, 804 and 4605 elements, respectively. Customary to performing
this benchmark and to test correctness of the proposed formulations we used a Poisson’s ratio of � = 0.45 and Young’s modulus
ofE = 250 using theMooney-RivlinmaterialWMR presented in Eqns. 68-69 and calibrated thematerial parameters accordingly.
A shearing force of F = 50N was applied on the right wall as shown in Fig. 11. For this example, unless otherwise stated, we
used the non-stabilised (standard) tangents for all formulations.
In Fig. 12, we first show the convergence of Newton-Raphson for both formulations. Quadratic convergence is attained for

both formulations. To pinpoint the superiority of the mixed principal stretch formulations, we proceed by showing the contour
plots of various quantities. The contour plot of vertical uy displacement is shown in Fig. 13 for the coarsest mesh in both 2D and
3D cases. As expected displacement distribution is smooth for both formulations.
We further show the distribution of mixed/secondary (in the case displacement-based formulation post-processed) vari-

ables namely the principal stretch �1 for the 3D case in Fig. 16. To highlight the superior nature of mixed formulation over
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FIGURE 12 Quadratic convegrence of Newton-Raphson for P2 displacement-based and P2-P1 mixed principal stretch
formulations.

displacement-based, in all cases the post-processed/secondary variables are not smoothed out over nodes. The discontinuous
and rather patchy nature of principal stretch over the mesh is evident for displacement-based formulation.
To assess the correctness of the mixed implementation we further show the distribution of stress namely, principal first Piola-

Kirchhoff stress Σ�2 and Cauchy stress �xx for 2D in Figs. 14-15 and von Mises for 3D in Fig. 17. For all three refinement levels
a smooth distribution of stress is observed (certainly, barring the stress concentration region near the left fixity) for the mixed
formulation with no evident signs of spurious oscillations whereas the displacement-based formulation once again exhibits a
poorer behaviour. It is important to note that, for the case of the mixed principal stretch formulation the principal stretches and
hence the stretch tensor (U ) are meant to be more accurate compared to the displacement-based formulation since they are
primary variables but the rotation tensor (R) is still computed from the geometry and hence, F in general may not show the
same superior behaviour. The realisation however is that, most relevant quantities in structural/stress analysis can be described
in terms of principal stresses. For instance, the von Mises stress can be computed from the principal components of the Cauchy
stress tensor �. Noting the standard push-forward operation for obtaining � and further using the SVD we have

� = J−1PF T = J−1Û�pV̂
T V̂ �Û T

= J−1Û�p�Û
T
. (129)

and hence the principal components of � in 3D are obtained as

�1 = (�2�3)−1Σ�1 , �2 = (�1�3)−1Σ�2 , �3 = (�1�2)−1Σ�3 , (130)

which only involves principal stretches and their conjugates which are all primary variables in our mixed finite element
implementation. The von Mises stress is then computed as

�v =
1
√

2

√

(�1 − �2)2 + (�1 − �3)2 + (�2 − �3)2.

Analogous toF however, Cauchy stress� itself involves both derivatives of geometry and principal stretches/conjugate stretches.
However, as seen in Fig. 15 the Cauchy stress distribution is much smoother for the mixed formulation compared to the
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Displacement-based FEM Mixed Principal Stretch FEM
Coarse Medium Fine Coarse Medium Fine

Po
in
tA

:[
48
,6
0,
0] ux -18.0897 -18.654 -18.9248 -18.0809 -18.6562 -18.9259

uy 18.4975 18.5486 18.5242 18.521 18.5535 18.5257
�1 1.05006 1.06941 1.08156 1.16568 1.17428 1.18101
�2 0.957398 0.948891 0.940271 0.880102 0.871776 0.866168
�xx -2.98121 3.1957 3.54528 4.62047 2.21644 0.652022
�xy 0.765008 2.0772 2.25651 3.01326 4.72001 4.67003
�yy 12.8962 23.4382 27.336 49.7846 50.1418 50.9005

Po
in
tB

:[
24
,3
7,
0] ux -1.49532 -1.5709 -1.60289 -1.49831 -1.57207 -1.60362

uy 6.36149 6.47789 6.52421 6.36757 6.47977 6.52495
�1 1.10307 1.10707 1.10949 1.10714 1.11059 1.11143
�2 0.956301 0.929619 0.918239 0.911696 0.908994 0.908097
�xx 37.3827 14.0868 4.84931 -4.84169 -4.30294 -4.04916
�xy 6.42152 8.83305 10.1938 8.86428 10.1757 10.9095
�yy 58.4818 38.6709 30.5633 24.2553 24.0265 23.4736

TABLE 1 Comparison of displacements and Cauchy stress components at multiple points for planar Cooks membrane problem
for P2 displacement-based and P2-P1 mixed principal stretch formulations. The variation of stresses is sparse for displacement-
based FEM but in a tighter range for mixed principal stretch FEM.

displacement-based formulation. Additionally, we compare with other popular high order elements namely Q2 hexahedral ele-
ments and show Cauchy stress � in Fig. 18. We can observe that, for the same refinement level P2-P1 mixed formulation has
indeed a more smoother distribution of stress, although the results of Q2 elements is closer to P2-P1 mixed elements compared
to P2 elements.
Finally, to quantify the results, we highlight and compare convergence of displacements (ux, uy, uz), principal stretches (�1,

�2, �3) and all components of Cauchy stress �ij at multiple points in the geometry in Table 1 for 2D and in Table 2 for 3D case.
The tabulated values show the oscillatory nature of stresses for the displacement-based formulation whereas the stresses for the
mixed formulation seem in a more tighter range.

