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Abstract

The work presented in this thesis deals with three fundamental issues pertaining to the com-
putational modelling of coupled electromechanical systems. Firstly, the problem of accurate
geometrical representation is considered. An approach to accurately represent the geometry
in standard high order finite elements is presented. To this end, the problem of generating
curvilinear meshes which are required for high order finite element analysis is undertaken. As
a matter of consequence, a curvilinear high order mesh generator for high order finite elements
is developed using a metric controlled polyconvex mechanics analogy and using the finite ele-
ment itself. The use of polyconvex elasticity to deform meshes with planar faces to curve faces
seems to provide good quality high order volume meshes due to the fact that the fundamental
distortion measures of deformation are already encoded in the definition of polyconvex elastic
material model. The convergence properties of the finite element scheme on these meshes is
shown to be dependent on these fundamental metrics, namely the edge distortion metric, face
distortion metric and volume distortion metric. A series of h and p convergence studies have
been carried out for Poisson type problems, elasticity problems and electro-elasticity prob-
lems on these meshes using different continuum mechanics analogies, different polyconvex and
non-polyconvex material models with isotropic, anisotropic and boundary layer meshes. The
scalability of the platform is shown through the generation of high order curved computational
meshes with millions of nodes.

Putting the technique into practice, the second part of the thesis deals with the development
of a curvilinear finite element technique for four classes of coupling in electromechanics. The
first class is the large deformation - large electric field electromechanics, typically suitable for
modelling massive deformations observed in Electro-Active Polymers (EAPs) and in particular
Dielectric Elastomers (DEs). The recently developed convex multi-variable electro-elasticity
is employed to model the large deformation characteristics of DEs and through exhaustive
numerical simulations, massive deformations, instabilities in the form wrinkling, snap-through
and pull-in instabilities are shown to be captured extremely well using the curvilinear high
order displacement potential technique for convex multi-variable electro-elasticity.

The second class of electromechanics discussed is linearised electrostriction with nonlinear
electrostatic response. The point of departure for modelling linearised electrostriction once
again lies in the convex multi-variable energies which are consistently linearised and particu-
larised for the case of small strains. A staggered scheme is developed to solve the nonlinear
equations of electrostatics which is then coupled incrementally (non-iteratively) with the equa-
tions of elasticity providing significantly superior performance to the fully monolithic approach.
Through numerical examples it is shown that the method is capable of capturing excessively
large displacements as long as the strains remain small. Once again the curvilinear high order
finite element scheme is utilised for this staggered approach.

The third class of electromechanics discussed is the most well established linear piezoelec-
tricity. Due to the physical applications of this class in simplified settings and structurally
reduced models a new variational and computational framework is introduced for the analy-
sis of three dimensional linear piezoelectric beams using hp-finite elements. The framework
is suitable for static, modal and dynamic scenarios; it is not restricted to either actuation
or energy harvesting applications and, moreover, it can cope with any anisotropy or electric
polarisation orientation. Derived from first principles, namely the fundamental equations of
continuum piezoelectricity, a new set of beam balance equations is presented based on a Tay-
lor series expansion for the displacement and electric potential across the cross section of the
beam. The coupled nature of the piezoelectric phenomenon at a beam level arises via a series
of mechanical (and electrical counterparts) stress and strain cross sectional area resultants.
To benchmark the numerical algorithm, and in order to aid prospective researchers, a new
closed-form solution is presented for the case of cantilever type systems subjected to end tip
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mechanical/electrical loads. Finally, some numerical aspects of the hp-discretisation are inves-
tigated including the exponential convergence of the hp-refinements and the consideration of
linear or quadratic electric potential expansions across the cross section of the beam.

Immediately following the linear piezoelectricity is the fourth class of electromechanics
based on size dependent linear piezoelectricity or better known as flexoelectricity. Once again,
an effort is made to develop a family of numerical models for the phenomenological linear flex-
oelectric theory for continua and their particularisation to the case of three-dimensional beams
based on a skew-symmetric couple stress theory is presented. In contrast to the traditional
flexoelectric models which assume coupling between electric polarisation and strain gradients,
we postulate an electric enthalpy in terms of linear invariants of curvature and electric field.
This is achieved by introducing the axial curvature vector as a strain gradient measure. The
implication of this assumption is many-fold. Firstly, for isotropic (non-piezoelectric) materials
it allows constructing flexoelectric energies without breaking material symmetry. Secondly,
nonuniform distribution of volumetric part of strains (volumetric strain gradients) do not gen-
erate electric polarisation, as confirmed by experimental evidence to be the case for some
important classes of flexoelectric materials. Thirdly, a state of plane strain generates out of
plane deformation through strain gradient effects. Finally, extension and shear coupling modes
cannot be characterised individually as they contribute to the generation of electric polari-
sation as a whole. Four distinct variational principles are presented for both continuum and
beam models namely, a displacement-potential formulation, a penalty formulation, a Lagrange-
multiplier formulation and an augmented Lagrangian formulation. The three later formulations
facilitate incorporation of strain gradient measures in to a standard finite element scheme while
maintaining the C0 continuity. The efficacy of high order finite elements along with the compu-
tational efficiency of mixed finite elements are utilised to develop a series of low and high order
mixed finite element schemes for couple stress based flexoelectricity. Numerical results of finite
element discretisations for the three latter variational formulations are benchmarked against
available closed form solutions in regards to electromechanical coupling efficiency. A detailed
comparison of the developed couple stress based flexoelectric model with the standard strain
gradient flexoelectric models is performed for the case of Barium Titanate where a myriad of
simple analytical solutions are proposed in order to quantitatively describe the similarities and
dissimilarities in effective electromechanical coupling under these two theories. It is observed
that, if the same experimental flexoelectric constants are fitted in to both theories, the current
couple stress theory in general, reports stronger electromechanical conversion efficiency. Fi-
nally, nanocompression of a complex flexoelectric conical pyramid for which analytical solution
cannot be established is numerically studied at an unprecedented level of detail to pinpoint the
robustness and advanced computational scalability of the framework.

The final and third part of the thesis deals with the high performance implementation
of electromechanics using a generic domain-aware tensor contraction framework. In order to
have a unified base for developing high performance kernels for all classes of electromechanics
discussed, a new high performance tensor contraction framework for the numerical analysis
of coupled electromechanics on streaming architectures is presented. In addition to explicit
SIMD instructions and smart expression templates, the framework introduces domain specific
constructs for the tensor cross product and its associated algebra. The two key ingredients
of the presented expression template engine are as follows. First, the capability to math-
ematically transform complex chains of operations to simpler equivalent expressions, while
potentially avoiding routes with higher levels of computational complexity and, second, to per-
form a compile time depth-first or breadth-first search to find the optimal contraction indices
of a large tensor network in order to minimise the number of floating point operations. For
optimisations of tensor contraction such as loop transformation, loop fusion and data locality
optimisations, the framework relies heavily on compile time technologies rather than source-
to-source translation or JIT techniques. Every aspect of the framework is examined through
relevant performance benchmarks, including the impact of data parallelism on the performance
of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in
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the evaluation of tensor networks, the compilation cost and memory footprint of the frame-
work and the performance of tensor cross product kernels. The framework is then applied to
finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved
in kernel-based numerical integration of complex electro-elastic energy functionals. In this
context, domain-aware expression templates combined with SIMD instructions are shown to
provide a significant speed-up over the classical low-level style programming techniques.
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Chapter 1

Introductory Remarks

1.1 Prelude

The industrial demand for real-world simulations of complex multi-physics problems poses a
many-fold challenge to the field of computational mechanics. In particular, aligned with the
theme of the work presented here, is computational modelling of coupled electro-mechanical
systems. The many-fold nature of this challenge, pertaining to the modelling of real-world
electro-mechanical devices, can be associated with the shortcomings and/or lack of robust-
ness of mathematical models and computational tools to redress the underlying problems. As
compared to the field of fluid dynamics and fluid-structure interaction, little research has gone
into investigation of electromechanical couplings and in particular the different approaches that
would be applicable for different electromechanical systems. As will be discussed in depth later,
redressing these problems mandate revisiting the mathematical formulations, modernising the
computational tools to harness the compute power of ever-growing microprocessor architectures
and most importantly developing novel computational methodologies to tackle those aspects
that had never been considered before. To set the scene, from a computational point of view,
the pertaining problems can be categorised into three fields, namely

1. Accurate geometrical representation in computational modelling/numerical simu-
lations.

2. Tailor-made computational techniques for different levels of coupling in electrome-
chanics such as one-way/two-way couplings, staggered schemes, monolithic ap-
proaches, coupling in structurally reduced models and so on.

3. High performance kernels to solve the aforementioned problems within a reasonable
time.

1.2 State of the Art & Scope

The thesis attempts to redress all the three aforementioned issues pertaining to the modelling
of coupled and multi-physics problems, in particular, electromechanical coupling, by first start-
ing with the problem of curvilinear mesh generation for high order accurate finite elements.
This process, as will be discussed later, attempts to bridge the gap between finite elements
and computer aided design (CAD) in a unique way making it possible to employ standard
high order finite element techniques on curvilinear meshes. This is then accompanied by devel-
oping a comprehensive computational technique for four different classes of electromechanics,
namely nonlinear convex multi-variable electroelasticity, geometrically linearised electrostric-
tion, linear piezoelectricity and linear flexo (size-dependent piezo)-electricity. A high order
curvilinear finite element method is developed to tackle the discretisation of the variational
forms of the governing equations of all the aforementioned four classes of electromechanics.
Finally, the efficiency in terms of computational implementation is considered and a high per-
formant domain-aware tensor contraction framework is developed to implement the high order

2
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curvilinear finite element formulations. The tensor contraction engine in particular, attempts
to be cross-platform and applicable for CPUs and GPUs and streaming architectures alike. In
the next few sections, we will discuss the state of the art pertaining to each of these three
components of the thesis.

1.3 Accurate geometry representation in computational me-
chanics

In recent years, many computational methods have emerged to tackle numerical simulations
with curvilinear geometries and been hoped to integrate CAD and finite element analysis
and design. In particular, subdivision surfaces [50, 51], isogeometric analysis [129], T-Splines
[20] and NURBS-enhanced finite element method [274], have gained considerable traction in
the community. All the aforementioned techniques try to embed finite element analysis into
standard computer aided design by exactly representing the geometry and augmenting or re-
designing the finite element functional spaces. These techniques despite having revolutionised
the computational analysis and design cycle, are still in infancy compared to the standard high
order finite element method. One of the reasons hindering their progress is certainly in the
generation of appropriate meshes necessary for numerical simulation due to the fact that some
of the aforementioned techniques make it even harder to prepare computational meshes. In
essence, they inevitably extend the issues of surface mesh generation to the enclosed volume.

The first part of this thesis aims to target the problem of curvilinear mesh generation.
These curvilinear meshes can be either embedded into one of the aforementioned finite element
technologies such as the NURBS-enhanced method [277] for exact CAD conforming geometrical
representation or used as stand-alone meshes for standard finite element analysis leading to
high order curvilinear finite element technique with accurate geometry representation. The
curvilinear finite element framework discussed later on in this thesis is based on the latter
approach.

The performance of high-order discretisation methods for the simulation of various prob-
lems in science and engineering has been the object of intensive research during the last two
decades [285, 149, 123, 165]. These methods have the potential to offer an increased level
of accuracy with a reduced number of degrees of freedom and, more importantly, a reduced
computational cost [63, 275, 128].

The potential of high-order unstructured methods has been intensively studied by the com-
putational fluid dynamics (CFD) community in the last decade due to their inherent ability to
accurately predict the behaviour of complex high Reynolds number flows [185, 172, 320, 132].
It is also well known that low-order methods are highly dissipative and extremely refined
meshes are required to properly resolve the propagation of vortices over long distances. The
advantages of high-order methods have also attracted the attention of researchers working in
wave propagation problems (e.g. acoustics and electromagnetics) due to their low dispersion
and dissipation compared to low-order methods [122, 8, 184, 176, 276, 23]. In particular, the
high-order discontinuous Galerkin method has become popular in this area due to its ability
to propagate waves over long periods of time with a reduced computational cost compared to
alternative low-order methods [53, 146, 45, 140, 159].

The use of curved elements is nowadays accepted to be crucial in order to fully exploit the
advantages of high-order discretisation methods [76, 18, 186, 329, 164, 274, 303, 273], but until
relatively recently, the challenge of automatically generating high-order curvilinear meshes
has been an obstacle for the widespread application of high-order methods [317]. Methods
to produce high-order curvilinear meshes are traditionally classified into direct methods and a
posteriori methods [74, 75]. Direct methods build the curvilinear high-order mesh directly from
the CAD boundary representation of the domain whereas a posteriori approaches rely on mature
low-order mesh generation algorithms to produce an initial mesh that is subsequently curved
using different techniques, such as local modification of geometric entities [74, 75, 281, 187, 280],
solid mechanics analogies [242, 328] or optimisation [304, 100].
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Within the category of a posteriori approaches, the solid mechanics analogy first proposed
in [242] has become increasingly popular. The main idea is to consider the initial, low-order,
mesh as the undeformed configuration of an elastic solid. High-order nodal distributions are
then inserted into all of the elements and then the nodes over element edges/faces in contact
with the curved parts of the boundary are projected onto the true CAD boundary. The
displacement required to move the nodes onto the true boundary is interpreted as an essential
boundary condition within the solid mechanics analogy. The solution of the elastic problem
provides the desired curvilinear mesh as the deformed configuration, as shown in Figure 1.1.

(a) (b)

(c) (d)

Figure 1.1: Generation of quality curvilinear meshes from CAD description a) A watertight
CAD model for part of a turbine assembly, b) curvilinear tri-quadratic q “ 2 fully unstructured
hexahedral mesh of the component, c) A watertight CAD model of human head and d) p “ 3
curvilinear unstructured tetrahedral mesh of the human head

The optimality of the standard finite element methods in terms of the h and p convergence
properties is closely related to the fundamental quality measures quantifying the distortion of
curvilinear meshes, namely, edge distortion, face distortion and volume distortion qualities. In
this work, we employ a nonlinear polyconvex elasticity technique for generating curved meshes
to control the quality of the generated meshes through these fundamental metrics. As will be
discussed later, this technique for generating curvilinear meshes will become the driving force for
our later developments on high order curvilinear finite elements for coupled electromechanics.
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1.4 Novel computational techniques for different classes of elec-
tromechanics

The advancements in smart materials over the last few decades have shown a tremendous poten-
tial for the application electro-active, electrostrictive, piezoelectric and flexoelectric materials.
Each of these material exhibit remarkable yet unique potential for different applications, such
as unmanned aerial vehicle (UAV), self-charging batteries, artificial muscles, pattern forming,
optics and retina adaptive displays and soft robotics, to name but a few. All of the these four
classes of electromechanical material have been mathematically modelled in some shape or form
by different researchers over the last few years. However, the capability of a material to exhibit
the predicted experimental response is typically dictated by the level of sophistication of the
underlying mathematical model and as a result there exist numerous models in the literature
ranging from simplified models to high fidelity ones, some emphasising one characteristic and
some neglecting selected features.

The objective of this thesis is to study the aforementioned four classes of electromechanics
and develop new tailor-made computational technique for each of them. These four classes in
particular are

Studied Classes of Electromechanics

Nonlinear
Electroelasticity

Linearised
Electrostriction

Linear
Piezoelectricity

Linear
Flexoelectricity

Figure 1.2: The four classes of electromechanical coupling studied in this work

In the upcoming sections we will discuss the state of the art in numerical modelling of each
of these classes. In this process, we will also outline the contribution of the thesis and where
it fits amongst the current state of research undertaken in the field.

1.4.1 Class 1. Computational modelling of dielectric elastomers: State of
the art

Among the wide spectrum of smart materials, the first class of materials considered is the
Electro-Active Materials (EAPs). This heterogeneous group can be subsequently classified
into two main subgroups, namely Electronic Electro Active Polymers (EEAP) and Ionic Elec-
tro Active Polymers (IEAP). Within the first subgroup, Dielectric Elastomers (DEs) and elec-
trostrictive relaxor ferroelectric polymers or simply Piezoelectric Polymers (PP), have become
increasingly relevant. The second subgroup includes ionic gels, Ionic Polymer Metal Composites
(IPMC) and carbon nanotubes [113].

Typically, experiments and computational modelling of DEs have focussed on the large
deformation characteristics of these materials, due to the capability of DEs to undergo massive
deformation. For instance, Figure 1.3 shows large deformation and buckling characteristics of
a dielectric elastomer balloon. As a result, computational models in this regard are based on
large strain large electric field electromechanical formulations [78, 37, 113]. Recently, Gil and
Ortigosa [113, 233, 232] have shown that using the concept of convex multi-variable energies it is
possible to numerically model these materials while guaranteeing material stability throughout
the entire deformation and electric field regimes.
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Figure 1.3: Buckling of a dielectric elastomer balloon under electric loading, showing large
deformations and pre and post buckling states. Courtesy of [316]

From a computational implementation point of view, Vu and Steinmann [318, 319] have
devised a finite element implementation of the dielectric elastomers using linear hexahedral
finite elements based on a displacement potential formulation starting with the enthalpy energy.
Gil and Ortigosa on the other hand have developed a mixed Hu-Washizu variational and
computational framework for large deformation large electric field electromechanics based on
an extended convex multi-variable kinematics set [233] by starting from the internal energy. In
this thesis we follow the work of Gil and Ortigosa and describe the implementation of a high
order displacement potential formulation for convex multi-variable electromechanics.

1.4.2 Class 2. Computational modelling of linearised electrostriction: State
of the art

In an important intermediate class of electromechanics, the large deformation characteristics of
the system are neglected, whereas the nonlinearity still present in the material emanates from
the electrostriction of the material through the Maxwell (for vacuum V8) or Minkowski (for
material V ) stress tensors [89, 171, 241, 111]. A typical physical application of this approach
is in the computational design of MRI scanners [175, 14], as shown in Figure 1.4.

(a) (b)

Figure 1.4: a) An example of electrostrictive and magnetostrictive coupling arising in Magnetic
resonance imaging (MRI) [175, 14]; courtesy of Siemens Healthcare™and, b) A shear mode
drop-on-demand inkjet electrostrictive actuator; courtesy of Brünahl et. al. [36]

Theoretical aspects of these formulations were first introduced in Landau and Lifshitz [171].
The practical relevance of Maxwell stress tensor has led to a widespread utilisation of these for-
mulations for exploiting electrostriction and magnetostriction. Unfortunately, electrostrictive
models based on the utilisation of Minkowski stress tensor, in the generic case of anisotropy do
not satisfy material frame indifference (i.e. objectivity or invariance of the energy with respect
to rotations) of the electromechanical (total) stress tensor, due to the inherent non-symmetric
nature of the Minkowski stress. Several authors in the past have used ad-hoc solutions, such



1.4. COMPUTIONAL TECHNIQUES FOR ELECTROMECHANICS 7

as symmetrisation of the total stress tensor, or consideration of the conservation of angular
momentum in the formulation, as a remedy [241, 262]. Nevertheless, the extended electrome-
chanical Hessian still remains non-symmetric, which dictates the development of specialised
non-symmetric finite element frameworks. Recently, Bustamente [38] has shown that physically
admissible energy functionals can be constructed by choosing suitable constitutive restrictions
such that their linearisation yields objective Minkowski-type stresses.

In this thesis, a computational framework suitable for geometrically linearised large electric
field electromechanics is presented based on the consistent linearisation of the convex multi-
variable energies. A convex multi-variable strain energy description based on the works of Gil
and Ortigosa [113, 233, 232] is chosen for modelling electrostrction. Following Bustamente [38],
the thesis extends the framework developed by Gil and Ortigosa [113, 233] to the case of geo-
metrically linearised electrostriction, to redress the aforementioned inconsistencies for the class
of intermediate formulations. Importantly, all the aforementioned mathematical requirements
are imposed at a large deformation level to arrive at a physically admissible energy functional.
In this context, convex multi-variable energies typically expressed in terms of fundamental kine-
matic measures tF ,H, Ju are re-expressed in terms of a set of symmetric kinematics tC,G, Cu
to guarantee the objectivity of the energy functional. Linearisation with respect to geometrical
fields is then performed by perturbing the energy in the vicinity of the reference configura-
tion. Analogous to [254], this is achieved through a staggered scheme where the equations of
electrostatics are solved in a nonlinear fashion whereas the linearised mechanical equations are
updated incrementally.

1.4.3 Class 3. Computational modelling of linear piezoelectricity: State of
the art

The most common and well studied class of electromechanical materials are perhaps piezo-
electric materials. Piezoelectric materials are exploited mainly for two major applications:
actuation and sensing/energy harvesting. Energy harvesting implies induced electric polar-
isation as a result of mechanical straining (direct effect), whereas actuation implies induced
mechanical straining as a result of electric polarisation (reverse effect) [92]. Certainly, these two
phenomena can be viewed as unrelated, where different theoretical and numerical approaches
can be employed. For instance, models of piezoelectric actuators have been devised with only
mechanical degrees of freedom [334, 22, 9] and models of energy harvesters have been developed
with more emphasis on electrical unknowns or, essentially, the final power output [92, 90, 80].

Figure 1.5: Piezoresponse force microscopy experiment on fascia. a) sample topography, 5 µm
scan, (b) topography, zoom of (a), and (c) piezoresponse image [of the same area as in (b)]
showing the orientation of the piezoelectric tensor. The piezoelectric response in fascia has
either a positive (white) or negative (dark) value. Courtesy of Rivard et. al. [263]

Some approaches can be found in the literature in the form of simplified single degree of
freedom systems or two-dimensional beams, which are often referred to as lumped parameter
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and distributed parameter models, respectively [92, 80, 307, 308, 2, 7]. In the lumped parameter
model, the piezoelectric device is constructed via a mass-spring-damper system coupled with
a capacitor and a resistor [264, 80, 297]. However, this simplified model lacks some important
aspects of the coupled physical system, such as the consideration of high dynamic modes,
an accurate distribution of the strain field and the effects of the former two into the overall
electrical response [92]. The distributed parameter model, on the other hand, is based upon
Euler-Bernoulli beam theory, neglecting rotation of the cross section with respect to the beam
axis, possible shear deformation and rotational inertia [91, 90]. A review on the finite element
modelling of piezoelectric beams is provided in [21] and a survey of energy harvesters with
piezoelectric materials is reported in [13, 92].

One of the main simplifying assumptions in almost all of these approaches is that of van-
ishing electric field in certain directions, depending on the orientation of polarisation [80, 22,
307, 308, 9, 2]. In piezoelectric beam literature, these are normally referred to as different
modes of coupling and are denoted by dij , i, j “ 1 . . . 6 where d is the piezoelectric coupling
parameter and the subscripts i and j indicate the poling direction and applied stress direction
(in Voigt notation), respectively [157], with i “ 3 or j “ 3 representing the axial direction. In
this setting, the two most common coupling mechanisms [334, 22, 9] are the d31 mode (shear
actuation), which implies a coupling between the transverse electric field and axial strain and
the d33 mode (extension actuation), which stands for coupling between the axial electric field
and axial strain [80], with other coupling field mechanisms normally assumed to be zero.