7.3 Compression of a square plate
The goal of this example is to study the effect of tangent stabilisation and show its performance characteristics.
Generally, it is not considered a good practice to remove the negative eigen-modes from the initial stiffness matrix as it can

change the deformation profile drastically. Moreover, since, most hyperelastic energies used in engineering simulation are non-
convex, initial stiffness stabilisation essentially implies favouring solvability and convergence over finding the global minimum
since the results obtained with stabilised/modified initial stiffness could very well correspond to a local minimum. However,
tangent stabilisation can be exercised cautiously based on the underlying energy used. The goal here is certainly not speed but
rather automation of nonlinear simulation workflow although in complex cases projected Newton with tangent stabilisation can
result in fewer total iteration than standard Newton as it does not require a high number of load increments.
Inspired by30, in this section, we conduct a series of studies by determining the minimum number of load increments required

by the standard Newton-Raphson technique and its counterpart tangent stabilised Projected Newton without relying on line
search or load control techniques. We report convergence patterns, total number of iterations across all load increments and
in general the success/failure (convergence/non-convergence) of each method. This study is designed to shed light on the per-
formance of Projected Newton algorithm which has not been studied in the engineering simulation community although such
comparisons appear in computer graphics literature18,20,44.
For the purpose of this study, we use the nearly incompressible Mooney-Rivlin model described in Eqns. 73-74 with shearing

modulus of � = 1 and a Poisson’s ratio of � = 0.495. More specfically, we consider �2 = 0 and � = 1. Polyconvexity of the
energy under such setting is well-known50,62.
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(a) (b) (c) (d)

FIGURE 13 Contour plot of vertical displacement uy for the coarsest mesh in 2-dimensions (a,b) and 3-dimensions (c,d). Plots
(a) and (c) are for P2 displacement-based formulation and plots (b) and (d) for P2-P1 mixed principal stretch formulation.
Displacement distribution is smooth for both formulations as expected.

We first consider a square plate of 50 × 50mm2 as shown in Fig. 19 with four levels of mesh refinement to gain additional
insight into any differences in behaviour of Newton-Raphson (NR) and Projected-Newton (PN) techniques. The study pertains
compressing half of the plate with an imposed downward displacement of 25mm. For now, we limit our study to displacement-
based formulation as the same findings carry over naturally to mixed formulations.
Fig. 20 shows the convergence pattern of NR and PN for the coarsest mesh (6 × 6 × 2) across all load increments. We fix

the residual tolerance to 10−3 which is rather tight for engineering accuracy and report normalised residual ||R||∕||R0|| for
clearer comparison and to avoid irregular jumps in the plots. NR required at least 20 equal load increments to successfully
converge without any line search or load control techniques being employed while PN achieved convergence in only 2 equal
load increments albeit with significantly different convergence pattern. We avoided employing automatic load controls and line
search in all cases to highlight the true difference between NR and PN, although PNwith line search converges even with a single
load increment. The total number of iterations for the coarsest mesh was slightly higher for PN compared to NR ((88 vs 76).
Figs. 21, 22 and 23 show the convergence for the remaining refinement levels. As the mesh resolution increases both NR and

PN required further loading increments. However, PN’s total number of iterations increased significantly with mesh refinement
but with successful convergence. On the other hand, for the finest refinement level, NR failed to converge regardless of the
load increments. We experimented increasing the number of equal load increments all the way to 1000 and verified that all
intermediate number of load increments also resulted in non-convergence. This a classic case where due to compression the area
next to the loading zone experiences buckling as shown in Fig. 25. It is clear that, PN successfully resolves this deformation
scenario.
The relative difference in the final deformed geometry between PN and NR is shown in Table 3 which is negligible. However,

as observed, the superlinear convergence of PN results from roughly the same to 3.4 times more iterations. It should be noted
that the increased number of iterations for PN is due to the load being applied in a much more rapid fashion than NR. In Fig. 24
we increase the number of increments for PN to 20 and observe that in the first few increments (potentially linear regime) PN
maintains the performance of NR. In general, the performance is hugely subsided by the fact that enables using fast Cholesky
solvers. In Fig. 29 we compare the performance of PN with NR in terms of total simulation time and find that while it is still
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(a) (b) (c) (d) (e) (f)

FIGURE 14 Contour plot of first Piola-Kirchhoff principal stress Σ�2 for planar Cooks membrane problem for three refinement
levels using P2 displacement-based formulation (a,b,c) and P2-P1 mixed principal stretch formulation (d,e,f). For both cases,
distribution profiles are not smoothed on purpose to showcase the discontinuous nature of secondary variables.

(a) (b) (c) (d) (e) (f)

FIGURE 15 Contour plot of Cauchy stress �xx for planar Cooks membrane problem for three refinement levels using P2
displacement-based formulation (a,b,c) and P2-P1 mixed principal stretch formulation (d,e,f). The introduction of 2 Lagrange
multipliers namely Σ�1 ,Σ�2 is enough for our mixed formulation to produce a smoother variation of stress. Distribution profiles
are not smoothed on purpose.

slower than NR, the slow-down is not as high (∼ 2.5×). Moreover, convergence of PN can also be accelerated with line search
techniques that smartly choose the increment factor12.

7.4 Inhomogeneous tension test
The goal of this example is

1. Show the impact of tangent stabilisation in the context of mixed formulations.
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(a) (b) (c)

(d) (e) (f)

FIGURE 16 Contour plot of principal stretch �1 for 3-dimensional Cooks membrane problem for three refinement levels using
P2 displacement-based formulation (a,b,c) and P2-P1 mixed principal stretch formulation (d,e,f). For both cases, distribution
profiles are not smoothed on purpose to showcase the discontinuous nature of secondary variables.
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(a) (b) (c)

(d) (e) (f)

FIGURE 17Contour plot of vonMises stresses for 3-dimensional Cooksmembrane problem for three refinement levels using P2
displacement-based formulation (a,b,c) and P2-P1mixed principal stretch formulation (d,e,f). For the case of mixed formulation,
the vonMises stress can be computed usingmixed variables only which highlights the advantage of the proposedmixed principal
stretch FEM. Distribution profiles are not smoothed.
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(a) (b) (c)

(d) (e) (f)

FIGURE 18 Further comparison of P2-P1 mixed formulation (d,e,f) with Q2 (parabolic hexahedral) elements (a,b,c) for
three refinement levels for Cauchy stress �xy. Note that, Cauchy stress � = J−1Û�p�Û

T involves both derivatives of geometry
(post-processed) and mixed variables. For a fixed refinement level, P2-P1 mixed formulation shows a smoother profile compared
to Q2 elements. Distribution profiles are not smoothed.
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Displacement-based FEM Mixed Principal Stretch FEM
Coarse Medium Fine Coarse Medium Fine

Po
in
tA

:[
48
,6
0,
0] ux -21.23 -21.5418 -21.6486 -21.2607 -21.5567 -21.6519

uy 19.8214 19.9173 19.9401 19.8326 19.9211 19.9417
uz -0.234599 -0.209553 -0.195644 -0.243519 -0.208968 -0.194938
�1 1.08266 1.0527 1.06679 1.06989 1.09438 1.0988
�2 1.0361 1.00815 0.999095 1.07142 0.973984 0.970233
�3 0.864915 0.940944 0.94379 0.839045 0.956605 0.956059
�xx -37.3125 2.46007 5.28387 -42.0459 9.95598 7.93569
�xy -29.9033 4.25165 5.91717 -40.5827 10.8578 10.7548
�xz -3.33556 -3.50633 -3.4009 1.07802 -1.23533 -1.27275
�yy -38.5959 16.3511 26.6437 43.65 43.8297 45.7656
�yz 4.56012 -0.398905 -0.919542 0.779728 -1.26402 -1.75086
�zz 5.47231 -20.3437 -13.5446 -2.80004 1.12104 0.651516

Po
in
tB

:[
24
,3
7,
0] ux -1.86424 -1.97141 -2.00875 -1.86823 -1.97512 -2.01018

uy 7.14304 7.26162 7.29798 7.1524 7.2667 7.29979
uz -0.13473 -0.132667 -0.120607 -0.138432 -0.131928 -0.1204
�1 1.13136 1.16329 1.1233 1.1156 1.12127 1.1218
�2 0.965105 0.954615 0.975788 0.977205 0.974364 0.973872
�3 0.877189 0.876938 0.907411 0.920512 0.92594 0.925987
�xx -70.279 -48.3941 -25.7772 -19.4195 -5.78394 -6.94213
�xy 16.9076 30.9788 24.101 12.3959 20.8654 21.6144
�xz -4.25 -6.48631 -2.34568 -2.46309 -3.80133 -1.52709
�yy 14.3856 31.6463 32.5247 43.1635 48.2317 45.3826
�yz 1.8213 3.05463 1.56433 1.21919 1.88441 1.25944
�zz -45.7941 -38.2061 -12.8017 -5.22654 -0.639664 0.0217264

TABLE 2 Comparison of convergence of displacements and stress components at multiple points for volumetric Cooks mem-
brane problem for P2 displacement-based and P2-P1 mixed principal stretch formulations. The variation of stresses is sparse for
displacement-based FEM but in a tighter range for mixed principal stretch FEM.

50

50

25

(a) (b) (c) (d) (e)

FIGURE 19 Geometry, boundary conditions and different mesh refinements considered for the square plate.

2. Show the performance mixed principal formulation in the nearly incompressible regime.

For this example, we use the inhomogeneous tension test30 on a unit cube of volume 1unit3 to assess the performance of tangent
stabilisation in 3D and in the context of mixed formulations. We further use the incompressible Mooney-Rivlin model but since
our formulation is not directly for incompressibility we consider a Poisson’s ratio � = 0.499 to test the performance mixed
principal stretch formulation in the nearly incompressible regime. A stretching force of F = 3unit is applied on one face and the
opposite face is fixed. Three refinement levels were used with 694, 2992, 23936 parabolic tetrahedral elements, respectively 27.



40 POYA ET AL

(a) (b)

FIGURE 20 Convergence pattern of standard Newton-Raphson (NR) vs Projected Newton (PN) (with constitutive tangent and
initial stiffness stabilisation) for square plate mesh (6 × 6 × 2) from Fig. 19 for a fixed residual tolerance of 10−3 across all load
increments. We report normalised residual ||R||∕||R0|| for clearer comparison and to avoid irregular jumps in the plots. No line
search or load control techniques is activated in either case to highlight the true difference between NR and PN. NR required a
minimum of 20 increments to achieve convergence and PN 2 increments. Across all increments, NR convergence is quadratic
while PN is superlinear. Total number of iterations - NR: 76, PN: 88.

Method / Resolution 6 × 6 × 2 12 × 12 × 2 24 × 24 × 2 48 × 48 × 2
Newton Raphson (NR) 20 (76) 20 (80) 22 (90) 7

Projected Newton (PN) 2 (88) 4 (172) 6 (306) 7 (637)
||xPN − xNR||∕||xNR|| 2.061e-06 9.498e-07 1.506e-06 -

TABLE3Comparison ofNR and PN in terms of number of increments (total number of iterations), and theL2 norm of difference
in the final deformed configuration. A fixed residual tolerance of 10−3 was used for both NR and PN. PN required from roughly
the same to 3.4 times more iterations but succeeded in all cases including the buckling case. The increased number of iterations
however is subsided by the ability to switch from LU to Cholesky-based solver. No load control techniques were employed.