On the mathematical modelling front, Benjeddou [22] attempts to build a unified two-
dimensional (planar) beam finite element model for extension and shear actuation mechanisms.
Tabesh [297] attempts to solve the problem of energy harvesting piezoelectric planar beams
by employing Euler-Bernoulli theory with quadratic electric potential distribution across the
height of the beam. As stated in [297, 249], a linear electric potential assumption is not
sufficient to describe the electrostatics of the model as it violates Gauss’s law, although many
conventional models in the literature rely on this assumption [9, 80, 121].

Available literature on the numerical modelling of three-dimensional piezoelectric beams
is scarce, specifically in the context of energy harvesting. Whilst a two-dimensional approach
is sufficient for bending dominated energy harvesters, it is not satisfactory for capturing ac-
curately piezoelectric (anisotropic) behaviour. Indeed, energy harvesters undergoing coupled
bending-torsion [2] require a three-dimensional description. Moreover, there are actuators
specifically designed to function in torsional modes such as helical springs [239, 39], for which
two-dimensional descriptions cannot be used.

Wagner and co-workers [39, 153, 152] introduce a sophisticated
three-dimensional beam finite element model with linear and nonlinear strain measures, in-
cluding hysteresis, using a six field variational formulation and assuming a quadratic electric
potential distribution across the cross sectional area. The work is restricted to static anal-
ysis only and requires a preprocessing stage to compute the warping patterns by solving a
two-dimensional boundary value problem, using a separate finite element discretisation.

Another three-dimensional finite element formulation for piezoelectric beams is reported
by Touratier [98]. Touratier’s formulation is based on higher order shear deformation theory
and trigonometric expansion of the displacement field, where for C1 continuity, a mixture of
Hermite, quadratic and linear shape functions are utilised. A similar technique is also followed
to incorporate the warping functions in the beam model. As a result, each beam finite element
has three nodes along the length with 27 electrical degrees of freedom and 21 mechanical
degrees of freedom. The work is restricted to static analysis and hence cannot be used for
energy harvesting. Along the same lines, Koutsawa [160] attempts to solve the problem of
static piezoelectric beams by using higher order displacement theories for beams.

In this thesis, by starting from the fundamental equations of continuum piezoelectricity, a
unified static and dynamic computational framework is presented for three-dimensional piezo-
electric beams, focussing on small strain theory (small electric fields). Mathematically, many
of the well-established piezoelectric actuator models in the literature [9, 334, 22, 166] can be
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regarded as special cases which sit within this unified formulation. The merit of approach-
ing the problem in this fashion is that the strengths and limitations of the formulation can
be easily identified for both actuators and energy harvesters applications, without placing
a distinction upon one or the other. We present a simple three-dimensional finite element
computational framework for linear piezoelectric beams, derived from first principles, in or-
der to bridge the gap between existing simplified lumped or distributed parameter models
[92, 80, 307, 308, 2, 264, 297] and the most sophisticated nonlinear warping beam models
[39, 153, 152, 98, 160]. In the process, interesting new physical magnitudes, such as the coupled
shear or the coupled bending/torsional moment introduced as a result of an electric displace-
ment, will naturally arise.

The linearised kinematics of the beam follows the first order shear deformation theory of
Timoshenko and the electric potential field is assumed to vary quadratically across the height
and thickness of the beam section. The electric potential distribution is expanded in terms of
the electric potential, its gradient and its Hessian, all being evaluated at the centre of mass
of the cross section (i.e. second order Taylor expansion about the centre of mass). Following
[126, 131], the postulated beam kinematics and electric field distribution are embedded into the
variational form of the continuum piezoelectric problem. Standard beam integration across the
cross sectional area can then be carried out to yield a set of partial differential equations (e.g.
time and beam axis as independent variables) that are expressed in terms of stress and electric
displacement beam resultants (e.g. shear force and moments). Crucially, a consistent use of
anisotropic elastic, piezoelectric and dielectric constitutive tensors, enables strains and electric
fields to be coupled in all three spatial directions, with no preference to a specific orientation.

Typically, piezoelectric materials are deposited either on one side (unimorph) or both sides
(bimorph) of a substrate. The substrate is a non-electroactive platform which does not con-
tribute to the electric output and merely serves as a mechanical supporting platform [92]. This
can pose difficulties for integration of piezoelectric films with other microelectronic devices.
Recently, there have been experimental reports on thick free-standing piezoelectric beams for
energy harvesting [156, 155, 135, 158]. These are piezoelectric films which stand on their own,
do not use a supporting platform and hence, offer the advantage of minimising the movement
constraints on them, thereby maximising output power for energy harvesting [157]. Their thick
electroactive layer make them a suitable candidate for models such as the one described in this
thesis.

From the spatial discretisation standpoint, locking effects are eliminated through the use of
higher order as well as hierarchical basis functions [295, 47, 111]. The resulting hp-finite element
discretisation has eleven degrees of freedom per node 1 in three-dimensions and five degrees
of freedom per node in two-dimensions, namely displacements, rotations, electric potential,
gradient of electric potential and Hessian of electric potential. The computational framework is
valid for static, modal and dynamic scenarios, the latter being of interest for energy harvesting.
The set of resulting partial differential equations have also been solved analytically with the
purpose of obtaining closed-form solutions, which, to the best of the authors’ knowledge, are
presented here for the first time and are suitable for the benchmarking of the finite element
computational framework.

1.4.4 Class 4. Computational modelling of linear flexoelectricity: State of
the art

Modelling linear piezoelectricity for actuation and energy harvesting purposes using the classical
continuum mechanics theory is now well established in the literature, [92, 80, 307, 308, 269, 250].
It is well known, that for a material to exhibit electric polarisation in the presence of mechanical
strain (direct piezoelectric effect), it needs to have a noncentrosymmetric crystal structure,
[325]. Recently, there has been a considerable research on producing piezoelectric effects from

1Strictly speaking, for hierarchical basis functions, the degrees of freedom are not associated with nodes but,
instead, with polynomial coefficients.
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centrosymmetric (non-piezoelectric) materials, for instance, from perovskite ferroelectrics [337,
338] and even graphene nano-shells and biological membranes, [79, 244, 200, 147, 201, 333, 73].
To generate polarisation in centrosymmetric materials, the inversion symmetry of the material
needs to be broken and this becomes achievable through the application of non-uniform strains
(strain gradients). Theoretical and experimental evidence of this size-dependent phenomenon
which is also termed “flexoelectricity” has been reported in [298, 190, 191, 41, 193, 337, 279, 278,
107, 163] for other classes of centrosymmetric cubic and isotropic materials; see [298, 332] for a
historical review. As discussed in [332] a crystalline material of any symmetry can be capable
of producing electric polarisation under a nonuniform strain field or simply in the presence
of strain gradient. The effective flexoelectric coefficients are certainly orders of magnitude
smaller (in the range of µC/m, [190]) compared to their piezoelectric counterparts, however for
nano-electromechanical systems where the device and material length scales are comparable,
gradient of strain can have appreciable effects, [72, 141]. As depicted in Figure 1.6, Briscoe et.
al. [35] has recently shown the potential of these material in nano energy harvesting from a
purely experimentation point of view.

Figure 1.6: A graphical abstract of harvesting energy at the nano level. Electrospun PZT/PVP
nanowires (second right from top), SEM micrographs of ZnO nanosheets (second left from
bottom), (K,Na)NbO3 nanorods grown hydrothermally on SrRuO3/SrTiO3 substrate (top left-
most and bottom right-most), and multiple circuit diagram and loading conditions. Courtesy
of [35]

From a generalised continuum mechanics point of view (c.f. [89] for related terminologies),
flexoelectricity is considered as a higher order gradient theory where size effects are accounted
for in a phenomenological sense. The study of higher order gradient theories and generalised
continua dates back to the seminal work of [55] which was later revisited by [215, 211, 212,
213, 214], [305, 306, 83, 86, 85, 87, 88, 89, 82] among others. In general, the fundamental
kinematic assumption of these theories is in considering every material particle in the continuum
to be equipped with a substructure (micro-continuum). Different models of strain gradient
theory assume different kinematics, [83, 305, 306, 170, 330]. The micropolar continuum is one
particular member of this class in which every micro-continuum is treated as a rigid body
equipped with a rotational field emanating from the microstructure and termed as micro-
rotation “triédre mobile”, [55]. Since micro-rotations of discrete particles can not be considered
continuous inside the matter, a different model of gradient theories called the couple stress
theory considers macro-rotation “triédre caché” as a true continuum kinematical measure in
order to study size effects, [215, 305, 154, 330, 237]. The couple stress model can be considered
as a constrained theory of the micropolar continuum, [306, 225, 227].

Generalisation of standard continuum in the case of couple stress theory is based on the
following concepts: i) the deformation of substructure is measured based on a field of proper
orthogonal rotations in the configurational space of the continuum and, ii) an additional kine-
matic measure related to the gradient of this rotation (curvature) is included to the set of
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thermodynamic state variables, [282, 290, 291, 224, 19]. Consequently, the work-conjugate to
the curvature tensor, called the couple-stress enters the boundary value problem and in general
the balance of angular momentum does not vanish.

State of the art flexoelectric models are however based on classical strain gradient theories
of [212, 214, 86, 85, 306] where gradients of strain and electric field explicitly appear in the
electric enthalpy of the system. As a result, a third order stress tensor (hyper stress) and a
second order electric displacement tensor enter the boundary value problem, see [200, 201, 4,
3, 70]. In order to close this system, the Gauss’s law needs to be modified to facilitate balance
equation for the newly arisen high order tensorial quantities. For instance, the models used
in [200, 195, 196, 279, 107, 4, 201, 199] are all based on this approach. Certainly, this is a
deviation from the true solution of the Maxwell equations. Whether, micropolar, couple stress
or in general, formulations based on curvature energy have an advantage over classical strain
gradient theories, is yet to be established [44, 117].

Historically, flexoelectricity has been mainly studied in the context of beams. In fact, this
is also reflected in the experimental set-ups for determining effective transverse flexoelectric
coefficients (the bending piezoelectricity test), for example, in the works of [299, 97, 190, 191,
192, 193]. From the perspective of structural mechanics, amongst the many gradient theories,
the couple stress theory has evolved as a competitive technique to model size effects in beams
and plates [236, 237, 189, 258, 259, 288, 309]. The most successful implementation of couple
stress theory for beams is based on the modified couple stress theory proposed by [330]. The
modified couple stress theory assumes that the moment of couples vanishes and as a result the
underlying curvature tensor is symmetric (and deviatoric) and work conjugate to a deviatoric
couple stress. For isotropic materials, this scenario yields only one material length scale (since
the spherical part of the curvature energy vanishes) which is a practically desirable feature in
the analysis of micro and nanobeams. In [136] sense, this model corresponds to the weakest
curvature energy allowable in linear Cosserat continuum.

Three competitive variants of the couple stress model can be considered to study flexoelec-
tricity. The modified couple stress model of [330], the skew-symmetric couple stress model of
[118] and the conformally invariant model of [109]. As it will be shown later, in the model
of [330] the rotational kinematic measure namely, the symmetric deviatoric curvature tensor
still contains diagonal terms that contribute to uniform contraction of the cross-section and
torsional rigidity of the beam, although energetically (this curvature tensor is work-conjugate
to the deviatoric couple stress) they are never activated. This effect has been mainly ignored
in subsequent formulations of the modified couple stress theory for beam models, for instance
in [236, 237, 189, 258, 259]. For classical beam models, it is certainly desirable to choose
a kinematic measure that excludes cross-sectional terms. The skew-symmetric [118] and the
conformal [109] couple stress models specifically preclude such terms in the curvature tensor
and are more suited for the particularisation of couple stress to the case of beams. Among the
two, the skew-symmetric couple stress model can be easily extended to the case of isotropic
flexoelectricity, as the skew-symmetric nature of the curvature tensor (i.e. the axial curvature
vector) makes it an ideal candidate for constructing linear invariants in conjunction with the
electric field without breaking material symmetry.

For the case of beams, no particular assumption is made on the direction of anisotropy
or electric polarisation and a consistent second order interpolation of the electric field across
the cross section is utisilised. Furthermore, as strain gradient theories in general lead to high
continuity requirements in the choice of functional spaces (for a material of grade N , CN con-
tinuity is required [see [305]]) for finite element discretisation, by relying on mixed variational
formulations this requirement is relaxed and standard C0 continuous interpolation functions
are utilised for finite element discretisation, leading to an extremely efficient computational
implementation.
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1.5 High Performance Computation

The third part of this work deals with a high performance implementation of the computational
methodologies developed for the four classes of electromechanics. The building block of this
work has been the development a single domain-aware tensor contraction framework that is
capable of transforming and mapping tensorial operations arising in high order finite element
development of coupled electromechanics to low level machine instructions. Tensor contraction,
which in its essence refers to operations involving natural pairing of tensors in finite dimensional
vector spaces are archetypal of quantum and classical mechanics. It is well known that, efficient
implementation of tensor contraction of tensor networks involving sum of multiple indices is
a NP-hard problem [46, 260, 52, 54, 245, 93]. Current adopted methodologies typically rely
either on graph optimisation techniques to find optimal contraction indices, such as depth-first
[46, 54], breadth-first [119, 266] and cheapest-first constructive approaches [245, 93] or dynamic
programming with memoisation [245], all well established in the field of quantum many-body
physics and quantum chemistry. On the other hand, in the field of mechanics of continua, tensor
contractions arise naturally, in the variational forms of the governing equations [230, 138, 173]
and hence in their consistent linearisation. Finite element discretisation of these forms, then
heavily rely on tensorial operations between the gradient of the chosen functional spaces and
the work conjugates and Hessian of the internal energies [180, 11, 230].

A myriad of strategies can be applied to optimise tensor contractions that emerge from
the discretisation of an underlying variational formulation. A noteworthy approach which is
typically utilised by domain specific languages (DSLs) designed for automated finite element
code generation, is the exploitation of the structure and topology of the tensors either by a
careful study of the bilinear operator and the chosen functional spaces or by performing similar
graph optimisation techniques in order to minimise the number of floating point operations
[151, 230]. Such optimisation techniques have been applied successfully for instance in [150, 151,
181, 204, 256, 255] for various discretisation schemes such as continuous Galerkin, discontinuous
Galerkin and various functional spaces such as H1, Hpdivq and Hpcurlq spaces, for elliptic as
well as hyperbolic PDEs. As an automated finite element code generator, these approaches
typically abstract away the numerical implementation from the mathematical formulation and
have the potential to optimise the entire finite element assembly procedure.

The framework described in this work is not designed to act as an automated code generator
for variational forms (form compiler). Instead, it is rather designed to serve as a generic tensor
algebra library that facilitates an explicit mechanism for declaring tensorial operations, while
potentially employing analogous optimisation techniques, where applicable. As a result, the
implementation specificities of a given problem is left to the developer and not automated.
However, the framework provides a high level API, to bring forth low level optimisations at
the disposal of the user (say for explicit finite element programming) and as a result could be
used as a standalone frontend software or an optimising backend for a form compiler.

Akin to the current framework are the specifically tailored numerical tensor algebra frame-
works developed in C++. The foundation for implementation of a high performance tensor
algebra framework was laid by the works of Veldhuizen et. al. [314, 58] and Landry [173] on
Blitz++ and FTensor libraries, respectively. Other notable examples of tensor algebra frame-
works include nDarray [139], LTensor [179], libtensor [81] and Eigen’s third party tensor
package [116]. Barring Eigen which is based on C++11 variadic templates, all of the aforemen-
tioned frameworks are C++03 compliant, which implies they are not truly multi-dimensional
tensor libraries. In other words, these frameworks have support for tensors with up to a few
spatial dimensions. In particular, nDarray, FTensor and LTensor support up to fourth order
tensors, libtensor up to 6th order tensor and Blitz++ up to 11th order tensors. Furthermore,
none of the aforementioned frameworks implement domain-aware expression templates and op-
timisation algorithms, since they are designed as generic numerical tensor algebra libraries.
On the other hand, such optimisation techniques are more suited to domain specific tensor
contraction frameworks, examples of which include for instance, the Tensor Contraction
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Engine [125, 183, 169], TiledArray [40] and Cyclops Tensor Framework [287, 286], which are
designed for distributed and thread-parallel tensor operations for quantam mechanical compu-
tations. A few noteworthy differences between the current framework and the aforementioned
tensor contraction libraries, specifically the Tensor Contraction Engine are as follows. a) the
utilisation of compile time technologies for ahead-of-time evaluations using C++11 metapro-
gramming rather than source-to-source translation or JIT techniques, b) implementation of
low-level optimisation techniques such as data parallelism and loop transformation (in C++)
instead of relying on a low-level language optimising compiler (Fortran) c) the focus on small
tensor networks rather than big, out-of-core tensors and finally d) the focus on continuum
multi-physics simulations rather than quantum chemistry applications.

In this work, only dense data-parallel tensor arithmetics will be discussed, specifically due
to the fact that for the applications of interest, neither a sparse representation would be bene-
ficial nor the tensors are large enough to explore load balancing for thread level parallelism. A
representative example of this is the computation of work-conjugates of a convex multi-variable
energy functional on quadrature points. At this point, it is also worth mentioning that, from
a finite element application point of view, the presented framework is designed for local com-
putations and not for operations such as assembly of global finite element matrices, wherein
more suitable storage-based data structures already exist [115].

The fundamental design principle that all tensor frameworks rely on is the concept of
expression templates in C++ [313, 203, 173], which provides a powerful means for lazy or
on-demand evaluation of arbitrary chained operators as well as delaying the evaluation of
certain tensor algebraic operations. In contrast to the classical operator overloading technique,
expression templates completely avoid the need for creation of intermediate temporaries. In
[133, 134] novel expression templates are presented which go beyond the level 1 BLAS overloads
whilst exploring other optimisation opportunities such as loop-tiling and data parallelism.

Recently, data parallel and stream computing have become a requisite for large scale sim-
ulations of scientific problems. Recent generations of CPUs and GPUs, require data-parallel
codes for full efficiency. For instance, Figure 1.7 shows a Xeon Phi processor and a Tesla GPU
both at their recent generation (as of 2017) and fundamentally designed for data parallel and
stream computing. Data parallelism essentially implies that the same sequence of operations
should be applied to multiple data sets synchronously. This reduces the need for instruction
scheduling in favour of more arithmetic and logic units [162, 134]. On CPU architectures data
parallelism is implemented via SIMD (Single Instruction Multiple Data) registers and instruc-
tions, wherein a single SIMD register can store multiple values and a single SIMD instruction
can execute multiple operations on those values [322, 326, 188]. The FMA (Fused-Multiply-
Add) instruction set is an archetypal example of data parallelism. There are typically two

(a) (b)

Figure 1.7: a) An AVX-512 enabled 64 core Xeon Phi co-processors; courtesy of Intel™and, b)
A Tesla K80 Nvidia graphics processing card; courtesy of Nvidia™

approaches to explicit vectorisation namely, the use of frameworks which are built as an ex-
tension to the language such as OpenMP [59, 231], Cilk Plus [96] and OpenCL [292] and the
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use of SIMD vector types [94, 162, 116]. In this work, an explicit vectorisation approach using
vector types is adopted.

In the high performance part of this thesis we will discuss the implementation aspects of
a modern C++ based open-source data parallel tensor contraction framework named Fastor.
The framework is based on statically sized arrays with a powerful in-built metaprogramming
engine that allows it to perform sophisticated optimisations at compile time. In particular, its
domain-aware or so-called smart expression template engine facilitates, a) transformation of
chained operations to mathematically equivalent but highly efficient expressions, potentially
avoiding the call to many level 3 type BLAS subroutines, b) compile time depth-first or breadth-
first search to find the optimal contraction indices of complex tensor networks and, c) generation
of customised kernels for operations on small tensors (of different order, size and data type)
where typically the call to external libraries such as BLAS can be inefficient [162, 326, 120].

Overall, having a domain-aware framework for numerical implementation of electromechan-
ics, makes it easier to map complex mathematical abstractions to the underlying microprocessor
instructions with full-efficiency.

1.6 Structure of the thesis

The state of the art in curvilinear mesh generation and modelling of coupled electromechanics
was presented in the last section with a brief overview of where the scope of the current thesis
fits. In this section we will describe the layout of this thesis. It should be evident by now
that, the thesis deals with three issues pertaining to computational modelling of electrome-
chanical systems, namely accurate geometry representation, computational techniques for the
four classes of electromechanics and subsequently a high performance implementation of these
techniques using a tensor contraction framework. In its essence the scope of this thesis can be
summarised as presented in Figure 1.8.
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Figure 1.8: Scope of this thesis

The three colours in Figure 1.8 stand for the three parts of the thesis. These three parts
and the subsequent chapters within are structured as follows:

Part 1:
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Part 1 of this work, deals with the generation of high order curvilinear meshes for finite
element analysis. An a posteriori curvilinear mesh generator using polyconvex elasticity frame-
work is described in this part. To this end, the thesis is divided into two chapters.

Chapter 2:

In chapter 2, we start discussing the classical and modern approaches to nonlinear elastic-
ity. The kinematics, governing equations and constitutive laws of elasticity are discussed in
four different settings, namely the classical deformation gradient based nonlinear elasticity,
the objective representation in classical elasticity, the tensor cross product based formulation
for polyconvex nonlinear elasticity and the objective representation in polyconvex elasticity
using the tensor cross product algebra. It is emphasised that the use of the tensor cross prod-
uct simplifies the linearisation of polyconvex nonlinear elastic models significantly leading to
new insights and facilitating an easy to implement finite element formulation. The updated
Lagrangian form polyconvex elasticity is also presented in this section.

Chapter 3:

In chapter 3, a unified approach for the a posteriori generation of arbitrary high-order curvi-
linear meshes via the polyconvex elasticity analogy is presented. The approach encompasses
a variety of methodologies, ranging from the popular incremental linear elastic approach to
very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally
linearised approach is also presented and applied for the first time in this context. Utilising a
consistent derivation from energy principles, a theoretical comparison of the various approaches
is presented which enables a detailed discussion regarding the material characterisation (cal-
ibration) employed for the different solid mechanics formulations. Five independent quality
measures are proposed and their relations with existing quality indicators, used in the context
of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical
examples, both in two and three dimensions, including challenging geometries of interest to the
solids, fluids, biomechanics and electromagnetics communities, are shown in order to illustrate
and thoroughly compare the performance of the different methodologies. This comparison con-
siders the influence of material parameters and number of load increments on the quality of
the generated high-order mesh, overall computational cost and, crucially, the approximation
properties of the resulting mesh when considering an isoparametric finite element formulation.
Aspect of node sliding over the surface and untangling of complicated geometries is discussed
by presenting a multi-level mesh deformation approach.

Part 2:

Part 2 of this work, deals with the numerical modelling of electromechanics, in particular
the four classes of electromechanics discussed earlier. To this end, this part of thesis is divided
into 5 chapters.