In Fig. 27 we compare the performance of NR and PN with mixed formulation under a nearly incompressible regime. While
the system does not experience buckling in this case the initial stiffness matrix still goes indefinite as can be seen in Fig. 6. The
convergence of PN in this case is very similar to PN as shown in Fig. 26 differing at most by one extra iteration. In Fig. 29 we
compare the performance of PN with NR in terms of total simulation time and find that PN is actually marginally faster in this
case (by about 15-20%) due to the switch from LU to Cholesky solver.
A natural question then arises: how is our analytically constructed tangents different than numerically decomposing the tangent

operators using standard eigenvalue decomposition techniques. This question is answered in Fig. 30 where we show that in
our settings, tangent operators are by design constructed in an already “eigen-decomposed" form whereas numerical eigen-
decomposition ensues additional cost. If this decomposition is done in the spirit of our analytical construction that is, on per-
quadrature bases (using a dense eigen solver) than the computational cost is increased by at least a factor of 2 in 2D and a factor
of 4 in 3D, consistently. If the eigen decomposition is performed on the global sparse linear system then the computational
cost increases cubically and in 3D it results in over an order of magnitude difference in total simulation time. As a matter of
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(a) (b)

FIGURE 21 Convergence pattern of standard NR vs PN for square plate mesh (12 × 12 × 2) from Fig. 19 for a fixed residual
tolerance of 10−3 across all load increments.We track normalised residual ||R||∕||R0||. No line search or load control techniques
is activated. NR required a minimum of 20 increments to achieve convergence and PN 4 increments. Total number of iterations
- NR: 80, PN: 172.

(a) (b)

FIGURE 22 Convergence pattern of standard NR vs PN for square plate mesh (12 × 12 × 2) from Fig. 19 for a fixed residual
tolerance of 10−3 across all load increments.We track normalised residual ||R||∕||R0||. No line search or load control techniques
is activated. NR required a minimum of 20 increments to achieve convergence and PN 6 increments. Total number of iterations
- NR: 90, PN: 306.
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(a) (b)

FIGURE 23 Convergence pattern of standard NR vs PN for square plate mesh (48 × 48 × 2) from Fig. 19 for a fixed residual
tolerance of 10−3 across all load increments.We track normalised residual ||R||∕||R0||. No line search or load control techniques
is activated. NR failed regardless of load increments (we experimented till 1000 increments), and PN required 7 increments.
Total number of iterations - NR: 7 PN: 637.

(a) (b)

FIGURE 24 Effect of number of load increments on convergence of PN: using the same load increments as NR for PN generally
improves per increment convergence of PN, although such high number of load increments are unnecessary for PN. In the first
few increments (potentially linear regime) PN maintains the quadratic convergence of NR. Plots show convergence for square
plate problem with the two finest refinement levels.
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(a) (b)

FIGURE 25 Final deformed configuration for square plate with the finest mesh (48 × 48 × 2) solved using PN. NR fails for this
resolution due to buckling as shown in the zoomed plot (b). Smoothed distribution of �2 obtained with P2 displacement-based
formulation.

(a) (b) (c) (d)

FIGURE 26 Tangent stabilisation in the context mixed principal stretch formulation: Convergence of NR (a,c) vs PN
(b,d) for inhomogeneous tension test using both displacement-based (a,b) and mixed principal stretch formulations (c,d) (7-
field formulation) using 5 increments and a fixed residual 10−3 without any automatic control technique. If the system does not
experience buckling, PN can maintain the performance of NR.

fact, computing the eigen-decomposition of the global linear system becomes forbiddingly time consuming for meshes used in
practice. For this study, we used the dense eigen-decomposition Eigen::SelfAdjointSolver from the Eigen math library
for per-quadrature projection and SymEigsShiftSolver from Spectra library. Also note that, numerical eigen-decomposition
algorithms are iterative and tolerance-bound. Our experiments show that even with a tight tolerance < 10−14 they often further
impact the convergence of Newton. In that, numerically Projected Newton requires more Newton iterations compared to our
analytically Projected Newton; see44 for a detailed investigation.
Fig. 27 shows the distribution of deformation for the finest refinement level. It is interesting to observe that, the mixed principal

stretch formulation produces a smooth stretch distribution (and hence a smooth Jacobian J = �1�2�3 distribution, although we
did not show this as J ≈ 1 and the distribution seemed less revealing) in nearly incompressible regime. The displacement-based
formulation on the other hand, produces an overtly patchy distribution even after smoothing the processed Jacobian.
Noting this, we stress test the mixed formulation further in Fig. 28 by pushing the Poisson’s ratio all the way to � = 0.499999

and show that the distribution of all three principal stretches are smooth at the limit of incompressibility.

7.5 Buckling of a simple 2-dimensional column
We next show an example of simple buckling case that highlights a particular difference between PN and NR in practice. As
shown in Fig. 31 a column is pressed vertically but with different structured and unstructured parabolic meshes. Canonical
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(a) (b) (c) (d)

FIGURE 27 Mixed principal stretch formulation in nearly incompressible regime with tangent stabilisation: Initial and
deformed configurations for the inhomogeneous tension test obtained with displacement-based (b, c) and mixed principal stretch
(d) formulations using PN showing distribution of stretch �1 for nearly incompressibleMooney-Rivlinmodel with � = 0.499. For
displacement-based formulation both non-smooth (b) and smoothed (c) stretch profiles are now shown indicating its extremely
poor performance in the nearly incompressible regime. On the other hand, plot (d) confirms that PN (i.e. tangent stabilisation)
has no impact on the accuracy of mixed variables with mixed principal stretch formulation.

benchmark parameters and dimensions are used for this example: Dimension 2 × 20unit2, bottom fixed with an imposed dis-
placement of 10unit downward; nearly incompressible Mooney-Rivlin model with � = 1 and � = 0.495. For structured quad
meshes NR does not produce the buckled profile using either displacement Q2 or mixed formulation Q2-Q1, Fig. 31(a,b). With
a parabolic triangular meshes however, NR produces two different profiles depending on the displacement and mixed formu-
lation Fig. 31(c,d). Due to enhanced stability, PN however, produces the same deformation profile regardless of the mesh and
formulation employed Fig. 31(e,f,g,h).
Notice that, we have also employed the Q2-Q1 element using the mixed principal stretch formulation for this example which

successfully worked for this problem. However, we leave a more thorough investigation of this element to future work.