Chapter 4:

In chapter 4, we present the concept of convex multi-variable electro-elasticity. The extended
kinematics set of convex multi-variable electro-elasticity, the governing equations and more
importantly the convex multi-variable electromechanical internal energies are described in this
chapter. A link is made between convex multi-variable electro-elasticity and polyconvex non-
linear elasticity, presenting the latter as direct extension and a superset of the former. The
formulation for large strain large electric field electromechanics is discussed in terms of the fun-
damental kinematic and electrostatic measures and then later on presented in objective setting
to facilitate its particularisation to the case of small strains. The equations of electromechanics
are then also presented in an updated Lagrangian setting and the Helmholtz like energy is
introduced for the later finite element implementation.
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Chapter 5: Class 1:

In chapter 5, we discuss the first class of electromechanics covered in this thesis, namely the
large deformations large electric fields electromechanics and the convex multi-variable formula-
tion for it. The variational form of the Helmholtz energy and its finite element implementation
is disscued in this chapter, using a high order curvilinear finite element framework. The perfor-
mance of high order curvilinear finite element framework is then analysed from the optimality
and h and p convergence point of view and its performance with respect to the mixed Hu-
Washizu variational principles is investigated under near incompressibility and shear locking
scenarios. A suite of finite element studies is then carried out to exhibit the capability of this
framework in capturing instabilitise, snap-through and wrinkles in dielectric elastomeric films
confirming experimental findings in this domain.

Chapter 6: Class 2:

In chapter 6, we discuss the second class of electromechanics covered in this thesis, namely the
small deformations large electric fields electromechanics. A staggered approach is devised to
solve the small deformation electrostrictive materials in a significantly faster time compared
to the fully coupled nonlinear electromechanics. The essence of the approach taken lies in
guaranteeing the objectivity of the resulting work conjugates, by starting from the underlying
convex multi-variable internal energy, whence avoiding the need for further symmetrisation of
the resulting Maxwell and Minkowski-type stresses at small strain regime. In this context,
the nonlinearity with respect to electrostatic counterparts such as electric displacements is still
retained, hence resulting in a formulation similar but more competitive with the existing lin-
earised electro-elasticity approaches. Through numerical studies it is shown that the staggered
approach is also capable of tackling large displacement small strain problems.

Chapter 7: Class 3:

In chapter 7, we discuss the third class of electromechanics covered in this thesis, namely
the linear piezoelectricity. In this chapter, a new variational and computational framework is
introduced for the analysis of three dimensional linear piezoelectric continua and beams us-
ing hp-finite elements is presented. Unlike existing publications on piezoelectric beams, the
framework is very general and suitable for static, modal and dynamic scenarios; it is not re-
stricted to either actuation or energy harvesting applications and, moreover, it can cope with
any anisotropy or electric polarisation orientation. Derived from first principles, namely the
fundamental equations of continuum piezoelectricity, a new set of beam balance equations is
presented based on a Taylor series expansion for the displacement and electric potential across
the cross section of the beam. The coupled nature of the piezoelectric phenomenon at a beam
level arises via a series of mechanical (and electrical counterparts) stress and strain cross sec-
tional area resultants. To benchmark the numerical algorithm, and in order to aid prospective
researchers, a new closed-form solution is presented for the case of cantilever type systems
subjected to end tip mechanical/electrical loads. To the best of the authors’ knowledge, the
analytical solution for this prototypical example has not been previously presented. Finally,
some numerical aspects of the hp-discretisation are investigated including the exponential con-
vergence of the hp-refinements and the consideration of linear or quadratic electric potential
expansions across the cross section of the beam.

Chapter 8: Class 4:

In chapter 8, we discuss the fourth class of electromechanics covered in this thesis, namely
the linear flexoelectricity. In this chapter, a family of numerical models for the phenomeno-
logical linear flexoelectric theory for continua and their particularisation to the case of three-
dimensional beams based on a skew-symmetric couple stress theory. In contrast to the tradi-
tional flexoelectric models based on standard strain gradient wherein coupling between electric



1.6. STRUCTURE OF THE THESIS 17

polarisation and strain gradients is assumed, we postulate an electric enthalpy in terms of linear
invariants of curvature and electric field. This is achieved by introducing the axial curvature
vector as a strain gradient measure. We have shown that the implication of this assumption is
many-fold. Firstly, for isotropic (non-piezoelectric) materials it allows constructing flexoelectric
energies without breaking material symmetry. Secondly, nonuniform distribution of volumetric
part of strains (volumetric strain gradients) do not generate electric polarisation, as confirmed
by experimental evidence to be the case for some important classes of flexoelectric materials.
In this regard, the current flexoelectric model can be considered as a more restrictive case of
strain gradient theories. Thirdly, a state of plane strain generates out of plane deformation
through strain gradient effects. Finally, extension and shear coupling modes cannot be char-
acterised individually as they contribute to the generation of electric polarisation as a whole.
For the case of three-dimensional beams, we have shown that the skew-symmetric couple stress
model in general, generate stresses spanned over the cross section rather than aligned with the
longitudinal axis of the beam and as a result special care must be taken to integrate them over
the cross section. Four distinct variational principles are presented for both continuum and
beam models namely, a displacement-potential formulation, a penalty formulation, a Lagrange-
multiplier formulation and an augmented Lagrangian formulation. The three later formulations
facilitate incorporation of strain gradient measures in to a standard finite element scheme while
maintaining the C0 continuity. To this end, the efficacy of high order finite elements along with
the computational efficiency of mixed finite elements have been utilised to develop a series of
low and high order mixed finite element schemes for couple stress based flexoelectricity. Nu-
merical results of finite element discretisations for the three latter variational formulations are
first benchmarked against available closed form solutions in regards where good agreements
was found between the reference and numerical results. Furthermore, a detailed comparison of
the developed couple stress based flexoelectric model with the standard strain gradient flexo-
electric models has been performed for the case of Barium Titanate where a myriad of simple
analytical solutions have been proposed in order to quantitatively describe the similarities and
dissimilarities in effective electromechanical coupling under these two theories. It is observed
that, if the same experimental flexoelectric constants are fitted in to both theories, the current
couple stress theory in general, reports stronger electromechanical conversion efficiency.

Part 3:

Part 3 of this work, deals with the high performance implementation of the computational
framework built for high order curvilinear finite elements for polyconvex elasticity and convex
multi-variable electro-elasticity. The high performance framework is a generic domain-aware
tensor contraction engine specifically designed to metaprogammatically optimise variational
forms of different classes of electromechanics.

Chapter 9:

To this end, in chapter 9, a new high performance tensor contraction framework for the numer-
ical analysis of coupled electromechanics on streaming architectures is presented. In addition
to explicit SIMD instructions and smart expression templates, the framework introduces do-
main specific constructs for the tensor cross product and its associated algebra. The two key
ingredients of the presented expression template engine are as follows. First, the capability
to mathematically transform complex chains of operations to simpler equivalent expressions,
while potentially avoiding routes with higher levels of computational complexity and, second,
to perform a compile time depth-first or breadth-first search to find the optimal contraction
indices of a large tensor network in order to minimise the number of floating point operations.
For optimisations of tensor contraction such as loop transformation, loop fusion and data lo-
cality optimisations, the framework relies heavily on compile time technologies. Every aspect
of the framework is examined through relevant performance benchmarks, including the impact
of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the
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FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost
and memory footprint of the framework and the performance of tensor cross product kernels.
The framework is then applied to finite element analysis of coupled electro-mechanical problems
to assess the speed-ups achieved in kernel-based numerical integration of complex electroelas-
tic energy functionals. In this context, domain-aware expression templates combined with
SIMD instructions are shown to provide a significant speed-up over the classical low-level style
programming techniques.

Chapter 10: Concluding Remarks:

Finally in chapter 10, conclusions, remarks and a future perspective of the work is provided.
This is once again divided into three parts. Each issue raised in the thesis is summarised and
conclusions are given based on the current state of work and findings throughout the thesis.
The thesis ends with providing outlook for future development and extension of the current
platform on curvilinear mesh generation, numerical modelling of electromechanics and high
performance computing fronts.
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Chapter 2

Nonlinear Continuum Mechanics

2.1 Introduction

Studying large strain elastic and inelastic response by finite elements or other computational
techniques is a well established procedure in many areas of engineering analysis and design
[30, 327, 127, 56, 66, 202, 68]. Often elasticity is described by means of a hyperelastic model
defined in terms of a stored energy functional which depends on the deformation gradient of
the mapping between initial and final configurations [30, 327, 127]. It has also been shown
that for the model to be well defined in a mathematical sense, this dependency with respect
to the deformation gradient has to be based upon appropriate convexity criteria [16, 48] which
guarantees ellipticity and hence, the well-posedness of the governing equations. Ellipticity has
therefore, important physical implications as it guarantees the existence of real wave speeds in
the material in the vicinity of an equilibrium configuration and it is strongly related to material
stability of the constitutive equations.

The simplest and most well known restriction on the constitutive equations is a convexity
restriction upon the strain energy which would comply with ellipticity condition and would not
exclude buckling effects. The loss ellipticity is known to be a major issue in modelling nonlinear
materials which typically manifest itself in the form of localisation of deformations and shear
bands [207, 25]. This convexity condition is called polyconvexity. Polyconvexity automatically
ensures sequential weak lower semicontinuity of the strain energy [16, 48] and when enriched
with appropriate coercivity or growth conditions, it guarantees the existence of minimisers for
the total energy potential in nonlinear elasticity.

The classical approach to elastic response consists of ensuring that the defined stored energy
function satisfies the polyconvexity condition first but then proceeds towards an evaluation of
stresses and elasticity tensors by re-expressing the energy function in terms of the deformation
gradient alone. This inevitably leads to the differentiation of inverse functions of the defor-
mation gradient, its transpose or the inverse of the right Cauchy Green strain tensor. These
derivatives are readily obtained using standard algebra but can lead to lengthy expressions [28].
Recently, Bonet, Gil and Ortigosa have studied the concept of polyconvexity in great depth and
have shown that a new tensor cross product based algebra leads to a significant simplication
of the algebra involved in consistent linearisation of the internal energy [29, 27, 112].

In this chapter we will discuss the classical and tensor cross product based approaches to
polyconvex nonlinear elasticity. In particular, the chapter is divided into five sections, namely

1. Section 2.2 discusses the fundamentals of nonlinear elasticity using a classical approach
using the deformation gradient tensor as the driving kinematics.

2. Section 2.3 discusses the objective representation in nonlinear elasticity using the right
Cauchy Green strain tensor for expressing internal energy densities and the subsequent
linearisation and further algebra therein.

3. Section 2.4 motivates the concept of polyconvexity in nonlinear mechanics and presents
the tensor cross product based formulation for polyconvex elasticity and the simplifica-

2
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tions that the tensor cross product algebra brings forth to the equations of a deformable
system.

4. Section 2.5 discusses the objective representation of polyconvexity in nonlinear mechan-
ics and presents the tensor cross product based formulation for re-expressing polyconvex
elasticity in terms of symmetric kinematic measures.

5. Section 2.6 presents the spatial representation of polyconvexity in nonlinear mechanics
and presents the tensor cross product based formulation for re-expressing polyconvex
elasticity in an updated Lagrangian setting.

2.2 The classical approach to nonlinear elasticity

In this section, essential concepts of nonlinear elasticity are discussed in its classical version.
This formulation entails only the definition of the deformation gradient tensor and the sub-
sequent governing equations and constitutive laws are formulated according to this kinematic
measure.

2.2.1 Kinematics

Let us consider the motion of a body which in its initial configuration is defined by a domain
V of boundary BV with outward unit normal N . After the motion, the body occupies a final
configuration defined by a domain v of boundary Bv with outward unit normal n, as shown
in Figure 2.1. The pseudo-time (t) dependent mapping field φ links a material particle from
initial configuration X to final configuration x according to x “ φpX, tq. The deformation

x1, X1

x3, X3

x2, X2

dx = F dX

x = φ(X, t)

Figure 2.1: Motion map of a body V

gradient tensor F is defined as

F “∇0x “
BφpX, tq

BX
, (2.1)

where ∇0p¨q is the Lagrangian (initial configuration) gradient operator. 1 As shown in Fig-
ure 2.1, F is the kinematic measure relating the differential fibre elements from initial dX
to final dx configuration. In addition, the cofactor H (or area map) and the Jacobian J (or
volume map) of the deformation are defined as

H “ JF´T ; (2.2a)

J “ detF . (2.2b)

1Throughout this work, the symbol (¨) indicates the scalar product a ¨ b “ aibi, the symbol (:), the double
contraction operation A : B “ AijBij , the symbol (ˆ), the cross product between vectors ra ˆ bsi “ Eijkajbk
and the symbol (b), the outer or dyadic product rabbsij “ aibj . The Einstein summation convention is followed
throughout, wherever indices appear.
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Let us define δu and ∆u as virtual and incremental variations of x, respectively, where it will
be assumed that δu and ∆u satisfy compatible homogeneous displacement based boundary
conditions that vanishes on BuV , where BuV is part of the boundary subjected to suitable
essential (Dirichlet) boundary condition(s). The first and second directional derivatives of
the deformation gradient tensor F with respect to virtual and incremental variations of the
geometry can then be evaluated as

DF rδus “∇0δu; (2.3a)

D2F rδu; ∆us “ 0. (2.3b)

Analogously, the first and second directional derivatives of the cofactor of the deformation
gradient tensor H can be evaluated as

DHrδus “

„

pH : ∇0δuqI ´Hp∇0δuq
T



F´T ; (2.4a)

D2Hrδu; ∆us “

˜

„

pH : ∇0∆uqI ´Hp∇0∆uqT


F´T : ∇0δu

´

„

pH : ∇0∆uqI ´Hp∇0∆uqT


p∇0δuq
T

¸

F´T

´

„

pH : ∇0δuqI ´Hp∇0δuq
T



F´T p∇0∆uqTF´T . (2.4b)

Finally, the first and second directional derivatives of the Jacobian of the deformation gradient
tensor J are computed as

DJrδus “H : ∇0δu; (2.5a)

D2Jrδu; ∆us “∇0δu :

„

pH : ∇0∆uqI ´Hp∇0∆uqT


F´T . (2.5b)

2.2.2 Governing equations of continuum mechanics

Let us assume that the domain defined by the deformable body is subjected to a body force
per unit of undeformed volume f0 and a traction force per unit of undeformed area t0 applied
on BtV P BV , such that BtV Y BuV “ BV and BtV X BuV “ H. The conservation of linear
momentum in the global from leads to the integral of the translational equilibrium equations
as

ż

V
f0dV `

ż

BtV
t0dA “ 0. (2.6)

The above integral equation governing the physics of a deformable system, can be sum-
marised in the local (strong) form and Lagrangian setting as follows [30, 29, 28].

DIVP ` f0 “ 0 in V ; (2.7a)

PN “ t0 on BtV ; (2.7b)

φ “ φ̄ on BuV. (2.7c)

where DIV is the Lagrangian divergence operator and P is the first Piola-Kirchhoff stress
tensor. The rotational equilibrium dictates that F TP “ PF T .

2.2.3 The internal energy density in hyperelasticity

For the closure of the system of equations defined by (2.7), an additional constitutive law is
needed relating deformation and stresses in the continuum. In the case of reversible elasticity,
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where thermal effects and any other possible state variables (i.e. accumulated plastic defor-
mation) are disregarded, the internal energy density e per unit of undeformed volume can be
solely defined in terms of the deformation, namely e “ ep∇0xq. In this case, combination of
(2.7) and the first law of thermodynamics yields

Derδus “ P : ∇0δu; P “
BepF q

BF

ˇ

ˇ

ˇ

ˇ

F“∇0x

, (2.8)

where the subscript F “ ∇0x denotes that F is calculated from the deformation of the
geometry x. This distinction is necessary as independent variations of F and x are allowed.
With an iterative type of solution process such as Newton-Raphson in mind, it is useful to
derive the tangent elasticity operator. This is typically evaluated in terms of a fourth order
tangent elasticity tensor C̃ defined by

D2erδu; ∆us “∇0δu : DP r∆us “∇0δu : C̃ : ∇0∆u, (2.9)

where

C̃ “ BP
BF

ˇ

ˇ

ˇ

ˇ

F“∇0x

“
B2epF q

BF BF

ˇ

ˇ

ˇ

ˇ

F“∇0x

(2.10)

2.2.4 Material characterisation in the reference configuration

A simple internal energy functional emn expressed in terms of the deformation gradient tensor
is the Mooney-Rivlin model, written as

emnpF q “ µ1IIF ` µ2IIH ` fpJq, (2.11)

where

fpJq “ ´2pµ1 ` 2µ2qlnJ `
κ

2
pJ ´ 1q2, (2.12)

and IIp‚q denotes the squared of the L2 norm of the entity p‚q and tµ1, µ2, κu are positive
material constants. For this material model, the first Piola-Kirchhoff stress tensor P can be
computed as

P “ 2µ1F `
2µ2

J

„

pH : HqI ´HTH



H ` f 1pJq, (2.13)

where

f 1pJq “

„

κpJ ´ 1q ´
2

J
pµ1 ` 2µ2q



H. (2.14)

Analogously, the fourth order tangent elasticity tensor C can be computed as

C̃ “ 2µ1I `
4µ2

J2

„

pH : HqI ´HTH



H bH

´
2µ2

J2

„

pHTHqH bH `H b pHTHqH ` pH : HqH bH



`
2µ2

J2

„

pHTHq bH `H b pHTHq ` pHTHq b pHTHq



` f2pJq, (2.15)

where

f2pJq “
1

J2

„

pµ1 ` 2µ2q ` κJpJ ´ 1q



H bH. (2.16)

As can be observed from (2.13) and (2.15), the classical continuum mechanics approach to
formulating hyperelasticity based on the deformation gradient tensor F leads to an extremely
cumbersome algebra, requiring computation of the inverse of gradient multiple times.



6 CHAPTER 2. POLYCONVEX NONLINEAR ELASTICITY

2.3 The objective representation in classical elasticity

In this section, the kinematics, governing equations and constitutive law of nonlinear elasticity
is going to be re-formulated and presented in terms of objective (materially frame indifferent
kinematics). This formulation will come handy in our future development in the later chapters.

2.3.1 Kinematics

The requirement for objectivity or material frame indifference (i.e. invariance with respect
to rotations in the material configuration) implies that internal energy functionals must be
independent of the rotational components of the deformation gradient tensor F and its cofactor
H. Hence, a function of these tensor via symmetric tensors are often used in expressing the
internal energy. The right Cauchy-Green strain tensor C “ F TF is the archetypal tensor
being utilised in this regard. This is augmented by its symmetric cofactor G “ HTH to
re-express the internal energy. For the sake of consistency, here we also utilise the kinematic
measure C “ detC “ J2. The first and second directional derivatives of the right Cauchy-
Green strain tensor C with respect to virtual and incremental variation of the geometry can
now be evaluated

DCrδus “ DpF TF qrδvs “ p∇0δuq
TF ` F T∇0δu, (2.17a)

D2Crδu; ∆us “ p∇0δuq
T p∇0∆uq ` p∇0∆uqT p∇0δuq. (2.17b)

Similarly, for the co-factor G, the first and second derivatives are

DGrδus “

„

pG : DCrδusqI ´GpDCrδusqT


C´1, (2.18a)

D2Grδu; ∆us “

˜

„

pG : DCr∆usqI ´GpDCr∆usqT


C´1 : DCrδus

´

„

pG : DCr∆usqI ´GpDCr∆usqT


pDCrδusqT

¸

C´1

´

„

pG : DCrδusqI ´GpDCrδusqT


C´1pDCr∆usqTC´1. (2.18b)

and finally, for the Jacobian C the first and second derivates are

DCrδus “ G : DCrδus; (2.19a)

D2Crδu; ∆us “ DCrδus :

„

pG : DCr∆usqI ´GpDCr∆usqT


C´1. (2.19b)

2.3.2 The internal energy density in hyperelasticity

The internal energy density e “ ep∇0xq defined in the previous section, can be re-written in
terms of the Cauchy Green tensor as ep∇0xq “ esympCq. In combination with (2.7) and the
first law of thermodynamics we now obtain

Desymrδus “ S :
1

2
DCrδus; S “ 2

BesympCq

BC

ˇ

ˇ

ˇ

ˇ

C“Cx

, (2.20)

where S is the symmetric second Piola-Kirchhoff stress tensor, such that S “ F´1P . Similarly,
the fourth order tangent elasticity tensor (with slight abuse of notation, expressed again as C)
required for Newton-Raphson procedure can be computed as

D2esymrδu; ∆us “
1

2
DCrδus : DSr∆us “

1

2
DCrδus : C :

1

2
DCr∆us, (2.21)

where

C “ 2
BS

BC

ˇ

ˇ

ˇ

ˇ

C“Cx

“ 4
B2epCq

BCBC

ˇ

ˇ

ˇ

ˇ

C“Cx

(2.22)
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2.3.3 Material characterisation in the reference configuration

The Mooney-Rivilin model defined in (2.11) in terms of F can be re-expressed in terms of C
as

emnsympCq “ µ1IC ` µ2IG ` fpCq, (2.23)

where IA “ A : I “ trpAq for any second order tensor A and

fpCq “ ´2pµ1 ` 2µ2qln
?
C `

κ

2
p
?
C ´ 1q2, (2.24)

For this material model, the second Piola-Kirchhoff stress tensor S can be computed as

S “ 2µ1I ` 2µ2

„

trpC´1qI ´C´1



G` f 1pCq, (2.25)

where

f 1pCq “
1

C

„

κp
?
C ´ 1q ´ pµ1 ` 2µ2q



G. (2.26)

Analogously, the fourth order tangent elasticity tensor C can be computed as

C “ 4µ2

C2

„

trpGqGbG´Gb pGTGq ´ pGTGq bG (2.27)

´
1

2
trpGqrGsIKrGsJL ´

1

2
trpGqrGsILrGsJK

` rGsIKrG
TGsJL ` rG

TGsIKrGsJL



` f2pCq, (2.28)

where

f2pCq “
κ

C
?
C
GbG´

2

C

„

κp
?
C ´ 1q ´ pµ1 ` 2µ2q



rGsIKrGsJL. (2.29)

As can be observed from (2.25) and (2.28), the classical continuum mechanics approach to
formulating hyperelasticity based on the Cauchy-Green strain tensor C leads to an extremely
cumbersome algebra, requiring computation of the inverse of gradient, multiple times. In the
next section, we will have a look at polyconvex nonlinear elasticity using a new approach based
on the tensor cross product algebra [28, 29] which will significantly simplify the algebra involved
in formulating nonlinear hyperelastic problems.

2.4 The tensor cross product based approach to polyconvex
elasticity

We will now discuss the concept of polyconvexity and re-formulate the governing equations
of nonlinear continuum mechanics based on the a tensor cross product formulation, recently
reported by [28, 29]. In principle, the approach entails formulating the nonlinear mechanics
equations in terms of the deformation gradient tensor and its minors, i.e. its cofactor and its
Jacobian.

2.4.1 Kinematics

Let us reconsider the motion of a deformable body which in its initial configuration is defined
by a domain V of boundary BV with outward unit normal N . After the motion, the body
occupies a final configuration defined by a domain v of boundary Bv with outward unit normal
n, as shown in Figure 4.1. The pseudo-time (t) dependent mapping field φ links a material
particle from initial configuration X to final configuration x according to x “ φpX, tq. The
deformation gradient tensor F is defined as
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x1, X1

x3, X3

x2, X2

dA

da =HdA

dX

dx = F dX

dV

dv = JdV

x = φ(X, t)

Figure 2.2: Motion map of a body V and the kinematic measures tF ,H, Ju.

F “∇0x “
BφpX, tq

BX
, (2.30)

where ∇0p¨q is the Lagrangian (initial configuration) gradient operator. In addition, with
the help of the tensor cross product operations, the cofactor and Jacobian (H “ CofF and
J “ detF ) of the deformation are defined as, [65, 28, 29]

H “
1

2
F F ; HiI “

1

2
EijkEIJKFjJFkK ; (2.31a)

J “
1

3
H : F ; J “

1

3
HiIFiI . (2.31b)

As shown in Figure 4.1, tF ,H, Ju are the kinematic measures relating the differential fibre,
area and volume elements from initial tdX, dA, dV u to final tdx, da, dvu configuration. Once
again, defining δu and ∆u as virtual and incremental variations of x, respectively, assuming
that both δu and ∆u satisfy compatible homogeneous displacement based boundary conditions,
the first and second directional derivatives of the kinematic measures tF ,H, Ju with respect
to virtual and incremental variations of the geometry can then be evaluated as

DF rδus “∇0δu; (2.32a)

D2F rδu; ∆us “ 0; (2.32b)

DHrδus “ F ∇0δu; (2.32c)

D2Hrδu; ∆us “∇0δu ∇0∆u; (2.32d)

DJrδus “H : ∇0δu; (2.32e)

D2Jrδu; ∆us “ F : p∇0δu ∇0∆uq . (2.32f)

2.4.2 The internal energy density in polyconvex hyperelasticity

In the context of nonlinear elasticity, the concept of polyconvexity was first introduced by Ball
[16, 17] in order to establish sufficient conditions for the existence of solutions in nonlinear
elasticity. It is recognised these days [28, 29, 271, 270, 27] that polyconvexity is a useful
mathematical requirement that can be used to ensure the well-posedness of the equations in the
large strain regime. The internal energy density e, encapsulating the constitutive information
necessary to close the system of governing equations defined earlier can be re-written in terms
of the fundamental kinematics as

epF q “ W̃ pF ,H, Jq, (2.33)

where W̃ represents a polyconvex energy functional in terms of the extended set of arguments
VFHJ “ tF ,H, Ju. Following [29], the first Piola-Kirchhoff stress tensor and can be obtained
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from the linearisation of the polyconvex energy as

Derδus “ DW̃ rDF rδus, DHrδus, DJrδuss “ pΣF `ΣH F ` ΣJHq : ∇0δu. (2.34)

Comparison of (2.34) against (2.8), leads to the evaluation of the first Piola-Kirchoff tensor

P “ ΣF `ΣH F ` ΣJH; PiI “ ΣFiI ` EijkEIJKΣHjJFkK ` ΣJHiI , (2.35)

where ΣA “
BW̃
BA , where A can represent any element from the set VFHJ . Further consistent

linearisation of the polyconvex energy required for Newton-Raphson iteration leads to the
constitutive and geometric terms, which following [28, 29], can be computed as

D2erδu; ∆us “ rMFHJ
δ sT rHW̃ srM

FHJ
∆ s ` pΣH ` ΣJF q : p∇0δu ∇0∆uq, (2.36)

where

rMFHJ
δ s “ rp∇0δuq : pF ∇0δuq : pH : ∇0δuqs,

rMFHJ
∆ s “

»

–

: ∇0∆u
: pF ∇0∆uq
pH : ∇0∆uq

fi

fl ,

and HW̃ represents the symmetric positive definite Hessian operator given by

rHW̃ s “

»

–

W̃FF W̃FH W̃FJ

W̃HF W̃HH W̃HJ

W̃JF W̃JH W̃JJ

fi

fl , (2.37)

where WAB “ B2 W̃
BABB , where A and B can represent any two elements from the set VFHJ .

In effect, the above expression for the elasticity tensor separates the material dependencies or
physics of the problem (encapsulated in the Hessian) from the geometry dependencies included
via the initial stress term. From (2.37) the tangent elasticity tensor C̃ described in (2.10) can
alternatively be described in terms of the set of work-conjugates VFHJ as

C̃ “WFF ` F pWHH F q `WJJH bH ` 2pWFH F qsym

` 2pWFJ bHq
sym ` 2ppF WHJq bHq

sym `A (2.38)

where

AiIjJ “ EijpEIJP pΣH ` ΣJΣHqpP .

Furthermore, for any symmetric fourth order tensor, its symmetric version can be computed
as T sym

iIjJ “
1
2pTiIjJ ` TjJiIq. Due to the disappearance of inverse operations, this alternative

representation of the Hessian has a much lower computational cost in comparison to (2.15).

2.4.3 Material characterisation in the reference configuration

The Mooney-Rivilin model defined in (2.11) in terms of F is indeed a simple internal energy
functional which complies with the definition of polyconvexity in (2.33)

W̃mnpF ,H, Jq “ µ1IIF ` µ2IIH ` fpJq. (2.39)

Using (2.35), the first Piola-Kirchhoff stress tensor P for this model can be computed as

P “ 2µ1F ` 2µ2H F ` f 1pJqH, (2.40)

and the non-zero components of the Hessian operator HW̃mn are given by

W̃mn
FF “ 2µ1I; W̃mn

HH “ 2µ2I; W̃mn
JJ “ f2pJq. (2.41)

The tensor C̃ can now be obtained from (2.41) using (2.38).
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2.5 The objective representation in polyconvex elasticity

The requirement for objectivity or material frame indifference, and in particular our motivation
for particularisation of polyconvex nonlinear elasticity to small strains dictate that the poly-
convex internal energy be represented through a set of symmetric kinematic measures. These
kinematic measures were already introduced in section 2.3 as tC,G, Cu. It is however impor-
tant to note that, the objective representation of the internal energy in terms of tC,G, Cu
may not necessary be convex in any components of the set tC,G, Cu. It is merely an objective
re-expression of the internal energy in terms of a symmetric kinematic set.

2.5.1 Objective kinematics

The symmetric kinematic measures tC,G, Cu introduced in section 2.3 can be used to re-
express the equations of polyconvex elasticity in an objective setting. Using the tensor cross
product, we can re-write the this set of kinematics as

C “ F TF ; CIJ “ FIMFMJ (2.42a)

G “
1

2
C C; GiI “

1

2
EijkEIJKCjJCkK ; (2.42b)

C “
1

3
G : C; C “

1

3
GiICiI . (2.42c)

The first and second directional derivatives of the symmetric kinematic measures with respect
to virtual and incremental variation of the geometry can now be expressed using the cross
product algebra, as

DCrδus “ DpF TF qrδus “ p∇0δuq
TF ` F T∇0δu; (2.43a)

D2Crδu; ∆us “ p∇0δuq
T p∇0∆uq ` p∇0∆uqT p∇0δuq; (2.43b)

DGrδus “ C DCrδus; (2.43c)

D2Grδu; ∆us “ C D2Crδu;us `DCr∆us DCrδus; (2.43d)

DCrδus “ G : DCrδus; (2.43e)

D2Crδu; ∆us “ D2Crδu; ∆us : G`DCrδus : pDCr∆us Cq

“ D2Crδu; ∆us : G`C : pDCrδus DCr∆usq. (2.43f)

2.5.2 The internal energy density in objective polyconvex hyperelasticity

The internal energy density e, encapsulating the constitutive information necessary to close
the system of governing equations defined earlier can be re-written in terms of the symmetric
kinematic measures from its polyconvex description (2.33) as

ep∇0xq “
ð
W̃ pF ,H, Jq “

ñ
W pC,G, Cq, (2.44)

where W represents an energy functional with respect to the extended set of symmetric me-
chanical kinematics VCGC “ tC,G, Cu. It is worth noting that W is not strictly convex with
respect to the individual components of the set V, but rather an objective re-expression of the
polyconvex functional W̃ , in that in (2.44), W is identical to W̃ . Notice that, constructing a
polyconvex energy (i.e. W̃ ) is a necessary first step for a materially frame indifferent representa-
tion (i.e. W ), but the vice-versa is not true, in that an objective energy may not necessarily be
convex with respect to its set of independent symmetric kinematics. Combination of (2.44) and
the first law of thermodynamics yield a set of work conjugates for the symmetric mechanical
kinematic set VCGC “ tC,G, Cu, defined as [29]

Derδus “ DW rDCrδus, DGrδus, DCrδuss “ pΣC `ΣG C ` ΣCGq :
1

2
DCrδus. (2.45)
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Comparison of (2.45) against (2.20), leads to the evaluation of the second Piola-Kirchoff tensor

S “ ΣC `ΣG C ` ΣCG. (2.46)

where ΣA “ 2BW
BA , where A can represent any element from the set VCGC . Further consistent

linearisation of the polyconvex energy required for Newton-Raphson iteration, leads to the
constitutive and geometric terms, which following [28, 29], can be computed as

D2erδu; ∆us “ rMCGC
δ sT rHW srMCGC

∆ s ` pΣG ` ΣCCq : pF T∇0δu F T∇0∆uq (2.47)

` S : rp∇0δuq
T p∇0∆uqs,

where

rMCGC
δ s “ rpF T∇0δuq : pC F T∇0δuq : pG : F T∇0δuqs,

rMCGC
∆ s “

»

–

: F T∇0∆u

: pC F T∇0∆uq

pG : F T∇0∆uq

fi

fl ,

and HW represents the symmetric positive definite Hessian operator given by

rHW s “

»

–

WCC WCG WCC

WGC WGG WGC

WCC WCG WCC

fi

fl , (2.48)

where WAB “ 4 B2W
BABB , where A and B can represent any two elements from the set VCGC .

From (2.48) the tangent elasticity tensor C described in (2.22), can alternatively be described
in terms of the set of work-conjugates VCGC as

C “WCC `C pWGG Cq `WCCGbG` 2pWCG Cqsym

` 2pWCC bGq
sym ` 2ppC WGCq bGq

sym `B (2.49)

where

BiIjJ “ EijpEIJP pΣG ` ΣCΣGqpP .

It is important to note, that as opposed to the polyconvex variant of the above Hessian operator
expressed in terms of the fundamental kinematic set VFHJ “ tF ,H, Ju in (2.37), the Hessian
operator in (2.48) is not strictly positive definite as polyconvexity is not imposed with respect
to the set VCGC and hence ellipticity (i.e. rank-one convexity) of the internal energy based on
this constitutive term alone cannot be established.

2.5.3 Material characterisation in the reference configuration

The polyconvex Mooney-Rivilin model defined in (2.39) in terms of tF ,H, Ju can be re-
expressed in terms of symmetric kinematic set VCGC complying to the definition given in
(2.44)

WmnpC,G, Cq “ µ1IC ` µ2IG ` fpCq. (2.50)

Using (2.46), the second Piola-Kirchhoff stress tensor S, for this model can be computed as

S “ 2µ1I ` 2µ2I C ` f 1pCqG,

and the only non-zero component of the Hessian operator HWmn are is given by

Wmn
CC “ 4f2pCq. (2.51)

The tensors C can now be obtained from (2.51) using (2.49).
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2.6 Polyconvex nonlinear elasticity in spatial setting

In this section, the polyconvex nonlinear elasticity is presented in the spatial setting. Our
future development on a unified continuum mechanics formulation for linear, geometrically
linearised and nonlinear approach to elasticity would be based on these formulation and on an
updated Lagrangian framework.

2.6.1 The Cauchy stress tensor and spatial tangent operator

With a particularisation to the case of small strains in mind, in addition to the first and second
Piola-Kirchoff stress tensors, it is also necessary to derive expressions for the Cauchy σ (or
Kirchhoff τ ) stress tensors. The expressions for the Cauchy stress tensor and spatial tangent
elasticity tensor can be derived using the standard push forward operations [30], for the case
of classical elasticity

τ “ Jσ “ FSF T ; (2.52)

Jc “ rCsIJKLrF siIrF sjJ rF skKrF slL, (2.53)

where σ is the symmetric second order Cauchy stress tensor and c is the fourth order tangent
elasticity operator in spatial setting. For the case of polyconvex elasticity, similar push forward
operations can be applied on the work-conjugates to obtain the Cauchy stress tensor as

Jσ “ τ “ J pσC ` σG I ` σCIq (2.54)

where I denotes the second order identity tensor and the spatial work conjugates are given

JσC “ FΣCF
T ; JσG “HΣGH

T ; JσC “ CΣC . (2.55)

The spatial form of the tangent operator can be computed using the standard push-forward
operations to yield

D2erδu; ∆us “ rSδsTφ˚rHW srS∆s ` JpσG ` σCIq : p∇δu ∇∆uq (2.56)

` Jσ :

„

p∇δvqT p∇∆uq



,

where

rSδs “ r∇δu : p∇δu Iq : p∇δu : Iqs, (2.57)

rS∆s “

»

–

: ∇∆u
: p∇∆u Iq
p∇∆u : Iq

fi

fl , (2.58)

with the fourth order tensor c given as

Jφ˚rHW s “

»

–

pWCCqIJKLF iIF jJF kKF lL pWCGqIJKLF iIF jJHkKH lL J2pWCCqIJF iIF jJ

pWGCqKLIJHkKH lLF iIF jJ pWGGqIJKLH iIHjJHkKH lL J2pWGCqIJH iIHjJ

J2pWCCqJIF iIF jJ J2pWCGqJIH iIHjJ J2pWCCqJ
2

fi

fl .

(2.59a)

2.6.2 Governing equations of continuum mechanics in spatial setting

Let us assume that the domain defined by the deformable body is subjected to a body force
per unit of deformed volume f and a traction force per unit of deformed area t applied on
Btv P Bv, such that Btv Y Buv “ Bv and Btv X Buv “ H. The conservation of linear momentum
in the global from leads to the integral of the translational equilibrium equations as

ż

v
fdv `

ż

Btv
tda “ 0. (2.60)
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The above integral equation governing the physics of a deformable system, can be summarised
in the local (strong) form and spatial setting as follows [30, 29, 28].

divσ ` f “ 0 in v; (2.61a)

σn “ t on Btv; (2.61b)

φ “ φ̄ on Buv. (2.61c)

2.7 The tensor cross product

One of the key elements of in the development of the current framework proposed is the
extension of the standard vector cross product to define the cross product between second
order tensors and between tensors and vectors and high order tensors. This rediscovers the
work of de Boer [65] which, to the best knowledge of the author, first appeared in [28, 29] as
an English language publication.

2.7.1 Definition for second order tensors and associated properties

The original nomenclature for the tensor cross product discussed in [65] is “Das äuβere Ten-
sorprodukt von Tensoren” which has been translated here as tensor cross product.

The left cross product of a vector v and a second order tensor A to give a second order
tensor denoted v A is defined so that when applied to a general vector w gives:

pv Aqw “ v ˆ pAwq ; pv Aqij “ EiklvkAlj (2.62)

where Eikl denote the standard third order alternating tensor components, repeated indices
indicate summation and ˆ is the standard vector cross product. The above operation is in fact
equivalent to performing a standard cross product between each row of A and v. Similarly,
the right cross product of a second order tensor A by a vector v to give a second order tensor
denoted A v is defined so that for every vector w the following relationship applies:

pA vqw “ A pv ˆwq ; pA vqij “ EjklAikvl. (2.63)

The effect is now to replace the rows of A by the cross products of its original rows by v.
Finally, the cross product of two second order tensors A and B to give a new second order
tensor denoted A B is defined so that for any arbitrary vectors v and w gives:

v ¨ pA Bqw “ pv Aq : pB wq ; pA Bqij “ EiklEjmnAkmBln. (2.64)

In this work, the tensor cross product will be mostly applied between two-point tensors,
however high order tensor cross products are also evaluated in the final chapter. For this
purpose, the above definition can be particularised to second order two-point tensors or material
tensors as,

pA BqiI “ EijkEIJKAjJBkK ; pA BqIJ “ EIKLEJMNAKMBLN . (2.65)

The practical evaluation of these products in the box below. It is easy to show using simply
algebraic manipulations based on the permutation properties of E or the fact that EijkEkln “
δilδjn ´ δinδjl, that the above tensor cross products satisfy the following properties (note that
v, v1, v2, w, w1 and w2 denote arbitrary vectors and A, A1, A2, B, B1, B2 and C are second
order tensors):

A B “ B A; (2.66a)

pA BqT “ AT BT ; (2.66b)

A pB1 `B2q “ A B1 `A B2; (2.66c)

α pA Bq “ pαAq B “ A pαBq ; (2.66d)



14 CHAPTER 2. POLYCONVEX NONLINEAR ELASTICITY

pA Bq : C “ pB Cq : A “ pA Cq : B; (2.66e)

A I “ ptrAq I ´AT ; (2.66f)

I I “ 2I; (2.66g)

pA Aq : A “ 6 detA; (2.66h)

CofA “
1

2
A A; (2.66i)

pv1 b v2q pw1 bw2q “ pv1 ˆw1q b pv2 ˆw2q ; (2.66j)

v pA wq “ pv Aq w “ v A w; (2.66k)

A pv bwq “ ´v A w; (2.66l)

pA Bq pv ˆwq “ pAvq ˆ pBwq ` pBvq ˆ pAwq ; (2.66m)

pA1 A2q pB1 B2q “ pA1B1q pA2B2q ` pA1B2q pA2B1q ; (2.66n)

pA1Bq pA2Bq “ pA1 A2qCofB. (2.66o)

2.7.2 Definition of tensor cross product for some selected high order tensors

The tensor cross product can also be defined between tensors of any arbitrary order. In the
following, the tensor cross products appearing in the later formulations are listed, where K
and L represent third order tensors and M and N represent fourth order tensors. Note that
for high order tensors, multiple definitions of the tensor cross product are possible.

rK AsPiI “ EijkEIJKrKsPjJ rAskK ; (2.67a)

rA KsiIP “ EijkEIJKrAsjJ rKskKP ; (2.67b)

rM AspP iI “ EijkEIJKrMspPjJ rAskK ; (2.67c)

rA MsiIpP “ EijkEIJKrAsjJ rMskKpP ; (2.67d)

rK LsPiIQ “ EijkEIJKrKsPjJ rLskKQ; (2.67e)

rK LsPiIQ “ EijkEIJKrKsPjJ rLsQkK ; (2.67f)

rK LsPQiI “ EijkEIJKrKsPjJ rLskKQ; (2.67g)

rK LsPQiI “ EijkEIJKrKsPjJ rLsQkK ; (2.67h)

rK LsiIPQ “ EijkEIJKrKsPjJ rLskKQ; (2.67i)

rK LsiIPQ “ EijkEIJKrKsPjJ rLsQkK ; (2.67j)

rM NspP iIqQ “ EijkEIJKrMspPjJ rNskKqQ; (2.67k)

rM NspP iIqQ “ EijkEIJKrMspPjJ rNsqQkK ; (2.67l)

rM NspPqQiI “ EijkEIJKrMspPjJ rNskKqQ; (2.67m)

rM NspPqQiI “ EijkEIJKrMspPjJ rNsqQkK ; (2.67n)

rM NsiIpPqQ “ EijkEIJKrMspPjJ rNskKqQ; (2.67o)

rM NsiIpPqQ “ EijkEIJKrMspPjJ rNsqQkK . (2.67p)
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Explicit matrix form of tensor cross products:

rv As “

»

–

vyAzx ´ vzAyx vyAzy ´ vzAyy vyAzz ´ vzAyz
vzAxx ´ vxAzx vzAxy ´ vxAzy vzAxz ´ vxAzz
vxAyx ´ vyAxx vxAyy ´ vyAxy vxAyz ´ vyAxz

fi

fl

rA ws “

»

–

Axyvz ´Axzvy Axzvx ´Axxvz Axxvy ´Axyvx
Ayyvz ´Ayzvx Ayzvx ´Ayxvz Ayxvy ´Ayyvx
Ayxvz ´Axxvy Ayyvx ´Axyvz Ayzvy ´Axzvx

fi

fl

rA Bs “

»

–

rA Bsxx rA Bsxy rA Bsxz
rA Bsyx rA Bsyy rA Bsyz
rA Bszx rA Bszy rA Bszz

fi

fl

rA Bsxx “ AyyBzz ´AyzBzy `AzzByy ´AzyByz

rA Bsxy “ AyzBzx ´AyxBzz `AzxByz ´AzzByx

rA Bsxz “ AyxBzy ´AyyBzx `AzyByx ´AzxByy

rA Bsyx “ AxzBzy ´AxyBzz `AzyBxz ´AzzBxy

rA Bsyy “ AzzBxx ´AzxBxz `AxxBzz ´AxzBzx

rA Bsyz “ AzxBxy ´AzyBxx `AxyBzx ´AxxBzy

rA Bszx “ AxyByz ´AxzByy `AyzBxy ´AyyBxz

rA Bszy “ AxzByx ´AxxByz `AyxBxz ´AyzBxx

rA Bszz “ AxxByy ´AxyByx `AyyBxx ´AyxBxy
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Chapter 3

The Generation of High Order
Curvilinear Meshes through Metric
Controlled Polyconvex Nonlinear
Elasticity

3.1 Introduction

In this chapter, the variational formulation and computational implementation of polyconvex
nonlinear elasticity are discussed in the context of high order finite elements with an eye to
utilise polyconvex nonlinear elasticity as an efficient tool for mesh deformation and metric
controlled curvilinear mesh generation. As a result, the finite element examples of polyconvex
nonlinear elasticity are discussed in the context of mesh generation and the benefits of poly-
convexity in controlling fundamental distortion measures of curved meshes are highlighted.

The use of curved elements is nowadays accepted to be crucial in order to fully exploit the
advantages of high-order discretisation methods [76, 18, 186, 329, 164, 274, 303, 273], but until
relatively recently, the challenge of automatically generating high-order curvilinear meshes
has been an obstacle for the widespread application of high-order methods [317]. Methods
to produce high-order curvilinear meshes are traditionally classified into direct methods and a
posteriori methods [74, 75]. Direct methods build the curvilinear high-order mesh directly from
the CAD boundary representation of the domain whereas a posteriori approaches rely on mature
low-order mesh generation algorithms to produce an initial mesh that is subsequently curved
using different techniques, such as local modification of geometric entities [74, 75, 281, 187, 280],
solid mechanics analogies [242, 328] or optimisation [304, 100].

Within the category of a posteriori approaches, the solid mechanics analogy first proposed
in [242] has become increasingly popular. The main idea is to consider the initial, low-order,
mesh as the undeformed configuration of an elastic solid. High-order nodal distributions are
then inserted into all of the elements and then the nodes over element edges/faces in contact
with the curved parts of the boundary are projected onto the true CAD boundary. The
displacement required to move the nodes onto the true boundary is interpreted as an essential
boundary condition within the solid mechanics analogy. The solution of the elastic problem
provides the desired curvilinear mesh as the deformed configuration, as shown in Figure 3.1.

The initial approach proposed in [242] used a non-linear solid mechanics analogy with the
neo-Hookean constitutive model. Several attempts to reduce the computational cost of this
approach have been proposed based on a linear elastic analogy, see [328, 5]. It is clear that when
large deformations are induced to produce the deformed curvilinear high-order mesh, a linear
elastic model can result in non-valid elements due to the violation of the hypothesis of small
deformations. In order to alleviate this problem, it is possible to split the desired (potentially
large) displacement of boundary nodes into smaller load increments. Other approaches to
increase the robustness of the linear elastic analogy have been recently introduced, for instance

2
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CAD model Linear mesh High order planar mesh High order curved mesh

Figure 3.1: An a posteriori mesh deformation technique based on continuum mechanics analogy

in [218, 219], where pseudo thermal effects are introduced. It is worth noting that mesh moving
strategies based on an elastic analogy have also been proposed and successfully used with a
proven track record of robustness in the low-order context [301, 144, 289].