7.6 Pinch and pull-out of cylindrical shell
Pinch and pullout analysis of cylindrical shells is routinely performed as popular nonlinear buckling benchmarks for shell struc-
tures83. The setup of the problem is in Fig. 32 with thickness ℎ = 1mm, radius R = 100mm, length L = 200mm, Young’s
modulus E = 3 × 104N∕mm2, and Poisson’s ratio � = 0.3. In line with the standard benchmarks which use a NeoHookean
model, the compressible Mooney-Rivlin model is employed in our setting by considering a zero cofactor-related material param-
eter i.e. �2 = 0. While it is customary to consider 1/4th or 1/8th of the geometric model due to symmetry, the entire geometry
is meshed in our case with 7100 parabolic tetrahedral elements, Fig. 32. The first study pertains applying a pinching force at the
tip of the cylinder and tracking the response, Fig. 32(a). As can be seen from Fig. 33 PN with a single load increment is able to
capture the correct and well-known buckling profile for this benchmark. Given that the entire load is applied at once, instead of
“load vs displacement" curve we show “residual vs displacement" over all iterations of PN, Fig. 33(c). We also show the evo-
lution of deformation over iteration in Fig. 33(d). For this example we finally activated the line search technique presented in
Algorithm 3 but limited the minimum allowed step size to � = 0.1. For the second problem, we apply a pull-out force radially
on two sides of the cylinder and track the response, Fig. 32(b). As can be seen from Fig. 34 PN with a single load increment is
again able to capture the correct and well-known buckling profile for this benchmark. Residual vs displacement and the evolu-
tion of deformation over all iterations of PN is shown in Fig. 34(c,d). For this example the system snaps at the onset of loading
but PN with line search is able to successfully resolve this.
Finally, to showcase the robustness of our principal stretch-based tangent stabilisation, we simulate the pull-out of a thin semi-

spherical elastomeric sheet using 10 increments of PN without employing any load control and path-following techniques and
without employing the line search algorithm in Fig. 35. We use two meshes: one coarse Q2 hexahedral mesh and one fine P2
tetrahedral mesh using displacement-based formulation and the same material parameters as in the previous two examples but
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(a) �1 at � = 0.4999 (b) �1 at � = 0.49999 (c) �1 at � = 0.499999

(d) �2 at � = 0.4999 (e) �2 at � = 0.49999 (f) �2 at � = 0.499999

(g) �3 at � = 0.4999 (h) �3 at � = 0.49999 (i) �3 at � = 0.499999

(j) J at � = 0.4999 (k) J at � = 0.49999 (l) J at � = 0.499999

FIGURE 28 Mixed principal stretch formulation at the limit of incompressibility: The independent treatment of principal
stretches that make up the Jacobian J = �1�2�3 offers enough flexibility for volumetric-locking-free analyses at the limit of
incompressibility. Plots show (not-smoothed) distribution of the three principal stretches and the Jacobian J for Poisson’s ratio
� = 0.4999, � = 0.49999 and � = 0.499999.
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(a) (b)

FIGURE 29 Comparison of total simulation time between NR and PN for (a) 2-dimensional square plate using displacement-
based FEM, and (b) 3-dimensional inhomogeneous tension test using both displacement-based and mixed principal stretch
FEMs. Unlike NR, PN enables use of faster linear solvers. Pardiso LU solver is used for NR and Pardiso LLT for PN.

increase the Poison’s ratio to � = 0.45 and use the nearly incompressible Mooney-Rivlin model instead. While our framework
is capable of simulating even higher order elements with competitive performance84,17,21 it is well-known that for nonlinear
elasticity problems parabolic meshes offer the best trade-off between cost and accuracy85. Certainly, with refinements, finer
wrinkle patterns appear.

7.7 Rigid simulations
Finally, we show the application of mixed rigid formulation presented in Section 4.2.1 in Fig. 36 with a bar hitting a rigid
mechanical wheel simulated using Neumann boundary conditions. The wheel geometry and mesh is obtained from the publicly-
available dataset Thingi10k and consequently the polynomial order of the mesh is increased to P2. The simulation is performed
with displacements-based formulation by progressively increasing the shear modulus and compared to the rigid formulation.
We note that, while our formulation has linear treatment of variables �is and Σ�is it still requires a parabolic mesh. Alternate
and efficient formulations for stiff materials exist, for cases where engineering accuracy is not desired3.

8 CONCLUDING REMARKS

A new computational framework for large strain elasticity in principal stretches has been proposed in this work. Distinct from
existing literature, the proposed formulation is based directly on the principal stretches of the deformation gradient rather than
their squares i.e. eigenvalues of Cauchy-Green strain tensor which is archetypal in large strain elasticity formulations. The point
of departure for our formulation is the recently developed stretch tensor invariants of Smith. B.20 whose ingredients facilitate a
systematic formulation of large strain elasticity in principal stretches.
The proposed formulation offers multiple novel features:

• Tangent elasticity and initial stiffness operators are by design constructed in a spectrally-decomposed form in that, their
eigenvalues and eigenmatrices are derived analytically.
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a) (b)

FIGURE30Timing comparison our proposed analytically constructed stabilised tangents with both local (per-quadrature; dense
matrices) and global (sparse matrix) numerical eigen-decomposition of tangent matrices. Local numerical eigen-decomposition
is up to 2× slower in 2D and over 4× in 3D while global numerical eigen-decomposition has over 10× the computational
overhead and becomes forbiddingly time-consuming in practice. The two plots are for (a) 2-dimensional square plate test, and
(b) 3-dimensional inhomogeneous tension test.