These approaches have been shown to be capable of producing curvilinear high-order meshes
of highly complex geometrical configurations, including anisotropic boundary layer meshes
around a full aircraft configuration [328, 254]. A comparative study of such techniques has
been recently investigated in [254]. This work follows up on much of development reported in
[254] in trying to propose a unified theoretical and computational solid mechanics framework
for high order mesh deformation. The formulation advocated here encompasses the linear
and non-linear formulations proposed in [242] and [328], respectively. In addition, a new
incrementally linearised elasticity formulation, not previously applied to generate curvilinear
high-order meshes, is proposed within this unified framework.

The polyconvex nonlinear elasticity has all the basic ingredients to generate curvilinear
meshes with controlled metrics in terms of skewness, shape and size of the curved elements.
Different distortion measures can be established for the quality of curved meshes based on
the fundamental kinematic measures of polyconvex elasticity, which are in nature independent
of the geometrical representation. These can be then utilised to evaluate the quality of the
generated meshes for the different polynomial degrees.

Figure 3.1 shows a more in-depth step-by-step procedure for generating high order curved
meshes. Typically, interaction with CAD geometry during the high order mesh deformation
is necessary for acquiring information about topological curves and surfaces in the domain,
further healing of the geometry and correcting the linear mesh which could be misrepresented
from the actual CAD definition due to many tolerances and floating point issues that low mesh
generators suffer from. From this perspective, the solid mechanics analogy is eyed as a means
of closely bridging the gap between finite elements and computer aided design.

It should be noted that much of the work in this chapter is based on the authors work on
curvilinear mesh generation presented in [254]. This chapter embarks from where we left off in
the previous chapter on nonlinear continuum mechanics formulation for polyconvex elasticity.
The polyconvex strain energies seem to be an ideal candidate for mesh deformation as they
already encode the fundamental distortion measures necessary to control the quality of the high
order mesh, i.e. edge distortion (skewness), surface distortion (shape) and volume distortion
(size). To this end, we revisit the fundamentals of nonlinear continuum mechanics yet again
in this chapter within the context of mesh moving techniques. This chapter is organised as
follows. In section 3.2, the fundamentals of non-linear continuum mechanics are briefly revis-
ited by following some recent developments in [28, 29], where the kinematics of the non-linear
continua and the principle of virtual work for a displacement-based formulation, in material
and spatial settings, are presented. The new consistent incrementally linearised approach is
detailed in section 3.3 and the material characterisation for all the different formulations is
described in detail in section 3.4. Using the derivation of all the formulations from an en-
ergy principle, a range of quality measures are proposed in section 3.5 and their relations with
existing quality indicators is briefly discussed. Finally, section 3.8 presents a number of numer-
ical examples both in two and three dimensions and an extensive comparison of performances
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Figure 3.2: Schematic representation of an a posteriori mesh deformation technique based on
continuum mechanics analogy

of the different formulations is presented. The examples include geometries appearing in a
range of areas of computational mechanics, e.g. computational solid mechanics, computational
fluid dynamics, computational eletromagnetics and computational bio and electromechanics.
Meshes are produced for a variety of degrees of approximation and for interior and exterior
domains, illustrating the potential of the proposed framework. Throughout this chapter the
letter p is used to denote polynomial enrichment over triangles, quadrilaterals, tetrahedra and
hexahedra.

3.2 Non-linear continuum mechanics for mesh deformation

3.2.1 Kinematics

Let us reconsider the motion of a continuum from its initial undeformed (planar mesh in this
case) configuration Ω0 Ă Rd, with boundary BΩ0 and outward unit normal n0, into its final
deformed (curved mesh in this case) configuration Ω Ă Rd, with boundary BΩ and outward
unit normal n, where d represents the number of spatial dimensions. In the context of curved
mesh generation, the initial (undeformed) configuration Ω0 represents a linear mesh with planar
faces (edges in two dimensions) and the final (deformed) configuration Ω represents the final
curved high-order mesh, as illustrated in Figure 4.1. The motion is described by a mapping
φ which links a material particle from material configuration X to spatial configuration x
according to x “ φpXq. The strain measures tF ,H, Ju introduced in the previous chapter
can be re-written as

dx “ F dX; da “HdA; dΩ “ J dΩ0. (3.1)
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x1, X1

x3, X3

x2, X2

dA

da = HdA

dX

dx = F dX

dΩ0

dΩ = JdΩ0

x = φ(X)

F - Edge Distortion

H - Face Distortion

J - Volume Distortion

Figure 3.3: Deformation map of a linear mesh to curvilinear mesh and the related quality
measures F , H and J .

The fundamental strain measures tF ,H, Ju, also illustrated in Figure 4.1, encode the essential
modes of deformation, necessary to characterise the quality of high order curvilinear meshes.

3.2.2 The principle of virtual work in the material and spatial settings

While a myriad of methodologies can be applied to solve for the deformation of a continuum
described by the motion map φ, such as optimisation, Laplacian smoothing and rezoning
techniques [74, 75, 187, 280, 281, 102, 223, 95, 197, 315, 33], in the context of continuum
mechanics, the deformation of a continuum from its undeformed configuration to its deformed
configuration can be posed as a minimisation of the total potential energy Π, subjected to
certain desired constraints [202, 127, 30]. In other words, the displacement of a deformable body
can be obtained by finding the stationary condition of the total potential energy, also called
the principle of virtual work (or variational principle), of the internal energy density, described
in chapter 2. For problems of mesh deformation, we follow an objective representation of the
internal energy discussed in chapter 2 and represented by ΨpCq “ esympCq, here. Hence, in
our setting, we can write the potential energy as

Πpφ‹q “ inf
φPV

#

ż

Ω0

ΨpCq dΩ0

+

, (3.2)

where V “
 

φ P
“

H1pΩ0q
‰d

: φpXq “ x̄ on BΩ0

(

. It is worth noting that, the problem
of a posteriori curved mesh generation is purely Dirichlet driven and no external forces are
considered. In that the Dirichlet boundary conditions are imposed on the whole boundary
corresponding to the displacement needed to place the high-order nodes on the CAD boundary
entities, at position x̄.

Following our development in section 2.3, the stationary condition of the total potential
energy in (3.2) obtained after linearisation with respect to virtual and incremental variation of
geometry δu and ∆u, leads to the principle of virtual work in the material configuration

DΠpφ‹qrδus “

ż

Ω0

DΨpCqrδus dΩ0 “

ż

Ω0

S :
1

2
DCrδus dΩ0 “ 0. (3.3)

Equation (3.3) results in a system of non-linear equations that need to be solved through an
iterative scheme and the necessary tangent operator required to facilitate convergence of the
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non-linear iterative scheme (e.g. Newton-Rapshon) can be determined by computing the second
directional derivative of the total potential energy

D2Πpφ‹qrδu; ∆us “

ż

Ω0

D2ΨpCqrδu; ∆us dΩ0

“

ż

Ω0

ˆ

1

2
DCrδus : C :

1

2
DCr∆us ` S :

1

2
D2Crδu; ∆us

˙

dΩ0. (3.4)

Following our development in section 2.6, in order to establish a unified framework for various
solid mechanics approaches discussed in this work, it is convenient to re-express (3.3) in the
spatial configuration

DΠpφ‹qrδus “

ż

Ω
σ : εpδuq dΩ “ 0, (3.5)

where εpaq is the small strain tensor given by εpaq “ 1
2p∇a`p∇aqT q and ∇ is the gradient op-

erator in the spatial configuration such that ∇0a “ ∇aF . Analogously, the second directional
derivative of the total potential energy (3.4) can be re-expressed in the spatial configuration
as

D2Πpφ‹qrδu; ∆us “

ż

Ω

`

εpδuq : c : εp∆uq ` σ : rpδuqT∇∆us
˘

dΩ (3.6)

where the Cauchy stress tensor σ and the spatial fourth order tangent elasticity tensor c are ob-
tained using the standard push-forward operations described in (4.45). In this setting, the first
and second terms in the right hand side of (3.6) yield the constitutive and the geometric/initial
stiffness components, respectively.

3.3 A consistent incrementally linearised solid mechanics ap-
proach

The standard non-linear solid mechanics methodology described in the previous section can be
proven costly (due to the iterative nature of the solution finding process) when the ultimate
goal is solely to deform a mesh in order to conform to the exact geometry. Alternative solid
mechanics methodologies have been developed in the past, based on a variety of linearised
elasticity approaches [328, 5, 218]. It is worth emphasising that, to guarantee and/or maintain
previously mentioned mathematical requirements for the linearised strain energy density, a
linearised solid mechanics approach must emanate from an underlying non-linear variational
principle, as the notion of objectivity and polyconvexity cannot be invoked in small strains.
This is typically achieved by consistent linearisation of the total potential energy (3.2) through
a Taylor series expansion. To illustrate this, let us consider the total potential energy in (3.2),
cast in the form of an iterative (Newton-Raphson) scheme

Πpφ‹n`1q “ inf
φn`1PVn`1

#

ż

Ω0

ΨpCn`1q dΩ0

+

(3.7)

where Vn`1 “
 

φn`1 P
“

H1pΩ0q
‰d

: φn`1pXq “ x̄n`1 on BΩ0

(

and xn`1 “ φn`1pXq is
the position vector of the material points at increment n` 1, which can be evaluated through
an incremental displacement u superimposed on the deformed configuration at increment n,
i.e. xn`1 “ xn ` u, as illustrated in Figure 3.4. At increment n, the current position vector
xn, the state of deformation gradient F n and, subsequently, the Cauchy-Green strain Cn are
fully known. In a non-linear regime, the motion of the continuum from n to n ` 1 is solved
iteratively, as the amount of displacements, the state of deformation gradient F n`1 and the
Cauchy-Green strain Cn`1 cannot be determined explicitly.

However, in the context of high-order curved mesh generation, it is convenient to approxi-
mate (3.7) through a Taylor series expansion of the form

Πpφ‹n`1q « Πlinpx
‹
n`u

‹q “ inf
uPU

#

ż

Ω0

ˆ

ΨpCnq`DΨpCnqrus`
1

2
D2ΨpCnqru;us

˙

dΩ0

+

(3.8)
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xn = φn(X)

xn+1 = φn(X) + u

xn+1 = φn+1(X)

Figure 3.4: Schematic representation of an incrementally linearised solid mechanics approach.

where U “
 

u P
“

H1pΩnq
‰d

: u “ ū on BΩn

(

. Certainly, embedded in the definition of the
new total potential energy (Πlin) in (3.8) are the first and second directional derivatives of the
non-linear total potential energy (3.2), where the virtual and incremental variations, namely v
and w, are now replaced with u. Hence, unlike (3.3), (3.8) is fully and consistently linearised
in u. Furthermore, notice that the first term in the integrand in (3.8) is a constant term
describing the state of strain energy density at increment n, which vanishes at the moment of
computing the stationary point of (3.8). In fact, the stationary condition of the linearised total
potential energy (3.8) is identical to the stationary condition of the following potential energy

Πupu
‹q “ inf

uPU

#

ż

Ω0

ˆ

DΨpCnqrus `
1

2
D2ΨpCnqru;us

˙

dΩ0

+

. (3.9)

Substituting for (3.5-3.6) in (3.9), we obtain the spatial form of the linearised total potential
energy as

Πupu
‹q “ inf

uPU

#

ż

Ωn

ˆ

σn : εnpuq `
1

2
εnpuq : cn : εnpuq `

1

2
σn :

ˆ

p∇nuq
T p∇nuq

˙˙

dΩn

+

(3.10)
where the subscript n denotes the state of deformation, stresses, tangent elasticity and the vol-
ume at increment n, namely εn, σn, cn and Ωn. In addition, ∇n represents the spatial gradient
operator at increment n. The stationary condition of (3.10), obtained after the linearisation
with respect to the virtual displacement v, leads to the principle of virtual work

DΠupu
‹qrvs “

ż

Ωn

ˆ

σn : εnpvq
looooomooooon

Rn

` εnpuq : cn : εnpvq
loooooooooomoooooooooon

Cn

`σn : pp∇nuq
T p∇nvqq

loooooooooooomoooooooooooon

Gn

˙

dΩn “ 0.

(3.11)
It is worth noting that, in the right hand side of (3.11), the first term Rn corresponds to the
residual stresses, the second term Cn to the linearised constitutive stiffness term and the last
term Gn to the geometric stiffness term. The emergence of the geometric stiffness term is due to
consistent linearisation of the non-linear total potential energy, which would not have appeared,
had the starting point not been chosen to correspond to a non-linear total potential energy,
as also described in [130] (pp. 104) and in [202]. As will be seen in the numerical examples,
in the context of high-order curved mesh generation, the geometric stiffness term, stiffens the
interior elements of the computational mesh against severe distortion, hence producing meshes
with better quality. Note that unlike in the non-linear analysis, since (3.11) is linear in u, a
further linearisation is not required.
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Formulation \Computational Requirement Requires
increments

Requires
iteration

Accounts
for stresses

Tangent operator
evaluation

Non-linear elasticity 3 3 3 Per iteration

Consistent Incrementally Linearised (CIL) 3 7 3 Per increment

Inconsistent Incrementally Linearised 3 7 3 Once at the origin

Incremental Linear Elasticity (ILE) 3 7 7 Once at the origin

Classical linear elasticity 7 7 7 Once at the origin

Table 3.1: Computational requirement of different solid mechanics formulations for curved
mesh generation

If a single increment is used to reach the final curved mesh, i.e. when n “ 0, the equations of
classical linear elasticity are recovered. Note that, in the context of linearised approaches there
are a multitude of heuristic formulations which do not necessarily come from a variational
principle. In fact, apart from the case when all the terms tRn, Cn,Gnu are present in the
principle of virtual work, all the other formulations based on the combinations of these terms
lead to non-consistent formulations. For the sake of completeness, the four distinct linearised
cases used in the literature of curved mesh generation are identified in the following; [see
also Table 3.1 for a schematic comparison of these cases and their associated computational
requirement]:

1. When the state of deformation at increment n` 1 is obtained by computing the residual
stresses, the constitutive stiffness and the geometric stiffness at the previous deformed
configuration i.e. based on tRn, Cn,Gnu. This consistent incrementally linearised method-
ology for high-order curved mesh generation, was first presented in [254].

2. When the residual stresses at increment n` 1 are obtained from the previous deformed
configuration based on Rn, but the constitutive stiffness is evaluated at the initial un-
deformed (or stress-free) configuration i.e. C0 and the geometric stiffness term is absent
from the formulation. The technique developed by [218] falls into this category.

3. When both the residual stresses and constitutive stiffness at increment n`1 are computed
based on the initial undeformed configuration i.e. R0 and C0 and the geometric stiffness
term is absent from the formulation, but the geometry itself is updated incrementally
such that xn`1 “ xn ` u. This approach has been pursued in [328, 5] and from here
onwards we will refer to this approach as the incremental linear elastic approach.

4. When n “ 0 or in other words, when the residual stresses, constitutive stiffness and
geometric stiffness are evaluated once at the initial undeformed configuration tR0, C0,G0u

i.e. particularisation to the case of classical linear elasticity.

3.4 Polyconvexity, non-polyconvexity and material characteri-
sation for different formulations

Apart from satisfying the requirements of existence of minimisers, objectivity and favourably
polyconvexity, the choice of material generally imposes further physical requirements on the
internal energy density. For an isotropic material, the internal energy density can be written
as a function of three independent invariants as

ΨpCq “ ΨisopI1, I2, I3q, I1 “ I : C; I2 “ I : G; I3 “ C, (3.12)

where the three isotropic invariants I1, I2 and I3 are indeed further related to the fundamental
kinematic measures as1

I1 “ F : F ; I2 “H : H; I3 “ J2. (3.13)

1Note that for plane strain problems, the first two isotropic invariants are identical i.e. I1 “ I2.
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Furthermore, for a transversely isotropic material, the strain energy density can be expressed
as

ΨpCq “ ΨanisopI1, I2, I3, I4, I5q, I4 “N ¨CN , I5 “N ¨C2N , (3.14)

where the two transversely isotropic invariants I4 and I5 are indeed related to the fundamental
kinematic measure F as

I4 “ FN ¨ FN “N ¨CN ; I5 “ CN ¨CN “ F TFN ¨ F TFN , (3.15)

where N is the unit Lagrangian vector characterising the direction of transverse isotropy. It
is worth emphasising that (3.13) and (3.15) represent a set of independent invariants that
can be used to construct isotropic and transversely isotropic strain energy density expressions,
respectively2. Any other invariant used to construct the strain energy density, would be a linear
combination of the aforementioned invariants. As will be discussed later, these invariants play
a key role in quantifying the quality of generated curvilinear meshes.

To establish a unified framework for the different solid mechanics formulations presented in
the previous section and to further facilitate a comparison among them, it is essential that ma-
terial parameters are calibrated such that the strain energies (and consequently the stresses and
the constitutive tensors) for the different formulations are identical at the initial undeformed
configuration. To this end, in this section, we discuss characterisation of material constants
through an example of a hyperelastic neo-Hookean model. More sophisticated internal energies
accounting for near incompressibility and transverse isotropy are also considered and will be
discussed subsequently.

3.4.1 Material characterisation for the nonlinear hyperelastic case

Let us consider a compressible neo-Hookean model which is also considered, for instance in
[242] in the context of high-order curvilinear mesh deformation. The strain energy density of
the material is given by

ΨneopCq “
µ

2
pI1 ´ 3q ` fpI3q, fpI3q “

λ

2
p
a

I3 ´ 1q2 ´ µlnp
a

I3q, (3.16)

where µ and λ are two material constants. Note that this model can be obtained by setting
β “ 0 and α “ µ

2 in the more sophisticated compressible Mooney-Rivlin model presented later.
Following the procedure outlined in the previous section, the Cauchy stress tensor and the
tangent elasticity tensor can be obtained as

σneo “
µ

J
b`

ˆ

λpJ ´ 1q ´
µ

J

˙

I (3.17)

cneo “ λp2J ´ 1qI b I `

ˆ

µ

J
´ λpJ ´ 1q

˙

I (3.18)

where b “ FF T is the left Cauchy-Green strain tensor and I is the symmetric fourth order
identity tensor rIsijkl “ δikδjl ` δilδjk, where δmn denotes the Kronecker delta.

3.4.2 Material characterisation for the classical linear elastic case

For the classical compressible linear elastic constitutive model, the strain energy is defined as

Ψlinpεq “
λlin

2
ptrεq2 ` µlinε : ε, (3.19)

2To satisfy polyconvexity in a transversely isotropic material, the independent invariant I5 is instead given
by

I5 “HN ¨HN “N ¨GN .
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where λlin and µlin represent the well-known Lamé parameters. The Cauchy stress tensor and
the tangent elasticity tensor are then obtained as

σlin “ λlintrεI ` 2µlinε (3.20)

clin “ λlinI b I ` µlinI. (3.21)

It is worth noting that the approach pursued in [328, 218] corresponds to a linear elastic
approach with only the geometry being updated at each increment x “ xn.

Comparison of the tangent elasticity tensor of the neo-Hookean model (3.18) evaluated at
the origin (i.e. J “ 1) to its linear elastic counterpart (3.21), a relationship between material
constants can be defined as

µ “ µlin, λ “ λlin.

In the case of the neo-Hookean material model the relationship between material constants
is one-to-one, whereas for more complex material models dependent upon more than two
constants, one can arrive at correlations between those and the Lamé constants, preferably
having to fix some of those constants. The calibration of material constants of a nonlinear
or linearised energy functional against the linear elastic model is key to the comparison of
the approaches. In practice, normally the Young’s modulus (E) and Poisson’s ratio (ν) of
the material are provided, which for the three-dimensional and plane strain isotropic cases are
related to the Lamé constants as

λlin “
Eν

p1` νqp1´ 2νq
, µlin “

E

2p1` νq
. (3.22)

To facilitate a comparison between material models for producing the higher-order curvilinear
meshes, all isotropic materials described in the next three subsections can be expressed in terms
of the Poisson’s ratio ν using (3.22).

3.4.3 A modified Mooney-Rivlin model for mesh deformation

Another model apart from the neo-Hookean model which would be used frequently for our con-
tinuum mechanics based mesh deformation is the modified polyconvex Mooney-Rivlin model,
whose internal energy, Cauchy stress tensor and tangent elasticity operator are given as below
[28, 29]

ΨpCq “ αI1 ` βI2 ´ 4β
a

I3 ´ 2αln
a

I3 `
λ

2
p
a

I3 ´ 1q2 ´ p3α´ βq; (3.23a)

σ “
2

J

ˆ

α` β pb Iq

˙

b`

ˆ

λpJ ´ 1q ´ 4β ´
2α

J

˙

I; (3.23b)

rcsijkl “
2β

J

ˆ

2 rbsijrbskl ´ rbsikrbsjl ´ rbsilrbsjk

˙

`

ˆ

λp2J ´ 1q ´ 4β

˙

δijδkl

´

ˆ

λpJ ´ 1q ´ 4β ´
2α

J

˙ˆ

δikδjl ` δilδjk

˙

, (3.23c)

where for all of our analyses we fix α “ β.

3.4.4 A nearly incompressible polyconvex Mooney-Rivlin model

An incompressible version of the Mooney-Rivlin model can be considered to allow the curvi-
linear meshes to maintain a balanced scaled Jacobian across all elements. The internal energy,
the Cauchy stress tensor and the tangent elasticity operator of this model are given as below

ΨpCq “ α I3
´1{3I1 ` β I3

´1I2
3{2 `

κ

2
p
a

I3 ´ 1q2 ´ p3α` 3
?

3βq; (3.24a)

σ “ 2αJ´5{3b`

ˆ

κpJ ´ 1q ´
2α

3
J´5{3trb` β J´3trg3{2

˙

I ´ 3β J´3trg1{2g; (3.24b)
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rcsijkl “ ´
4α

3
J´5{3

ˆ

rbsijδkl ` δijrbskl

˙

`

ˆ

4α

9
J´5{3rbsmm ` βJ

´3prgsmmq
3{2 ` κp2 J ´ 1q

˙

δijδkl

`

ˆ

2α

3
J´5{3rbsmm ´ βJ

´3prgsmmq
3{2 ´ κpJ ´ 1q

˙ˆ

δikδjl ` δilδjk

˙

´ 3βJ´3prgsmmq
1{2

ˆ

δijrgskl ` rgsijδkl

˙

` 6βJ´3prgsmmq
1{2

ˆ

δikrgsjl ` rgsilδjk

˙

` 3βJ´3prgsmmq
´1{2rgsijrgskl, (3.24c)

with the following relationship for material properties holding at the origin

2α` 3
?

3β “ µlin;

κ´
4

3
α´ 2

?
3β “ λlin,

where for all of our analyses we fix α “ µlin
2 .

3.4.5 A transversely isotropic non-polyconvex model

For comparison and as a matter of pinpointing the effect of anisotropy in generating curvilinear
meshes, we consider a transversely isotropic material model presented in [26]. The internal
energy, Cauchy stress tensor and tangent elasticity operator of this model are given as below

ΨpCq “ αpI1 ´ 3q ` βpI2 ´ 3q ´ µ̃ln
a

I3 `
λ

2
p
a

I3 ´ 1q2 (3.25a)

` η1pI4 ´ 1q ` η2pI1 ´ 3qpI4 ´ 1q ` γpI4 ´ 1q2 ´
η1

2
pI5 ´ 1q;

σ “
2

J

ˆ

α` β pb Iq

˙

b`

ˆ

λpJ ´ 1q ´
µ̃

J

˙

I `
2η1

J
FN b FN `

2η2

J
pFN ¨ FN ´ 1qb

`
2η2

J
ptrb´ 3qFN b FN `

4γ

J
pFN ¨ FN ´ 1qFN b FN

´
η1

J

ˆ

FN b bFN ` bFN b FN

˙

; (3.25b)

rcsijkl “
2β

J

ˆ

2 rbsijrbskl ´ rbsikrbsjl ´ rbsilrbsjk

˙

` λp2J ´ 1qδijδkl

`

ˆ

µ̃´ λpJ ´ 1q

˙ˆ

δikδjl ` δilδjk

˙

`
4η2

J
prbsijrFN skrFN sl ` rFN sirFN sjrbsklq

`
8γ

J
rFN sirFN sjrFN skrFN sl ´

2η1

J

ˆ

rbsjkrFN sirFN sl ` rbsikrFN sjrFN sl

˙

,

(3.25c)

with the following relationship for material properties holding at the origin

µ̃ “ 2α` 4β;

α` β “
E

4p1` νq
;

η1 “ 4α´GA;

12α` λ “ C11;

4η2 “ C13 ´ 4α´ λ;

8γ “ C33 ´ 12α` 4η1 ´ 8η2 ´ λ,

where C11, C13, C33, GA, E and ν are the components of transversely isotropic linear elastic
material, where the subscript A denotes the direction of anisotropy. For all the analyses we
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fix α “ β. Notice that, the non-polyconvex nature of this material model is also used later to
showcase the loss of ellipticity in the context of mesh deformation.

A detailed comparison of all these material models for mesh deformation is performed in
the numerical examples sections.

3.5 Mesh quality (distortion) measures

Quality or distortion measures are traditionally used both in a low and high-order finite element
context in order to quantify the approximation properties induced by a computational mesh.
In a standard high-order finite element formulation, measures involving the Jacobian of the
isoparametric mapping have been extensively used [105, 328], in particular the so-called scaled
Jacobian. This measure only quantifies volumetric deformations and alternative measures that
exploit different modes of deformation and account for shape, skewness and degeneracy of
elements have only been recently considered [102, 101]. However, it is worth noting that not
all of these quality measures can be regarded as independent quantities.

In the unified solid mechanics framework proposed here, due to the derivation of all the
approaches from an energy principle, we propose five quality measures that are defined in terms
of the invariants of (3.13) and (3.15), used to construct the strain energy. The quality measures
for a generic element e are

Qej “

d

minξPR tIju

maxξP R tIju
for j “ 1, . . . , 5, (3.26)

where R denotes the reference element employed in the isoparametric formulation, with lo-
cal coordinates ξ. If necessary, further quality measures can be obtained through a linear
combination of the invariants Ij which will be independent of the geometrical parametrisation.

In practice, the invariants are evaluated at a discrete set of points within the reference
element, usually the quadrature points that will be employed during a computational simu-
lation. For the numerical examples presented here, a quadrature rule is used that integrates
polynomials of degree up to 2p, where p is the order of approximation.

In order to obtain a representative quality measure for a given computational mesh, a
variety of statistical data can be reported, such as the mean quality or the standard deviation.
However, in the numerical examples presented here, the mesh quality is defined by computing
the minimum over all the elements, namely Qj “ mine tQ

e
ju. Despite this being the least

favourable choice, it is well known that a few low quality elements can substantially deteriorate
the overall quality of a finite element simulation, specially if these elements are near a curved
boundary. Several numerical examples in two and three dimensions are used in the next
section to evaluate the performance of different approaches for a posteriori mesh generation.
The objective is to produce meshes where the minimum quality is as high as possible as this
will provide the better approximation properties of a high-order finite element solver.

From the mesh distortion point of view, the first quality measure Q1, quantifies fibre de-
formation (for instance, distortion of the edges of an element), the second quality measure
Q2, quantifies surface deformation (for instance, distortion of the faces of an element) and the
third quality measure Q3, quantifies volumetric deformation (distortion of the element itself).
In fact, it is worth noting that the scaled Jacobian corresponds to the quality measure Q3. For
simplicial elements (i.e. triangles and tetrahedra), this measure is identical to the Jacobian
of the deformation gradient tensor J because the isoparametric mapping for a simplicial ele-
ments with planar faces (or edges in two dimensions) is affine. This result is valid because, in
the context of a posteriori high-order mesh generation, the undeformed configuration typically
corresponds to a mesh formed by elements with planar faces (or edges).

The quality measures Q4 and Q5, based on the two anisotropic invariants, quantify the
distortion in the direction of anisotropy. These measures can only be utilised when the internal
energy of the material is anisotropic and, since in the context of curved mesh generation this
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is not often the case, their usage remains limited. Moreover, anisotropic quality measures are
typically dependent on the geometrical parametrisation.

Finally, it should be emphasised that, in contrast to the non-linear approach, the solution
of the incrementally linearised problem in (3.9), does not correspond to the minimisation of
the total potential energy (3.7) with respect to the fundamental strain measures tF ,H, Ju
per se, but rather with respect to the incrementally linearised versions of these quantities.
Furthermore, it is easy to identify that for plane strain problems, the first and the second
invariants are indeed identical i.e. I1 “ I2 which in turn translates into the corresponding
quality measures being identical Q1 “ Q2. This is only true for two-dimensional plane strain
problems.

It should be noted that, in the case of classical linear elasticity (when the geometry is not
updated), the five quality measures are not independent. The three quality measures based on
the isotropic invariants are reduced to a single quantity, namely

D I1rδusF“I “ 2 pF : ∇0δuqF“I “ 2 I : ∇0δu “ 2 trδε

D I2rδusF“I “ I :

ˆ

C pp∇0δuq
TF ` F T∇0δuq

˙

F“I

“ I : pI 2∇0δuq “ 2∇0δu : pI Iq “ 2∇0u : 2I “ 4trδε

D I3rδusF“I “

ˆ

G : pp∇0δuq
TF ` F T∇0δuq

˙

F“I

“ 2trδε

and the two anisotropic measures reduce to a different measure, namely

DI4rδusF“I “ 2∇0δu : pN bNq

DI5rδusF“I “

ˆ

pCN bN `N bCNq : pp∇0δuq
TF ` F T∇0δuq

˙

F“I

“ 4∇0δu : N bN .

Furthermore, is is easy to identify that for plane strain problems, the first and the second
invariants are indeed identical i.e. I2D

2 “ I2D
1

3.6 Projection techniques

A myriad of projection techniques can be used to place the high order nodes on to the actual
CAD boundary. In this section we will have a brief look at these techniques. Three projection
techniques are going to be discussed in this section, namely:

1. Orthogonal projection

2. Isometric projection

3. Isoparametric projection

The most popular projection technique is perhaps the orthogonal projection technique. In
the orthogonal projection technique, as the name implies, the nodes from planar surfaces
are projected to the actual CAD boundary using the minimum distance (Euclidean distance)
metric. This is shown in Figure 3.5(a). Notice that in Figure 3.5 only side of the triangular
element is curved. The nodes are projected in such a way such that the projected node on the
CAD curve makes for the closest orthogonal distance from the the node on the planar edge
of the traingle. The second approach, called the isometric or arc-length projection technique,
shown in Figure 3.5(b), uses the relative distance of the nodes on the planar edge/face to place
the node on to the CAD curve/surface, in that the technique is distance preserving (hence
the name isometric). This requires computing the length of the arc a priori for each CAD
curve/surface. As a result the projected nodes always preserve the same relative distance.
Both orthogonal and isometric approaches only modify the curved edges/faces of a planar
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mesh. The third approach called the isoparametric approach uses the parametric description
of CAD and the isoparametric nature of finite elements to directly map nodes from planar faces
to curved faces. The isoparametric projection typically modifies all the nodes on the surface,
as shown in Figure 3.5(c).

(a) Orthogonal Projection

ds

Ls

Lc

dc

(b) Isometric Projection

(c) Isoparametric Projection

Figure 3.5: Types of projection techniques used for placing high order nodes on to the actual
CAD boundary

Typically an isoparametric projection is the desired one and can be ultimately used for
NURBS-enhanced finite element method as well [274, 273]. However, since the iosparametric
projection also modifies the linear mesh, it is numerically less robust mainly due to inaccuracies
and tolerances used during linear mesh generation. Occasionally, these issues can be worked
around however, in some corner cases this introduces additional difficulties. Both isoparametric
and isometric techniques also suffer from the so-called trespassing issue that is they can either
project a node to a point in space where no CAD curve/surface exists or project the node on
to the neighbouring surface in the vicinity of a curve intersection. However, the isoparamet-
ric approach is the least costly projection technique. Figure 3.6 shows the tradeoff between
computational cost and numerical robustness of the aformentioned projection techniques.

In this work a mixed projection technique is followed, such that the ultimate projection
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1Figure 3.6: Characteristics of different projection techniques

strategy used is decided by the user. If isoparametric or isometric projection techniques are
used, a verification step is performed using orthogonal projection. If the orthogonal projection
fails to project the node from the planar surface to a CAD curve/surface, the actual projection
technique for that mesh edge/face is abandoned and the whole mesh edge/face is re-projected
using only the orthogonal projection technique. This mixed projection strategy is shown in
Figure 3.7.

Lc

dc

Try isoparametric projection

Try isometric projection Fall back to orthogonal projection

Fall back to orthogonal projection

ds

Ls

Figure 3.7: Mixed projection strategy

3.7 Multi-level mesh deformation technique

All mesh generators are essentially hierarchic in nature, in that, first the CAD curves are
discretised to edges, then the CAD surfaces are discretised to surface elements and finally the
domain enclosed by surfaces is meshed using volume elements [106, 261, 243, 174, 182, 267, 268,
277]. It is essential to follow the same paradigm for solid mechanics based mesh deformation
techniques (i.e. the solid mechanics mesh deformation analogy has to be performed at various
levels), otherwise one may end up with self-intersecting, boundary piercing and invalid meshes.
Such situations are more common in generating high order meshes, where untangling can
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become problematic. A typical example of one of the most likely arising problem is shown
in stage 4 of Figure 3.8 where the planar CAD surface is projected correctly but the interior
nodes fall outside of the main computational mesh. This problem typically occurs when the
CAD geometry consists of planar surfaces potentially with multiple curve intersection between
them. In other words in a planar surface the projected node is always going to coincide with
the actual node, since node projection does not have the knowledge of in-plane translation
that would be necessary for successful mesh deformation. This problem can be successfully
solved, if an in-plane solid mechanics problem is solved for each planar surface. This typically
leads to a multi-level mesh deformation technique, implemented in this work. The multi-level
mesh deformation technique, first checks for curve intersections and planar surfaces. Projecting
onto curves is also useful for modelling curved rods and beams and can be hence termed the
one-dimensional step. Next, all the 2D planar surfaces are solved for using a plane strain
solid mechanics analogy for mesh deformation. This is certainly, the two-dimensional step,
in which all the surfaces affected by the curve intersections are solved for and the high order
curved surface mesh is produced. Finally, the final boundary conditions are computed from
the first two steps and fed into a 3D solid mechanics problem and the whole computational
mesh (volume) is solved for. This is the three-dimensional step. A graphic representation of
the multi-level mesh deformation technique is shown in Figure 3.8. Note that the combination
of different projection techniques and multi-level/hierarchic solid mechanics analogy for mesh
deformation facilitates a unique framework for untangling high order curved mesh, by allowing
the high order nodes to slide on curves and surfaces.

Note that, most mesh deformation techniques either do not have this capability or com-
pletely ignore the in-plane translation and node sliding step [242, 218, 219]. Some a posteriori
curved mesh generation techniques use other post-processing and geometrical based mesh cos-
metics to alleviate this problem. A different yet similar in spirit approach to allowing the nodes
to slide on CAD curves has been recently presented in [265].

3.8 Representative examples

This section presents a detailed comparison of the various solid mechanics formulations consid-
ered in this work (refer to Table 3.1) for the a posteriori generation of high-order curvilinear
meshes. The comparison focuses on the advantages and disadvantages of the various formula-
tions, the influence of the material parameters, the degree of approximation obtained by using
two and three dimensional examples and the monitoring of different quality measures. In this
work, the only material parameter that is varied is the Poisson’s ratio (ν). Notice that as
detailed in [328], the Young’s modulus has no real effect on the resulting high-order meshes
because only Dirichlet boundary conditions are considered. Therefore, in all the examples we
consider E “ 105GPa, EA “

5E
2 and GA “

E
2 and the Poisson’s ratio is selected within the

interval [0.001,0.495].
To simplify the presentation, the following acronyms are utilised:

• Incremental Linear Elastic (ILE)

• Consistent Incrementally Linearised (CIL)

for incremental linear elastic and consistent incrementally linearised formulations, respectively.
When these acronyms are not used in conjunction with a material model, the formulation
should be assumed to correspond to a fully non-linear analysis. For the sake of brevity the
names of the following two material models are also shortened to

• Nearly Incompressible Mooney-Rivlin (NI-MR)

• Transversely Isotropic (TI)

In all the examples, the linear system of equations resulting from the finite element dis-
cretisation, is solved using UMFPACK [64] and the Multi-frontal Massively Parallel Solver
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1. Place high order nodes

2. Extract planar surfaces 3. Determine edges lying on CAD curves

4. Perform curve projection (1D) 5. Solve mechanics problem on planar surfaces (2D)

6. Perform surface projection and solve solid mechanics problem on curved surfaces (3D)

Figure 3.8: Multi-level projection and solid mechanics analogy for curves, followed by surfaces,
followed by volumes

(MUMPS) [12] for the systems that result in two-dimensional and three-dimensional examples,
respectively. The non-linear systems are solved using a standard Newton-Raphson algorithm
where the tolerance is set to 10´5. Finally, it is worth noting that a standard isoparametric
finite element formulation is considered throughout this work, using Lagrange polynomials with
optimal distribution of nodes for interpolation [328] and also the optimal quadrature points for
triangles and tetrahedra reported in [323] are considered for numerical integration.

The developed code, called PostMesh, has been released as an open-source software under
MIT license and is available through the repository https://github.com/romeric/PostMesh.

https://github.com/romeric/PostMesh
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3.8.1 Mesh of a mechanical component

As a first example we consider an isotropic mesh of a mechanical component. The geometry is
given by 28 NURBS curves describing the boundary of the domain as depicted in Figure 3.9.

Figure 3.9: Geometry of mechanical component.

The initial linear triangular mesh is shown in Figure 3.10 (a), having 192 elements, 129
nodes and 68 boundary edges. The produced mesh using the ILE approach for a degree of
approximation p=5 is shown in Figure 3.10 (b), having 2,569 nodes.

(a) Linear mesh. (b) High-order mesh with p=5.

Figure 3.10: Isotropic mesh of mechanical component.

A detailed view of four high-order meshes produced using the same ILE approach is shown
in Figure 3.11, showing the large distortion that is induced by the projection of the boundary
nodes over the true boundary. In addition, the better approximation of the true boundary
shown in Figure 3.9 as the polynomial order is increased, can be clearly observed.

(a) p=2. (b) p=3. (c) p=4. (d) p=5.

Figure 3.11: Detailed view of the high-order isotropic meshes of mechanical component.

Effect of material properties

Figure 3.12 shows a comparison of the quality of the generated curvilinear meshes using lin-
ear, incrementally linearised and non-linear approaches. In all cases, the deformation of the
boundary has been imposed using five increments and the minimum scaled Jacobian is used as
a quality measure.

One can observe that the quality of the meshes produced with the ILE isotropic and CIL
neo-Hookean approaches is almost identical, although the CIL neo-Hookean approach seems to
provide better quality for high-order (e.g. p=5) approximations and for values of the Poisson’s
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(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

Figure 3.12: Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s
ratio and the polynomial degree.

ratio near the incompressible limit. Despite this difference, both approaches are able to produce
high quality meshes for any degree of approximation tested. In contrast, the (non-linear) neo-
Hookean approach fails to produce a high-order mesh for high-order approximations, except
for a few cases where a low-quality mesh for p=4 is produced. The quality of the produced
meshes for lower order approximations (i.e., p=3,4) is similar to the quality produced by the
ILE isotropic and CIL neo-Hookean approaches, but it is worth noting that the (non-linear)
neo-Hookean approach also fails in the nearly incompressible region, whereas the ILE isotropic
and CIL neo-Hookean approaches produce the best quality meshes in this scenario.

One should note that, unlike the linearised approaches wherein the internal nodes of the
mesh move proportionally to the boundary nodes, in the non-linear approach the internal
nodes can move arbitrarily within the element, and this can in turn affect the quality and
approximation property of the produced meshes. In a purely displacement-based formulation,
it is not possible to restrain the movement of internal nodes to a desired proportion. In this
context, higher order gradient theories [214, 88, 19] and more elaborate mixed formulations
[271, 28], offer a potential future research direction. From the mesh quality point of view, this
makes the application of the non-linear approach for mesh deformation questionable, as under
highly large and complex deformations, even more involved techniques such as line search and
arc length [30] cannot help improve the Newton-Raphson to achieve convergence, other than
perhaps enhancing the continuum using higher order gradient theories [214, 88, 19] and/or
relying on a more sophisticated mixed formulation [271, 28].

Effect of polyconvexity and the choice of material model

Next, we compare the effect of all the material models presented earlier in this chapter on
the quality of generated meshes, for all the three approaches. Figure 3.13 shows the quality
(minimum scaled Jacobian) as a function of the Poisson’s ratio for all the different models
considered in this work, when a polynomial approximation of degree p=2 is employed. For the
transversely isotropic model, the negative x-axis is chosen as the direction of anisotropy for the
interior elements. For the elements in the boundary, the direction of anisotropy is computed
to be perpendicular to the unit normal to boundary edge. This technique is customary in the
field of fibre-reinforced composites.

The results show that the quality displayed with neo-Hookean, Mooney-Rivlin and nearly
incompressible materials is almost identical for any value of the Poisson’s ratio, whereas a
different behaviour is obtained for the transversely isotropic model. The best quality is obtained
with the ILE TI model and with a Poisson’s ratio near 0.5. However, it is worth emphasising
that a small variability of the quality is obtained in all cases as all simulations provide a
high-order mesh with quality belonging to [0.67,0.77].

Next, the same comparison is performed for higher order approximations, but the results
with a Mooney-Rivlin and nearly incompressible models are omitted because, in all cases, the
results are almost identical to those obtained with a neo-Hookean model. Figure 3.14 shows
the quality (minimum scaled Jacobian) as a function of the Poisson’s ratio when a polynomial
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(a) Neo-Hookean.

0.0 0.1 0.2 0.3 0.4 0.5
Poisson′s Ratio (ν)

0.66

0.68

0.70

0.72

0.74

0.76

0.78

M
es

h
Q

ua
li

ty
−

m
in
(Q

3)

ILE Isotropic
CIL Mooney − Rivlin
Mooney − Rivlin

(b) Mooney-Rivlin.
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(c) NI-MR.
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Figure 3.13: Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s
ratio for p=2 using the ILE isotropic, CIL and non-linear approaches with different material
models.

approximation of degree p=3 is considered.
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(a) Neo-Hookean.
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Figure 3.14: Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s
ratio for p=3 using the ILE isotropic, CIL and non-linear approaches with different material
models.

A different trend is observed, when comparing the results with p=3 to the results with p=2
displayed in Figure 3.13. With p=3 the quality of the mesh improves as the Poisson’s ratio
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is increased, providing the best results always when the incompressible limit is approached.
This behaviour is expected in general because when the Poisson’s ratio is taken near 0.5, the
imposed displacement on the boundary induces a larger displacement of the interior nodes. In
contrast, when a value of the Poisson’s ratio near 0 is considered, the imposed displacement
on the boundary induces small displacement on the interior nodes, resulting in more distorted
elements (i.e. reduced quality elements). The reason why this expected behaviour was not
obtained with p=2 is attributed to the lack of resolution of the displacement field when the
coarse mesh considered here, see Figure 3.10, is employed with a quadratic approximation.
In fact, further simulations not reported here for brevity confirm that with a finer mesh the
expected trend is obtained even with a degree of approximation p=2.

In addition, the results show that the quality of the meshes produced with ILE isotropic, CIL
and non-linear approaches is almost identical if a neo-Hookean model is considered, whereas the
use of a transversely isotropic model reveals some differences between the three approaches.
The results demonstrate the significance of chosing a well-defined material model like neo-
Hookean (with a quality reported near 0.85), in contrast with a transversely isotropic model
(quality reported below 0.6 for any value of the Poisson’s ratio), whose limitations would be
discussed shortly. It is worth emphasising that the quality obtained with the Mooney-Rivlin
and the NI-MR models is almost identical to that produced by the neo-Hookean model, so that
any of the three models is equally suitable to produce high quality meshes in this example,
since all these material models are mathematically well-defined.

The choice of solid mechanics formulation

Finally, Figure 3.15 shows the quality (minimum scaled Jacobian) as a function of the Poisson’s
ratio when polynomial approximation of degrees p “ t4, 5, 6u are considered. The conclusions
that are implied by the results are similar to those obtained from the simulation with p=3. First,
the quality obtained with the neo-Hookean model is similar for the ILE and CIL approaches
whereas some differences are observed for the transversely isotropic model. However, in this case
the non-linear approach is not able to converge, as already mentioned and shown in Figure 3.12.
The quality of the produced meshes increases as the Poisson’s ratio approaches 0.47 and the best
results are obtained when a neo-Hookean (equivalently compressible or nearly incompressible
Mooney-Rivlin) model is considered. It is worth mentioning that this example shows a slight
drop in the quality of the mesh as the Poisson’s ratio increases from 0.47 to 0.49. It should be
noted that imposing the material to be incompressible in this example is not physically possible
because the initial and deformed configuration have a pre-defined (and non-equal) volume as
shown in Figure 3.12. Therefore, the results suggest that the Poisson’s ratio should be carefully
selected near the incompressible limit, but preferably of a value to ensure that some level of
compressibility is allowed, for instance 0.45. This behaviour is only observed with p=6 because
for lower order approximations there is a lack of resolution to capture the displacement field.

The analysis for the different approaches and material models is summarised in Figure 3.16.
This figure shows the mean and standard deviation of the scaled Jacobian for the ILE isotropic,
CIL and non-linear approaches with different materials and degrees of approximation.

It can be concluded that the choice of material model does not play a major role, as
long as the model is well-defined. As hinted before, unlike the other material models, the
transversely isotropic (TI) material, does not correspond to a polyconvex energy functional, or
more specifically, the invariant N ¨C2N “ pF TFNq ¨ pF TFNq, is not convex with respect to
F , and hence under highly large deformations, the model experiences instabilities in the form
of loss of ellipticity which can manifest through shear-bands, fibre kinking if under compression
or fibre de-bonding if under stretch; c.f. [207] and [208], for an intensive study on the loss of
ellipticity for this invariant. The latter two phenomena (fibre kinking and de-bonding) also
hold true for the transversely isotropic linear materials. As a consequence, it can be observed
that the mean quality of the high-order meshes generated with a transversely isotropic material
deteriorates as the order of approximation is increased, compared to the other material models.