(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 31 Tangent stabilisation makes simulations more stable since it prunes bifurcations. Figure shows pressing a bar
with structured and unstructured meshes using NR (a,b,c,d) and PN (e,f,g,h). NR produces different profiles while PN produces
the same profile regardless of the mesh or formulation used. (a) Q2 NR (b) Q2-Q1 NR (c) P2 NR (d) P2-P1 NR (e) Q2 PN (f)
Q2-Q1 PN (g) P2 PN (h) P2-P1 PN.

• As a result, convexity conditions are postulated in terms of these newly found eigenvalues which happen to be closely
related to the hypothesis of Ball1.

• Therefore, this novel finding opens the door for utilising convex minimisation algorithms for isotropic hyperelasticity
and in designing automated Newton-style algorithms via closed-form tangent stabilisation. In this context, a flavour of
Projected Newton (PN) has been proposed and critically studied in this work.
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(a) Pinch (b) Pull-out

FIGURE 32 Geometry of cylindrical shell used for pinch and pull-out buckling analysis with thickness ℎ = 1mm, radius
R = 100mm, and length L = 200mm.

• Furthermore, formulating isotropic elasticity directly in terms of principal stretches facilitates the design of mixed Hu-
Washizu variational formulations for compressible, nearly incompressible, truly incompressible, inextensible, rigid and
stiff material models. This is done by treating principal stretches as independent variables and enforcing principal stretch-
stress compatibility through additional Lagrange multipliers.

• Consequently, the proposed framework offers a general-purpose computational pipeline for locking-free and stress-
accurate analyses of deformable objects as well as hybrid deformable-rigid simulations.

Our computational framework offers a “first step" implementation of the proposed ideas detailed above and there is certainly
room for further research particularly in the context of engineering analysis. Firstly, compared to the well-known implementa-
tions of nonlinear solid mechanics specially in industry, our framework introduces additional computational cost emanating from
Singular-Value-Decomposition (SVD) of deformation gradient per quadrature point. While, in 2-dimension we have observed
that this additional step is often immeasurable (since SVD in ℝ2 can be computed analytically) in 3-dimensions however, this
introduces about 10-20% overhead. We use the fastest known implementation of SVD in ℝ3 which is based on Jacobi conju-
gation and quaternions. It should be noted however, that other implementations of elasticity in principal stretches also report
a similar overhead30. Furthermore, this operation is embarrassingly parallel if computed in batch-mode across all quadrature
points86. We intend to explore this in future work.
The tangent stabilisation strategy and the subsequent Projected Newton (PN) minimisation algorithm discussed in detail in

this work offers a robust mechanism for nonlinear analysis of solids and in particular provide an alternative to path-following and
arc-length based techniques used in industry. Our experiments show that for engineering simulation purposes PN offers from
roughly the same computational time to 2.5× slower compared to standard Newton-Raphson for a fixed accuracy. This cost is
often largely subsided due to the ability to switch to faster linear solvers such as Cholesky and conjugate gradient methods. In
turn however, PN offers robustness in simulation and convergence irrespective of mesh resolution andmesh quality.We note that,
our tangent stabilisation is analytical and in fact comes cost-free and as discussed alternate numerical stabilisation techniques are
forbiddingly time-consuming and impractical. Moreover, unlike Newton-Raphson, the convergence of PN deteriorates closer to
the solution. It is possible to explore appropriate blending techniques that combine the benefit of both algorithms19. Additionally,
we note that, away from engineering simulations and particularly in computer graphics and geometry processing PN has been
successfully applied for well over a decade now for myriads of applications and constitutes the backbone of many optimisation
tools14,15,59,22.



POYA ET AL 49

(a) (b)

(c) (d)

FIGURE 33 Deformed configuration of cylindrical shell for pinching problem at various iterations of PN using a single load
increment. The buckled profile obtained with PN matches well the configuration obtained with path-following techniques83.
Given that, the entire load is applied at once, instead of “load vs displacement" we track “residual vs displacement" over all
iterations of PN.

Another issue typically encountered in principal stretch formulations is the case of equal or numerically similar singular-
values. For displacement-based formulations (of any FE order), our implementation can completely circumvent this issue as
isotropy dictates symmetry in principal stretches and we can analytically and rather symbolically (as shown in Fig. B1) evaluate
the initial stiffness matrix. For the case of mixed formulations however, this remains an issue since neither analytic substitution
is possible nor L’Hôpital rule applies. Although rare, numerical perturbation is required when such an issue is encountered. At
times, this issue is exacerbated as principal stretches that are numerically very close but still above a threshold can cause a huge
jump in the evaluation of initial stiffness. In such cases as discussed, we can either resubstitute the analytical formula assuming
a displacement-based formulation or in the case of PN clamp the corresponding initial stiffness eigenvalues. In either case, this
further dampens Newton algorithm which impacts convergence.
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FIGURE 34 Deformed configuration of cylindrical shell for pull-out problem at various iterations of PN using a single load
increment. The buckled profile obtained with PN matches well the configuration obtained with path-following techniques83.
Given that, the entire load is applied at once, instead of “load vs displacement" we track “residual vs displacement" over all
iterations of PN.

Finally, in the context of PN, maintaining injectivity or an inversion-free map becomes more important. While this often
also happens with standard Newton-Raphson the issue is a lot more pronounced with PN. This is due to the fact that, PN offers
numerical solvability even in physically hard and infeasible scenarios. For this reason, using coercive energies that tend to
infinity as the element inverts such as incompressible models are mainly recommended. The combination of load increments
(progressive loading) and line search alleviates this issue to a great extent. The line search algorithm used in our implementation
is a standard backtracking algorithm and more sophisticated line search schemes exist that geometrically check for element
inversion and limit the magnitude of descent to the largest possible inversion-safe step size32,87. Further investigation in the
context of engineering analysis specially while using high order and mixed formulations is needed to determine the extent of
feasibility of such algorithms.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 35 Coarse and fine wrinkles of an elastomeric sheet under extreme 2× pull-out simulated using the high order
displacement-based formulation with Q2 and P2 elements: using Newton with stabilised tangents without employing any
path following techniques or line search. a) Geometry and boundary conditions: sphere radius r = 100mm, height L = 80mm
and thickness ℎ = 0.1mm; the base is fixed only inZ direction (allowed to slide inXY plane) and a displacement of uz = 80mm
is applied at the top, c,d) rear and front views of deformed Q2 mesh showing smoothed von Mises stress, e,f) rear and front
views of deformed P2 mesh showing uz, and b) convergence of PN across all increments for Q2 mesh.
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(a) Initial Configuration (b) 3 GPa (c) 30 GPa (d) 300 GPa (e) Rigid

FIGURE 36 Simulation of a bar hitting a rigid wheel: using displacement-based FEM with various shear moduli (b,c,d) and
mixed rigid formulation (e).
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APPENDIX

A PROOF OF CONVEXITY CONDITIONS IN PRINCIPAL STRETCHES

The convexity conditions in Eqns. 47-48 are new in the sense that they are postulated in terms of the eigenvalues of the initial
stiffness component p of the elasticity tensor (terms related with first derivatives ofW ) and in terms of the eigenvalues of the
constitutive component k of the elasticity tensor (terms related with second derivatives ofW ). This is very convenient from a
computational standpoint, specially when designing stabilisation strategies as those described throughout sections 3.2 and 3.3.
However, the conditions derived in our corollaries are inevitably connected with the hypothesis established by Ball1. According
to the latter work, provided thatW () is convex in its arguments, symmetric and monotonically increasing with respect to each
of its arguments, then its equivalent expression e(F ) would be convex with respect to F . IfW () meets these conditions (i.e.
convexity, symmetry and monotonically increasing), it automatically satisfies the conditions stated in our previous corollaries.
The objective of the following derivations is indeed to prove that, provided that W () meets the requirements of convexity,
symmetry and monotonically increasing, then the boxed conditions in Corollary 1 and 2 are automatically satisfied. Regarding
the conditions involving the second derivatives in the boxes above, these follow from the convexity of W with respect to its
arguments. Furthermore, it is trivial to see that the monotonically increasing behaviour ofW (), which entails Σ�i ∶=

)W
)�i

≥ 0,
automatically leads to the fulfillment of conditions of the type

Σ�i + Σ�j
�i + �j

≥ 0, i ≠ j. (A1)
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Finally, the convexity andmonotically increasing nature ofW () automatically satisfy the remaining type of conditions, namely

Σ�i − Σ�j
�i − �j

≥ 0, i ≠ j. (A2)

In order to see that, we will consider the case i = 1 and j = 2, for the three-dimensional case. Symmetry of W ∶ ℝ3 → ℝ,
W = W (�1, �2, �3), entailed by the underlying isotropy of the material, requires that

W (a, b, c) = W (b, a, c); W (a, b, c) = W (c, b, a); W (a, b, c) = W (a, c, b), (A3)

where it is implicitly stated that

W (a, b, c) = W (�1, �2, �2)||�1=a,�2=b,�3=c (A4)

Furthermore, symmetry ofW (�1, �2) has also implications on its first partial derivatives, as the following result also holds
)W (a, b, c)

)�1
=
)W (b, a, c)

)�2
;

)W (a, b, c)
)�1

=
)W (c, b, a)

)�3
;

)W (a, b, c)
)�2

=
)W (a, c, b)

)�3
(A5)

where it is implicitly stated that
)W (a, b, c)

)�1
=
)W (�1, �2, �3)

)�1

|

|

|

|�1=a,�2=b,�3=c
(A6)

Notice that any of the equalities A5 can be easily proven from the definition of partial derivative. For brevity, we only show A5a
)W (a, b, c)

)�1
= lim

ℎ→0

W (a + ℎ, b, c) −W (a, b, c)
ℎ

= lim
ℎ→0

W (b, a + b, c) −W (b, a, c)
ℎ

=
)W (b, a, c)

)�2
(A7)

The inequality associated definition of convexity in equation 43 also holds whenever it is divided by a positive number. For
convenience, we chose (a − b)2, i.e.

(

(W (1) − (W (2)
)

⋅
(

1 −2
)

(a − b)2
≥ 0 (A8)

Taking1 = (a, b, c) and2 = (b, a, c) into (A8) yields

(

(W (1) − (W (2)
)

⋅
(

1 −2
)

(a − b)2
=

(

)W (a,b,c)
)�1

− )W (b,a,c)
)�1

− )W (a,b,c)
)�2

+ )W (b,a,c)
)�2

)

a − b
≥ 0 (A9)

Use of the symmetry condition in A5 into the second and fourth terms on the right hand side of equation A9, enables to
equivalently re-write A9 as

(

(W (1) − (W (2)
)

⋅
(

1 −2
)

(a − b)2
=

(

)W (a,b,c)
)�1

− )W (a,b,c)
)�2

− )W (a,b,c)
)�2

+ )W (a,b,c)
)�1

)

a − b
= 2

(

)W (a,b,c)
)�1

− )W (a,b,c)
)�2

)

a − b
≥ 0
(A10)

As a result, since above equation A10 is satisfied ∀a, b, c ∈ ℝ, we can finally conclude that
(

)W (�1,�2,�3)
)�1

− )W (�1,�2,�3)
)�2

)

�1 − �2
≥ 0⇒

Σ�1 − Σ�2
�1 − �2

≥ 0.
(A11)