Overall, the ILE isotropic approach is found to be the most robust, providing the best or
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(a) Neo-Hookean.
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(b) TI.
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(c) Neo-Hookean.
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(d) TI.
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(e) Neo-Hookean.
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Figure 3.15: Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s
ratio using the ILE isotropic, CIL and non-linear models with different material models and
p=4 (a,b), p=5 (c,d) and p=6 (e,f)

near the best mean quality for all orders of approximation. Also, it is worth noting that for all
material models the standard deviation grows as the order of approximation is increased, im-
plying that a good choice of the Poisson’s ratio is more important as the order of approximation
is increased.

Next, the effect of the Poisson’s ratio, the different approaches and material models on the
condition number of the system matrix is illustrated in Figure 3.17. The condition number is
computed using the lower bound one-norm estimate of Higham [124].
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(b) ILE and non-linear approaches.

Figure 3.16: Mean value and standard deviation of the minimum scaled Jacobian of the gener-
ated meshes as a function of the Poisson’s ratio for different materials and degrees of approxi-
mation.
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(a) Neo-Hookean.
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(b) Mooney-Rivlin.
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(c) Nearly incompressible.
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Figure 3.17: Condition number of the system matrix as a function of the Poisson’s ratio for
p=4 using the ILE isotropic, CIL and non-linear approaches with different material models.

Again, the results show that the condition number with neo-Hookean, Mooney-Rivlin and
NI-MR is almost identical for any value of the Poisson’s ratio, whereas a different behaviour is
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obtained for the transversely isotropic model. In all cases the condition number increases as the
Poisson’s ratio approaches the incompressible limit but it is worth noting that a slightly lower
condition number is obtained when the transversely isotropic model is considered, irrespective
of the use of ILE isotropic, CIL and non-linear approaches. This is inherently due to anisotropic
nature of the model, as the deformation is not homogenous in every direction and hence the
effect of Poisson’s ratio is not equally pronounced for this model. The results with other degrees
of approximation are omitted, as exactly the same behaviour is observed.

Effect of different projection techniques

We next consider the effect of different projection techniques on the quality of the generated
meshes. For 2D analysis one can only consider the isometric projection and the orthogonal
projections. Figure 3.18 shows a comparison of the isometric and orthogonal projection tech-
niques and its effect on the quality of for different Poisson’s ratio and polynomial degree. As
was mentioned eariler, the isometric and isoparametric projections are ideal as the maintain
the relative distance of the nodes in the curved mesh. In contrary, the orthogonal projection
performing a minimisation technique in Euclidean space can place the projected node arbi-
trarily. As can be seen, for certain geometrical representations and meshes this can affect the
quality of the mesh adversely.

(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

(d) ILE isotropic. (e) CIL neo-Hookean. (f) (Non-linear) neo-Hookean.

Figure 3.18: Minimum scaled Jacobian of the generated meshes as a function of the Pois-
son’s ratio and the polynomial degree for isometric(a,b,c) and orthogonal(d,e,f) projection
techniques.

Computational cost of different formulations

The last analysis is aimed to compare the computational cost of each formulation with different
material models and different orders of approximation p. As it is not feasible to a priori know
the number of iterations required by the non-linear approach to converge, a comparison of the
actual computing time is considered here.

Whilst theoretically, the non-linear approach should cost number of iterations ˆ number

of increments times more than the linear model, in practice, due to differences in the sparsity
pattern and condition number of the system as well as CPU warm-up and pipelining, this is
not often the case. In fact, comparison of non-linear against linear approaches is analogous to
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cold versus hot benchmarking, in that with a higher number of iterations, the processor be-
comes progressively more accurate with branch prediction and guessing jmp operations, which
helps improve processor pipelining. On the other hand, for highly non-linear problems, with
every iteration of the non-linear analysis the condition number increases, hence impacting the
run-time. With this in mind, we report the geometrical mean of 100 run-times, excluding the
timing for the first 10 runs. An in-house tool similar to Google Benchmark is used for time
measurements. For all time measurements, parallelisation has been turned off. Material data
and p are deliberately chosen such that the non-linear analysis would converge. The analysis
corresponds to ν “ 0.4 with other parameters remaining constant as before.

Figure 3.19 shows the CPU time using the three formulations and different material models
when the boundary displacement is imposed using five load increments using a polynomial
approximation of degree p=2 and p=3. The CPU timings have been normalised with respect
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Figure 3.19: Computational cost of various material models using three different formulations
with p=2 (902 degrees of freedom) and p=3 (1,930 degrees of freedom).

to that of classical linear elasticity (i.e. one increment). It is important to note that, due to the
small size of the problem, all systems are solved using UMFPACK, the cost of solver is negligible
and the condition number of the system does not adversely affect quadratic convergence of
Newton-Raphson. Furthermore, for a problem of this size, a portion of the computational time
corresponds to the overhead of function calls.

The computational cost associated with the different material models is clearly related
to the cost of their tangent operator evaluation. In the case of linear elasticity, the tangent
operator can be computed at the pre-processing stage. For a neo-Hookean model the two
fourth order identity tensors I b I pδijδklq and I pδikδjl ` δilδjkq, appearing in the tangent
operator, are compile time constants. For Mooney-Rivlin, nearly incompressible Mooney-Rivlin
and transversely isotropic hyperelastic models, the dyadic products in the tangent operators
are run-time variables and their computation is not always cache-friendly due to unavoidable
strided indexing [c.f. last chapter on detailed analysis of tensor networks]. In fact for complex
material models identifying the optimal contraction indices of tensor networks is not trivial
[251, 245, 93]. Using Voigt notation and further permutations, these dyadic products can
be transformed to further gemm calls, which eventually may or may not be beneficial. Also,
the nearly incompressible and transversely isotropic hyperelastic models require computation
of co-factors H and HHT , at every quadrature point which are all Opn3q in computational
complexity.

In this example, the ILE isotropic approach is found to be the most competitive. This
allows to conclude that, for this example, the ILE isotropic approach provides both the best

https://github.com/google/benchmark


26 CHAPTER 3. HIGH ORDER CURVILINEAR MESH GENERATION

quality and the lowest computational cost compared to other approaches and material models.
Furthermore, one should note that the qualities reported here are not indicative of the max-
imum quality that can be obtained, as the number of load increments is rather kept fixed to
facilitate an impartial comparison between different approaches. Finally, although CPU time
measurements are always dependent on the implementation, the results reported here provide a
qualitative indication of the higher cost associated to a non-linear approach. The CPU timing,
together with the already discussed convergence difficulties of non-linear approaches for high-
order approximations, clearly provides an indication of the limited scope of such an approach
for a posteriori high-order mesh generation.

3.8.2 Mesh around the SD7003 aerofoil

The second example considers anisotropic boundary layer meshes around the SD7003 aerofoil
with different levels of stretching in the boundary layer. The detailed view near the leading
edge of the initial linear triangular mesh shown in Figure 3.20 (a) corresponds to a stretching
factor of 25 (measured as the length of the largest edge divided by the shortest edge for an
element in the boundary layer), having 2,171 elements, 1,140 nodes and 85 edges on the curved
boundary. The produced mesh using the ILE approach for a degree of approximation p=5 is
shown in Figure 3.20 (b), having 27,410 nodes.

(a) Linear mesh. (b) High-order mesh with p=5.

Figure 3.20: Boundary layer mesh around an aerofoil.

The choice of different solid mechanics formulations on stretching

It should be mentioned that, similar to the previous example, it was found that the choice
of material model does not have an effect on the quality of the curved meshes and that the
transversely isotropic material shows a similar pattern of loss of ellipticity. In the light of these
findings, we abandon the comparison of material models for the present example and unless
otherwise stated, we only utilise the neo-Hookean model with its linearised version. In contrast,
due to high level of stretching of the meshes considered here, the effect of the number of load
increments on the quality of generated meshes will be investigated.

Figure 3.21 shows the quality of the high-order meshes, measured as the minimum scaled
Jacobian, as a function of the Poisson’s ratio and the number of load increments for the ILE
isotropic, CIL neo-Hookean and (non-linear) neo-Hookean approaches.

Once more, the non-linear approach is not able to provide a solution in all cases (i.e. for
all values of the Poisson’s ratio and number of load increments). In fact, when it converges,
the quality of the non-linear approach is generally lower than the quality of the ILE isotropic
and the CIL neo-Hookean approaches. It can also be observed that the quality of the meshes
produced with the ILE isotropic and the CIL neo-Hookean approaches is almost identical, for
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(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

Figure 3.21: Minimum scaled Jacobian of the generated meshes with p=2 as a function of the
Poisson’s ratio and the number of load increments.

any value of the Poisson’s ratio and for any number of load increments. Finally, the results show
that the best quality is obtained for value of the Poisson’s ratio near the incompressible limit
and ten load increments approximately. A further increase of the number of load increments
does not improve substantially the quality of the meshes but it enables to obtain high quality
meshes for slightly lower values of the Poisson’s ratio.

Figure 3.22 shows the same analysis for meshes with significantly higher level of stretching,
namely 100 and 800, for the same degree of approximation, p=2.

(a) ILE isotropic. (b) CIL neo-Hookea.n (c) (Non-linear) neo-Hookean.

(d) ILE isotropic. (e) CIL neo-Hookean. (f) (Non-linear) neo-Hookean.

Figure 3.22: Minimum scaled Jacobian of generated meshes with p=2 as a function of the
Poisson’s ratio and the number of load increments with a stretching of 100 in (a), (b) and (c)
and with a stretching of 800 in (d), (e) and (f).

For these meshes, the non-linear approach is only able to provide a result in a few cases. In
fact, further numerical experiments show that the higher the stretching, the more cases display
no convergence of the non-linear approach. In addition, the quality of the meshes produced
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with the ILE isotropic and the CIL neo-Hookean approaches is, again, almost identical, for any
value of the Poisson’s ratio and for any number of load increments, showing that the conclusions
presented do not strongly depend on the level of stretching within the boundary layer.

Effect of load increments

For the incremental linear elastic and the consistent incrementally linearised approaches, the
number of load increments generally improves the mesh quality but the same is not true for
the non-linear approach. If phenomena such as buckling, snap-back and snap through are not
expected, the non-linear approach provides the same mesh quality irrespective of the number
of increments. However, in the presence of buckling, it is possible to jump through snap-
back/snap-through region with fewer load increments, but as the number of load increments is
increased the buckling (i.e. snap-back/snap-through regions) cannot be avoided, which in the
absence of an arc-length technique leads to non-convergence of the Newton-Raphson method.
Furthermore, it is possible for the Newton-Rapshon scheme to converge just prior to the onset
of buckling, at the cost of losing quadratic rate of convergence due to ill-conditioning of the
system which essentially emanates from nearly zero Jacobian(s).

Next, the same analysis is performed for higher orders of approximation. Figure 3.23 and
Figure 3.24 show the quality of the high-order meshes as a function of the Poisson’s ratio
and the number of load increments for the ILE isotropic, CIL neo-Hookean and (non-linear)
neo-Hookean approaches, for a degree of approximation p=4 and p=6 respectively.

(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

(d) ILE isotropic. (e) CIL neo-Hookean. (f) (Non-linear) neo-Hookean.

Figure 3.23: Minimum scaled Jacobian of the generated meshes with p=4 as a function of the
Poisson’s ratio and the number of load increments with a stretching of 50 in (a), (b) and (c)
and with a stretching of 400 in (d), (e) and (f).

For p=4 the non-linear approach is unable to converge in the majority of cases. Only for
a relatively low stretching, such as 50, and using one load increment, this approach provides
a solution for any value of the Poisson’s. ratio. When the stretching is increased to 400, this
approach fails to converge even when one increment is used if the Poisson’s ratio is selected near



3.8. REPRESENTATIVE EXAMPLES 29

(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

(d) ILE isotropic. (e) CIL neo-Hookean. (f) (Non-linear) neo-Hookean.

Figure 3.24: Minimum scaled Jacobian of the generated meshes with p=6 as a function of the
Poisson’s ratio and the number of load increments with a stretching of 100 in (a), (b) and (c)
and with a stretching of 800 in (d), (e) and (f).

the incompressible limit. For the ILE isotropic and CIL neo-Hookean approaches the quality
of the produced meshes is, once more, almost identical for any value of the Poisson’s ratio,
number of increments and stretching. It worth noting that for this order of approximation, the
increase in stretching translates into a significant decrease in the maximum quality that can
be obtained with the ILE isotropic and CIL neo-Hookean approaches.

If the order of approximation is further increased to p=6, the problem becomes substantially
more challenging and the quality of the produced meshes with either the ILE isotropic and
CIL neo-Hookean approaches is significantly lower, as observed in Figure 3.24. For a stretching
factor of 100, a higher number of load increments is required (approximately 40) compared to
previous examples and a value of the Poisson’s ratio near the incompressible limit is mandatory
to obtain the best quality meshes. It is also worth noting that this example shows, for the first
time, a subtle difference between the ILE isotropic and CIL neo-Hookean approaches. For
a value of the Poisson’s ratio near the incompressible limit, the CIL neo-Hookean approach
requires more load increments than the ILE isotropic approach to obtain similar quality. The
conclusions for a stretching factor of 800 are similar but, as it can be observed in Figure 3.24,
both the ILE isotropic and CIL neo-Hookean approaches can only provide a maximum quality
near 0.3. In this example, the non-linear approach shows once more the inability to converge
in the majority of simulations.

To summarise, Figure 3.25 shows the ratio of the scaled Jacobian with 50 load increments
over the classical linear elasticity (i.e. single increment), in a logarithmic scale. Note that,
due to the logarithmic nature of this measure, a factor of zero implies no improvement and,
furthermore, a slight improvement in terms of this factor can imply a significant change in
terms of percentage value. For instance, for p “ 6, and stretching of 1600, the scaled Jacobian
improves from 0.0011 for a single increment to 0.3382 for 50 increments. It can be observed,
that at high p, it is crucial to increase the number of load increments to obtain good quality
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(b) p=4.
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(c) p=6.

Figure 3.25: Ratio of the scaled Jacobian with 50 load increments over a single load increment
(i.e. classical linear elasticity) for ν=0.495. The x-label indicates the level of stretching.

meshes, specially if the stretching is also high. In contrast, for low-order approximations the
gain obtained by increasing the number of load increments is marginal.

To further illustrate the improvement induced by an increase on the number of load incre-
ments in the quality of the generated meshes, Figure 3.26 shows a histogram of the quality for
two different values of the Poisson’s ratio, namely ν “ 0.11 and ν “ 0.44, and for an increasing
number of load increments. The simulations correspond to the mesh with stretching factor of
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(a) ν “ 0.11 and one load increment.
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(b) ν “ 0.11 and 50 load increments.
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(c) ν “ 0.44 and one load increment.
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(d) ν “ 0.44 and 50 load increments.

Figure 3.26: Distribution of scaled Jacobian throughout the mesh for p “ 4 and stretch level
of 200.

200 and with a degree of approximation p=4.
A marginal difference is observed between the ILE isotropic and CIL neo-Hookean ap-
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proaches both at lower values of Poisson’s ratio as well as for values near the incompressible
limit. As discussed earlier, this figure shows that the non-linear model is only able to con-
verge when a few load increments are considered. However, note that due to the presence of
the geometric stiffness term in the CIL approach, the interior elements are stiffened against
heavy distortion and hence the CIL approach typically produces meshes with a slightly better
distribution of the quality over the computational mesh, irrespective of the minimum value for
quality measures. The results also show the improvement induced by an increase of the Pois-
son’s ratio. For instance, Figure 3.26 (a) shows that the mesh contains a significant number of
elements of quality 0.45 when the Poisson’s ratio is 0.11 whereas the minimum quality of the
mesh associated to Figure 3.26 (c), with a Poisson’s ratio of 0.44, the minimum quality is near
0.75.

The choice of right quality measures

Next, the quality of the generated meshes in terms of different measures is studied, namely
the measures defined in Equation (3.26) that are defined in terms of the invariants in Equa-
tion (3.13). The two anisotropic mesh quality measures Q4 and Q5 are dropped from the
comparison because they are only valid for the transversely isotropic material model, which
has been shown to produce low quality meshes in the examples considered. It is worth empha-
sising that the qualities Q1 and Q2 are the same for two-dimensional plane strain problems.

Figure 3.27 shows the quality Q1 as a function of the Poisson’s ratio and the number of
load increments for the mesh with a stretching factor 50, 400 and 1600 and p=6.

The results show that the quality is substantially improved when the number of load in-
crements is increased, as previously observed with the minimum scaled Jacobian as quality
measure. However, in this example, increasing the Poisson’s ratio near the incompressible limit
induces a lower quality except if a large number of load increments is considered. As shown in
previous examples, the ILE isotropic approach performs slightly better than the CIL approach
when the Poisson’s ratio is selected near the incompressible limit and the non-linear approach
fails to converge in the majority of cases. Finally, by comparing Figure 3.27 and Figure 3.24,
we can clearly observe that a value closer to one is obtained when using Q1 instead of the min-
imum scaled Jacobian. This behaviour is expected because, for this problem the deformation
is primarily volumetric and the deviatoric contribution is negligible.

Figure 3.28 shows the three quality measures Q1, Q2 and Q3 as a function of the Poisson’s
ratio for the mesh with p=2, a stretching factor of 25 and using five load increments. The results
confirm, numerically, that the quality measures Q1 and Q2 are the same for two-dimensional
plane strain problems. It can also be observed that the ILE and CIL approaches produce meshes
of the same quality, irrespectively of the measure used. In addition, the results illustrate that
the quality measure Q1 (and Q2) is less influenced by changes on the Poisson’s ratio, compared
to Q3. Finally, the results confirm, once more, the lower quality obtained with the non-linear
approach compared to the ILE and CIL approaches, irrespective of the measure used.

In Figure 3.29, the effect of the stretching factor on the different quality measures is illus-
trated for the ILE isotropic approach using the mesh with p=4 and by introducing five load
increments. Almost identical results are obtained with the CIL neo-Hookean approach whereas
the non-linear approach fails to converge in the majority of the cases.

The results show that the quality measure Q1 (and Q2) are less influenced by an increase
in the stretching factor, compared to the minimum scaled Jacobian Q3. In all cases, and for
all values of the Poisson’s ratio, the value of Q1 (and Q2) is approximately 0.9, whereas the
quality Q3 can vary from 0.4 to 0.9 depending on the value of the Poisson’s ratio and the level
of stretching. When the quality Q3 is considered, the optimal value of the Poisson’s ratio is
clearly dependent on the level of stretching. For low to moderate stretching factors, a Poisson’s
ratio near the incompressible limit provides the highest quality whereas for very high stretching
factors it is better to consider values in between 0.3 and 0.4.

Finally, Figure 3.30 shows the three quality measures Q1, Q2 and Q3 as a function of the
Poisson’s ratio for the mesh with p=6, a stretching factor of 200 and using five load increments.
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(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

(d) ILE isotropic. (e) CIL neo-Hookean. (f) (Non-linear) neo-Hookean.

(g) ILE isotropic. (h) CIL neo-Hookean. (i) (Non-linear) neo-Hookean.

Figure 3.27: Quality Q1 of the generated meshes with p=6 as a function of the Poisson’s ratio
and the number of load increments with a stretching of 50 (a,b,c), 400 (d,e,f) and 1600 (g,h,i).

The results correspond to the ILE isotropic and CIL neo-Hookean approaches because the non-
linear approach fails to converge in all cases due to the high stretching and high-order considered
in this example.

This example, shows a different behaviour of the ILE isotropic and CIL neo-Hookean ap-
proaches. The CIL approach shows a significant deterioration of the quality measure Q1 (and
Q2) near the incompressible limit, whereas the ILE isotropic approach maintains a high quality
for all values of the Poisson’s ratio.

Computational cost of different formulations

Next, under the same setting as in the previous problem, the computational time is analysed,
for different formulations and using different material models. Figure 3.31 shows the CPU time
using the three formulations and different material models when the boundary displacement is
imposed using five load increments. The Poisson’s ratio is ν “ 0.4 and the order of approxima-
tion is p=2. These values are deliberately chosen such that the non-linear analysis converges
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(a) ILE isotropic.
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(b) CIL neo-Hookean.
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(c) (Non-linear) neo-Hookean.

Figure 3.28: Different quality measures of the generated meshes with p=2 as a function of the
Poisson’s ratio for the mesh with a stretching of 25 and using five load increments.
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(a) Stretching 25.
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(b) Stretching 200.
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(c) Stretching 1600.

Figure 3.29: Different quality measures of the generated meshes with p=4 as a function of the
Poisson’s ratio for the ILE isotropic approach and using five load increments.
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(a) ILE isotropic.
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(b) CIL neo-Hookean.

Figure 3.30: Different quality measures of the generated meshes with p=6 as a function of the
Poisson’s ratio for the mesh with a stretching of 200 and using five load increments.

for most material models.

Compared to the previous problem, there is a significant increase in the degrees of free-
dom and hence the overhead of function calls is insignificant compared to the actual cost of
computation.

For highly stretched meshes, the Newton-Raphson scheme loses quadratic convergence.



34 CHAPTER 3. HIGH ORDER CURVILINEAR MESH GENERATION

0

10

20

30

40

50

60

N
or

m
al

is
ed

Ti
m

e
Linear Elastic
ILE Isotropic
ILE TI

CIL neo − Hookean
CIL Mooney − Rivlin
CIL NI − MR

CIL TI
neo − Hookean
Mooney − Rivlin

NI − MR
TI

Stretching 25 Stretching 200

Figure 3.31: Computational cost of various material models using three different formulations
and with different levels of stretching.

The increased number of iterations required and the higher cost of each iteration, due to ill-
conditioning, makes the cost of the non-linear approach significantly higher. The ILE (isotropic
and TI) approaches are found to be the most competitive. This allows to conclude that, as
in the previous example, the ILE approaches provide both the best quality and the lowest
computational cost compared to other approacher and material models.

Effect of formulation and material models on p-convergence

The last study for this example, involves a p-convergence analysis in order to illustrate the
optimal approximation properties of the produced meshes. Given a smooth function defined in
Cartesian coordinates, the strategy consists on computing the exact value of the solution at the
mesh nodes. Then, the error between the approximated solution, interpolated from the nodal
values, and the exact solution is computed at each integration point to compute the error in
the L2pΩq norm.

Figure 3.32 shows the approximation error in the L2pΩq norm as a function of the square
root of the number of degrees of freedom for two different levels of stretching and for a degree
of approximation ranging from p=2 up to p=9.

The results show the expected exponential convergence in the approximation of a smooth
function. In addition, it is interesting to observe that the error is almost identical for the
ILE and CIL approaches. This conclusion is in line with the previous analysis where it was
shown that the quality of the meshes produced with the ILE and CIL approaches is almost
identical, except in some extreme cases considering highly stretched meshes, high-orders of
approximation and values of the Poisson’s ratio near the incompressible limit. In contrast,
the CIL TI approach, which was shown to produce lower quality for high-order approximation
shows a deterioration in the convergence rate, which illustrates the importance of producing
high quality meshes for finite element analysis. Finally, the results also show the ability to
preserve the approximation properties independently on the level of stretching. A much more
detailed analysis of approximation properties of curved elements is performed in chapter 4, in
the context of convex multi-variable electro-elasticity.