B ANALYTIC EIGENSYSTEM OF REAL SYMMETRIC 3 × 3 SYSTEM

The analytic eigensystem of Hessian HW for the 2-dimensional case was presented in Eqns. 60-61. Given its real symmetric
nature, the eigensystem of HessianHW can also be obtained in closed-form in 3-dimensions. More specifically, rewritingHW
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in the form

HW =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

)2W
)�1)�1

)2W
)�1)�2

)2W
)�1)�3

)2W
)�2)�2

)2W
)�2)�3

sym )2W
)�3)�3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

a d f
b e

sym c

⎤

⎥

⎥

⎦

(B12)

The eigenvalues can be computed as (c.f. Deledalle et. al.58)

�̄HW
1 = a + b + c − 2

√

x1cos(
�
3
),

�̄HW
2 = a + b + c + 2

√

x1cos(
� − �
3

),

�̄HW
3 = a + b + c + 2

√

x1cos(
� + �
3

),

(B13a)

(B13b)

(B13c)

where � is given by

� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

atan

(

√

4x31−x
2
2

x2

)

if x2 > 0

�
2

if x2 = 0

atan

(

√

4x31−x
2
2

x2

)

+ � if x2 < 0

(B14)

where

x1 = a2 + b2 + c2 + 3(d2 + e2 + f 2) − ab − ac − bc, (B15a)
x2 = −(2a − b − c)(2b − a − c)(2c − a − b) + 9

(

(2a − b − c)e2 + (2b − a − c)f 2 + (2c − a − b)d2
)

− 54def . (B15b)

The eigenvectors are given by

e1 = [
�̄HW
1 − c − em1

f
, m1, 1]Tn , e2 = [

�̄HW
2 − c − em2

f
, m2, 1]Tn , e3 = [

�̄HW
3 − c − em3

f
, m3, 1]Tn , (B16)

where

m1 =
d(c − �̄HW

1 ) − ef

f (b − �̄HW
1 ) − de

, m2 =
d(c − �̄HW

2 ) − ef

f (b − �̄HW
2 ) − de

, m3 =
d(c − �̄HW

3 ) − ef

f (b − �̄HW
3 ) − de

. (B17)
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2D Eigensystem
from sympy import *

def GetFirstPiolaAndTangentsEigenSystemSymbolically(W):
""" Given energy W expressed in terms of singular values
of F: (l1 , l2) returns principal components of first
Piola -Kirchhoff and analytic eigenvalues of initial
stiffness and Hessian operators """

# ------------------------------------------------#
# First Piola -Kirchhoff stress tensor [P = U * sigmaP * V^T]
sigmaP = zeros (2,1)
sigmaP [0] = diff(W, l1)
sigmaP [1] = diff(W, l2)
# ------------------------------------------------#

# ------------------------------------------------#
# Initial stiffness eigenvalues
lambdasIS = zeros (2,1)
lambdasIS [0] = (diff(W, l1) - diff(W, l2)) / (l1 - l2)
lambdasIS [1] = (diff(W, l1) + diff(W, l2)) / (l1 + l2)
# ------------------------------------------------#

# ------------------------------------------------#
# Hessian matrix
Hw = zeros (2,2)

Hw[0,0] = diff(W, l1 , 2)
Hw[1,1] = diff(W, l2 , 2)

Hw[0,1] = diff(diff(W, l1), l2)

Hw[1,0] = Hw[0,1]

# Get its eigenvalues
lambdasHw = Hw.eigenvals ().items ()
# ------------------------------------------------#

return sigmaP , lambdasIS , lambdasHw

3D Eigensystem
from sympy import *

def GetFirstPiolaAndTangentsEigenSystemSymbolically(W):
""" Given energy W expressed in terms of singular values
of F: (l1 , l2 , l3) returns principal components of first
Piola - Kirchhoff and analytic eigenvalues of initial
stiffness and Hessian operators """

# ------------------------------------------------#
# First Piola -Kirchhoff stress tensor [P = U * sigmaP * V^T]
sigmaP = zeros (3,1)
sigmaP [0] = diff(W, l1)
sigmaP [1] = diff(W, l2)
sigmaP [2] = diff(W, l3)
# ------------------------------------------------#

# ------------------------------------------------#
# Initial stiffness eigenvalues
lambdasIS = zeros (6,1)
lambdasIS [0] = (diff(W, l2) - diff(W, l3)) / (l2 - l3)
lambdasIS [1] = (diff(W, l1) - diff(W, l3)) / (l1 - l3)
lambdasIS [2] = (diff(W, l1) - diff(W, l2)) / (l1 - l2)
lambdasIS [3] = (diff(W, l2) + diff(W, l3)) / (l2 + l3)
lambdasIS [4] = (diff(W, l1) + diff(W, l3)) / (l1 + l3)
lambdasIS [5] = (diff(W, l1) + diff(W, l2)) / (l1 + l2)
# ------------------------------------------------#

# ------------------------------------------------#
# Hessian matrix
Hw = zeros (3,3)

Hw[0,0] = diff(W, l1 , 2)
Hw[1,1] = diff(W, l2 , 2)
Hw[2,2] = diff(W, l3 , 2)

Hw[0,1] = diff(diff(W, l1), l2)
Hw[0,2] = diff(diff(W, l1), l3)
Hw[1,2] = diff(diff(W, l2), l3)

Hw[1,0] = Hw[0,1]
Hw[2,0] = Hw[0,2]
Hw[2,1] = Hw[1,2]

# Get its eigenvalues
lambdasHw = Hw.eigenvals ().items()
# ------------------------------------------------#

return sigmaP , lambdasIS , lambdasHw

FIGURE B1 Symbolic code for obtaining Piola-Kirchhoff and eigensystem of tangent operators in 2D and 3D.
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