3.8.3 Mesh around the NASA almond

The next example considers a tetrahedral mesh around the NASA almond, a popular geom-
etry for benchmarking 3D radar cross section computations in computational electromagnet-
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(a) Stretching 25.
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(b) Stretching 200.

Figure 3.32: Approximation error in the L2pΩq norm as a function of the square root of the
number of degrees of freedom

ics [77, 324]. Figure 3.33 shows the linear surface mesh of the almond, the high-order surface
mesh corresponding to a degree of approximation p=4 and a cut of the high-order volume
mesh. The linear mesh contains 6,247 elements, 1,288 nodes and 688 faces on the almond.

(a) Linear surface mesh. (b) High-order surface mesh with p=6.

(c) Cut of the high-order volume mesh with p=6.

Figure 3.33: Isotropic mesh around the NASA almond.

The corresponding high-order mesh with p=6 contains 233,205 nodes and 16,420 nodes to be
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projected over the true almond geometry to obtain the Dirichlet boundary conditions of the
solid mechanics problem.

Similar to the previous examples, the effect of the Poisson’s ratio on the quality of the
generated meshes is investigated first, for different degrees of approximation. Figure 3.34
shows the quality measure Q1 for the linear, incremenetally linear and non-linear approaches.
In all cases the imposed displacement on the boundary has been introduced using 10 load
increments.

(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

Figure 3.34: Quality measure Q1 of the generated meshes as a function of the Poisson’s ratio
and the polynomial degree.

Compared to the two-dimensional results of the isotropic meshes in Section 3.8.1, similar
conclusions are derived here. First, the quality of both the meshes produced with the ILE
isotropic and CIL neo-Hookean approaches is similar, although the ILE isotropic provides better
quality near the incompressible limit and, for some particular choices of the approximation
degree, for the whole range of values of the Poisson’s ratio (e.g., for p=5). As shown in previous
examples, the non-linear approach produces good quality meshes for low-order approximations
(i.e., p=2,3). For p=4 a valid mesh is only obtained for values of the Poisson’s ratio between
0.1 and 0.4, and no convergence is obtained if the order of approximation is further increased.

Similar conclusions are obtained if other quality measures are utilised. For instance, Figure
Figure 3.35 and Figure 3.36 show the same analysis in terms of the quality measures Q2 and
Q3 respectively.

(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

Figure 3.35: Quality measure Q2 of the generated meshes as a function of the Poisson’s ratio
and the polynomial degree.

Although the actual value of the quality is different, depending on the selected measure,
the qualitative behaviour is the same compared to the quality Q1. As reported earlier with
the two dimensional examples, the quality measure that produces a lower absolute value is the
scaled Jacobian, Q3, traditionally used by the high-order mesh generation community. This is
attributed to the motion resulting from an imposed boundary displacement that results from
projecting the high-order nodes to the true CAD surface. In this scenario, the volumetric
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(a) ILE isotropic. (b) CIL neo-Hookean. (c) (Non-linear) neo-Hookean.

Figure 3.36: Quality measure Q3 of the generated meshes as a function of the Poisson’s ratio
and the polynomial degree.

deformation related to Q3, is much more important than the deformations related to Q1 and
Q2.

Figure 3.37 shows the three quality measures Q1, Q2 and Q3 as a function of the Poisson’s
ratio for the mesh with p=3 and using 10 load increments.
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(a) ILE isotropic.
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(b) CIL neo-Hookean.
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(c) (Non-linear) neo-Hookean.

Figure 3.37: Different quality measures of the generated meshes with p=3 as a function of the
Poisson’s ratio using 10 load increments.

The results confirm that, contrary to two dimensional plane strain problems, the quality
measures Q1 and Q2 are different. It can be observed that the ILE and CIL approaches
produce meshes of similar quality, irrespective of the measure considered. In addition, the
results illustrate that the quality measure Q1 is less influenced by the Poisson’s ratio whereas
the quality Q3 shows a major dependence on this material parameter. Finally, the results shows
that for low-order approximations the non-linear approach can produce meshes of slightly better
scaled Jacobian compared to the ILE and CIL approaches although when the quality measures
Q1 and Q2 are used, the non-linear approach produce the lowest quality meshes compared to
the ILE and CIL approaches. This is again due to the non-proportional movement of the nodes
in the non-linear approach, which results in distortion of edges and faces of the element, despite
a reasonable volumetric deformation being maintained.

If a higher order of approximation is considered, say p=5, the non-linear approach fails to
converge for any value of the Poisson’s ratio, as illustrated in Figure 3.34. A comparison of the
different quality measures for the ILE and CIL approaches is shown in Figure 3.38.

The results reveal important differences between the ILE and CIL approaches and illustrate
the robustness of the ILE approach as the quality is significantly less dependent on the value of
the Poisson’s raio selected, compared to the CIL approach. In fact, the results show that high
quality meshes can be obtained for the ILE approach with any value of the Poisson’s ratio,
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(a) ILE isotropic.

0.0 0.1 0.2 0.3 0.4 0.5

Poisson′s Ratio (ν)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

Q1

Q2

Q3

(b) CIL neo-Hookean.

Figure 3.38: Different quality measures of the generated meshes with p=5 as a function of the
Poisson’s ratio using 10 load increments.

even with a value near 0, whereas a substantial decrease in the quality is observed if a Poisson’s
ratio near 0 is selected for the CIL approach.

Next, the computational time is analysed. Figure 3.39 shows the CPU time using the three
formulations and different material models when the boundary displacement is imposed using
five load increments.
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Figure 3.39: Computational cost of various material models using three different formulations
with p=2 (27,831 degrees of freedom) and p=3 (90,648 degrees of freedom).

As carried out in the previous examples, the CPU time has been normalised with respect
to that of classical linear elasticity and the geometrical mean of 100 run-times, excluding the
timing for the first 10 runs, is reported. Compared to previous two-dimensional examples,
the number of degrees of freedom is now significantly larger for a single core and, therefore,
the cost of actual computation dominates over secondary effects such as inlining and branch
prediction. The systems of linear equations are now solved using the Multi-frontal Massively
Parallel Solver (MUMPS). It is interesting to observe that, despite these differences compared to
the two-dimensional examples, similar conclusions are obtained from the CPU time analysis.
Once more, both the ILE approaches are found to be the most competitive and the non-
linear approaches the most computationally expensive. These results, together with the quality
study presented in this section, enables to conclude that the ILE and CIL approaches are
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recommended for producing high-order curvilinear meshes from an initial linear mesh.

To conclude, p-convergence analysis of the interpolation error is performed to illustrate the
optimal approximation properties of the produced meshes. Following the strategy presented in
Section 3.8.2, Figure 3.40 shows the approximation error in the L2pΩq norm as a function of
the cubic root of the number of degrees of freedom for a degree of approximation ranging from
p=2 up to p=6.
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Figure 3.40: Approximation error in the L2pΩq norm as a function of the cubic root of the
number of degrees of freedom.

The results show the expected exponential convergence in the approximation of a smooth
function. In addition, it is interesting to observe that the error is almost identical for the ILE
and CIL approaches. Once more, the CIL TI approach shows a slight deterioration in the rate
of convergence for high-order approximations due to the lower quality of the meshes produced
with this approach. This result in fact pin-points the importance of choosing a well-defined
polyconvex material model, in the context of a posteriori mesh generation.

3.8.4 Meshes around full aircraft configurations

The next examples consider meshes around two full aircraft configurations, showing the capa-
bility of the proposed unified framework for generating meshes around realistic geometries of
interest to the computational electromagnetics and computational fluid dynamics communities.

First, a tetrahedral mesh around a generic Falcon aircraft is considered. The linear mesh
has 185,191 elements, 35,875 vertices and 16,922 triangular faces on the aircraft to be projected
on the true CAD geometry to obtain the Dirichlet boundary condition for the solid mechanics
problem. The corresponding CAD geometry has 54 surfaces with 240 intersection curves. For
an interpolation degree of p=3, there are 876,988 nodes in the domain and 76,151 nodes on the
aircraft that require projection.

Figure 3.41 shows the high-order surface mesh corresponding to a degree of approximation
p=3, the higher order mesh showing elements with Q3 ă 0.9 and a cut of the high-order volume
mesh. The problem is solved using the CIL Mooney-Rivlin approach with ν=0.45 and 20 load
increments. The minimum Scaled Jacobian for this mesh is Q3 “ 0.337 and there are 181,251
elements (i.e. 97.87 percent of the total number of elements) for which Q3 ą 0.9. The minimum
values of the other two quality measures, accounting for fibre and surface deformations, are
Q1 “ 0.605 and Q2 “ 0.467.

Next, a tetrahedral mesh around the DLR-F6 transport configuration is considered. The



40 CHAPTER 3. HIGH ORDER CURVILINEAR MESH GENERATION

(a) High-order surface mesh with p=4. (b) Elements with Q3 ă 0.9.

(c) Cut of the high-order volume mesh with p=3.

Figure 3.41: Isotropic mesh around a Falcon aircraft.

linear mesh has 68,571 elements, 31,080 vertices and 31,836 tetrahedral faces on the aircraft
to be projected on the true CAD geometry to obtain the Dirichlet boundary conditions for
the solid mechanics problem. The corresponding CAD geometry has 128 surfaces with 634
intersection curves. For an interpolation degree of p=4, there are 1,601,015 nodes on the
domain and 255,584 nodes on the aircraft that require projection. The problem is solved using
the ILE isotropic approach with ν “ 0.45 and 100 load increments. The minimum values of the
three quality measures for this mesh are Q1 “ 0.482, Q2 “ 0.377 and Q3 “ 0.329. Moreover
there are only 11 elements with a quality Q3 ă 0.9. Figure 3.42 shows the linear surface mesh
of the aircraft, the high-order surface mesh corresponding to a degree of approximation p=4
and a cut of the high-order volume mesh.

Finally, a boundary layer tetrahedral mesh around the DLR-F6 transport configuration
with a stretching of 317 is considered. The boundary layer has been constructed such that the
final mesh is suitable for a compressible Navier-Stokes simulation up to a Reynolds number
of approximately Re “ 4 ˆ 107. The linear mesh 4,482,662 elements, 787,712 vertices and
110,458 triangular faces on the aircraft. Two curved boundary layer meshes are generated
for this geometry with p “ 3 and p “ 4, respectively. The resulting high-order mesh with
p “ 3 has 20,434,689 nodes with 498,590 nodes on the aircraft and the p “ 4 mesh has
48,279,087 nodes with 885,712 nodes on the aircraft. These in turn correspond to 61,304,067
and 144,837,261 degrees of freedom for the elasticity solver. Both meshes are produced using
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(a) Linear surface mesh. (b) Cut of the high-order volume mesh with p=4.

(c) High-order surface mesh with p=4.

Figure 3.42: Isotropic mesh around the DLR-F6 transport configuration.

the ILE isotropic approach. The number of increments are chosen such that a balance is kept
between computational cost and final quality of the computational mesh. This corresponds to
60 and 30 increments with a minimum scaled Jacobian of 0.06 and 0.02 for p “ 3 and p “ 4,
respectively. However, for both meshes, 99.5% of the elements have scaled Jacobian above 0.8.

Figure 3.43 shows the surface mesh of the aircraft for p “ 4 and cuts of the high-order
volume mesh for p “ 3 and p “ 4.

3.8.5 Meshes around full racing car configuration

We now consider an unstructured tetrahedral mesh around a full racing car configuration. The
linear mesh has 184,463 elements, 43,206 vertices and 31,836 tetrahedral faces on the aircraft
to be projected on the true CAD geometry to obtain the Dirichlet boundary conditions for the
solid mechanics problem. The corresponding CAD geometry has 6,532 vertices 631 surfaces
with 3,266 intersection curves and hence is sufficiently complicated. For an interpolation degree
of p=5, there are 4,621,760 nodes on the domain and 2,670,660 nodes on the boundary that
require projection. The problem is solved using the CIL Neo-Hookean approach with ν “ 0.4
and 10 load increments. The minimum values of the three quality measures for this mesh are
Q1 “ 0.533, Q2 “ 0.416 and Q3 “ 0.214. Moreover there are only 52 elements with a quality
Q3 ă 0.8. It should be noted that the linear mesh obtained for this configuration has a coarse
region which affects the high order mesh qualities, as can be seen in Figure 3.44(b). Figure 3.44
shows multiple profiles of the surface and cut volume mesh of the car.
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(a) High order surface mesh with p=4. (b) Cut of the higher order volume mesh with p=3.

(c) Cut of the higher order volume mesh with p=4. (d) Curved boundary layer mesh with p=3 around
the wing of F6.

(e) Cut of the higher order volume mesh with p=4. (f) Cut of the higher order volume mesh with p=3.

Figure 3.43: Boundary layer mesh around the DLR-F6 transport configuration.

3.8.6 Unstructured tetrahedral meshes of complex mechanical components

Three complex three-dimensional mechanical components are considered in this section. The
Poisson’s ratio for all the examples considered in this section is chosen as ν “ 0.45.

The first example considers a mechanical valve where the CAD geometry has 45 surfaces and
260 intersection curves. The linear mesh has 16,509 elements 4,176 nodes and 5,364 triangular
faces on the boundary. The resulting high order mesh with p = 5 has 377,994 nodes and 67,047
nodes on the CAD surfaces. The problem is solved using the ILE isotropic approach with
5 load increments and the resulting minimum quality measures are Q1 “ 0.917, Q2 “ 0.841
and Q3 “ 0.768. Moreover, there are only 4 elements for which Q3 ă 0.9. Figure 3.45
shows two views of the generated high-order curved surface mesh corresponding to a degree of
approximation p=5.

The second component considered is that of a drill with an extremely sharp grove. The
linear mesh has 25,000 elements, 5,550 nodes and 4,904 triangular faces on the boundary. The
corresponding CAD geometry has 33 surfaces with 176 intersection curves. The resulting high
order mesh with p=5 has 552,375 nodes and 61,306 nodes on the true CAD surface. The
problem is solved using 20 steps of the CIL neo-Hookean model. Due to the extremely small
slit, the mesh around this region is severely stretched and hence the minimum scaled Jacobian
corresponds to Q3 “ 0.13. Figure 3.46 shows the linear surface mesh of the drill and different
profiles of the high-order curved surface mesh corresponding to a degree of approximation p =
5.
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(a) CAD curves and surfaces (b) Cut of the high-order volume mesh with
p=5.

(c) High-order surface mesh with p=5. (d) High-order surface mesh with p=5.

(e) High-order surface mesh with p=5.

Figure 3.44: Isotropic mesh around the racing car.

The last example considers a more complex mechanical component and it has been selected
to illustrate the robustness and potential of the proposed approach when dealing with complex
geometries formed by a large number of surfaces. The corresponding CAD geometry has 638
surfaces with 3,459 intersection curves. The linear mesh has 64,599 elements 17,025 vertices
and 23,506 triangular faces on the CAD boundary. The resulting high order mesh with p=4
has 784,670 nodes and 187,903 nodes on the boundary. The problem is solved using the ILE
isotropic approach with 200 load increments. The minimum values of the three quality measures
for this mesh are Q1 “ 0.719, Q2 “ 0.605 and Q3 “ 0.451, respectively. Moreover, there are
only 6 elements for which Q3 ă 0.9. Figure 3.47 shows different profiles of the high-order
curved surface mesh corresponding to a degree of approximation p=4. Observe that in this
mesh, there are 221 planar surfaces and the nodes lying on these surfaces require in-plane



44 CHAPTER 3. HIGH ORDER CURVILINEAR MESH GENERATION

Figure 3.45: Two views of the high-order curved mesh of mechanical valve

Figure 3.46: Two views of the high-order curved mesh of a drill

translations, which the proposed unified framework is capable of resolving.

Figure 3.47: Two views of the high-order curved mesh of a complex mechanical component
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3.8.7 Structured and unstructured curved hexahedral meshes

In this section we consider the case of structured and unstructured hexahedral mesh deforma-
tion. The Poisson’s ratio for all the examples considered in this section is chosen as ν “ 0.45.

The first example considers a semi-structured hexahedral mesh of RAE2822 configuration
where the CAD geometry has 4 surfaces and 12 intersection curves. The linear mesh has 383
elements 902 nodes and 900 quadrilateral faces on the boundary. The resulting high order mesh
with p = 3 has 14,596 nodes and 8,102 nodes on the CAD surfaces. The problem is solved
using the ILE isotropic approach with 3 load increments and the resulting minimum quality
measures are Q1 “ 0.987, Q2 “ 0.952 and Q3 “ 0.918. Figure 3.48 shows the CAD geometry
and two views of the generated high-order curved surface mesh corresponding to a degree of
approximation p=3.

Figure 3.48: CAD geometry and two views of the high-order curved RAE2822 mesh

The hexahedral meshes considered earlier have been semi-structured. We now consider a
completely unstructured hexahedral mesh of the popular propeller configuration shown in 3.8.7
. The corresponding CAD geometry has 724 vertices, 67 surfaces with 362 intersection curves,
with 8 surfaces requiring 2D mesh deformation. The linear mesh has 423,196 elements 453,456
vertices and 15,304 quadrilateral faces on the CAD boundary. The resulting high order mesh
with p=3 has 11,563,199 nodes with 137,736 of them lying on the boundary. This results in a
total of 34,689,597 degrees of freedom for the elasticity solver. The problem is solved using the
CIL approach with Mooney-Rivlin model and Poisson’s ratio 0.4. The minimum values of the
three quality measures for this mesh are Q1 “ 0.922, Q2 “ 0.901 and Q3 “ 0.800, respectively.
The distortion quality measures are shown in 3.8.7 with different profiles of the high-order
curved surface and cut volume mesh.

The final example considers a fully unstructured hexahedral mesh of a simplified BMW-
M6 car configuration. The corresponding CAD geometry has 1,152 vertices, 121 surfaces with
576 intersection curves, with 24 surfaces requiring in-plane translation (2D mesh deformation).
The linear mesh has 2,978,096 elements 3,201,461 vertices and 58,308 quadrilateral faces on the
CAD boundary. The resulting high order mesh with p=2 has 24,330,028 nodes and 3,376,383
nodes on the boundary. This accounts for a total of 72,990,084 degrees of freedom for the
elasticity solver. The problem is solved using the CIL approach with Mooney-Rivlin model
and Poisson’s ratio 0.4. The minimum values of the three quality measures for this mesh are
Q1 “ 0.993, Q2 “ 0.961 and Q3 “ 0.906, respectively. The generated high order mesh has an
excellent quality indeed .Figure 3.50 shows different profiles of the high-order curved surface
and cut volume mesh.
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(a) CAD geometry (b) Q1 distortion (c) Q2 distortion (d) Q3 distortion

(e) High order surface mesh p=3 (f) High order surface mesh p=3

(g) Separated volume mesh

Figure 3.49: Multiple views of the high-order curved hexahedral mesh of propeller. The colorbar
for distortion measures is scaled in [0,1] with minimum values Q1 “ 0.922, Q2 “ 0.901 and
Q3 “ 0.800

3.8.8 Unstructured prismatic and hybrid curved meshes

In this section, we consider the case of general polygonal shape elements and hybrid meshes.
To this end, as a first example we reconsider the last geometry of mechanical component,
considered in the previous section on hexahedral meshes. The linear mesh has 438 elements
570 vertices, 876 triangular faces and 135 quadrilateral faces on the CAD boundary. The
resulting high order mesh with p=4 has 18,855 nodes and 9,150 nodes on the boundary. The
problem is solved using the ILE isotropic approach with 5 load increments. The minimum
values of the three quality measures for this mesh are Q1 “ 0.789, Q2 “ 0.751 and Q3 “ 0.665,
respectively. Note that the triangular surface mesh is generated without performing mesh
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(a) CAD geometry (b) Topological CAD curves (c) Topological CAD surfaces

(d) Cut of volume mesh p=2 (e) Cut of volume mesh p=2

(f) High order surface mesh p=2

Figure 3.50: Multiple views of the high-order unstructured curved hexahedral mesh of the car
configuration

enhancements (i.e. diagonal swapping). Figure 3.51 shows different profiles of the high-order
curved surface mesh corresponding to a degree of approximation p=4. The presence of multiple
planar surfaces require a multi-level mesh deformation technique, for this mesh.

The second example considers an inhomogenous plate with multiple holes, also considered
in the previous section. The corresponding CAD geometry has 18 surfaces with 98 intersec-
tion curves. The linear mesh has 17,040 elements 11,649 vertices, 34,080 triangular faces and
8,740 quadrilateral faces on the CAD boundary. The resulting high order mesh with p=5 has
1,141,329 nodes and 151,578 nodes on the boundary. The problem is solved using the nonlinear
approach with Mooney-Rivlin model. The minimum values of the three quality measures for
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Figure 3.51: CAD and high-order curved prismatic mesh of a mechanical component. The
triangular surface mesh is generated without performing mesh enhancement (i.e. diagonal
swapping)

this mesh are Q1 “ 0.881, Q2 “ 0.856 and Q3 “ 0.786, respectively. Figure 3.52 shows different
profiles of the high-order curved surface mesh corresponding to a degree of approximation p=5.

Figure 3.52: Two views of the high-order curved prismatic mesh of a inhomogenous plate

The third example considers a hybrid mesh of a mechanical component. The linear mesh
consists of 1,392 hybrid tetrahedral, hexahedral and prismatic elements, 2,111 vertices, 384
triangular faces and 904 quadrilateral faces on the CAD boundary. The resulting high order
mesh with p=2 has 13,865 nodes and 5,146 nodes on the boundary. The problem is solved
using the CIL approach with Mooney-Rivlin model. The minimum values of the three quality
measures for this mesh are Q1 “ 0.772, Q2 “ 0.714 and Q3 “ 0.597, respectively. Figure 3.53
shows different profiles of the high-order curved surface mesh corresponding to a degree of
approximation p=2. Notice that due to the nature of hybrid mesh the corresponding qualities
are relatively lower, for this problem.

The fourth example considered is a hybrid quad dominant unstructured mesh of hand used
in biomedical applications. The CAD geometry consists of 2,624 vertices, 1,312 intersection
curves and 288. The linear mesh consists of 2,045,112 vertices, 46,070 quadrilateral faces and
9,124 triangular faces on the CAD boundary. The resulting high order mesh with p=2 has
186,282 nodes lying on the boundary. The problem is solved using the CIL approach with
Neo-Hookean model. The minimum values of the three quality measures for this mesh are
Q1 “ 0.667, Q2 “ 0.542 and Q3 “ 0.401 (corresponding to a hexahedral element), respectively.
Figure 3.54 shows different profiles of the high-order curved surface mesh corresponding to a
degree of approximation p=2.

The final example considers a hybrid quad dominant unstructured surface mesh of F16
fighter configuration. The consideration of surface mesh is to showcase the multi-level approach
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Figure 3.53: Two views of the high-order curved hybrid (tetrahedral, prismatic and hexahedral)
mesh of a mechanical component

(a) CAD geometry (b) CAD curves and surfaces (c) Cut of volume mesh p=2

(d) High order surface mesh p=2

Figure 3.54: Multiple views of the high-order curved hex-dominant hand mesh

as the CAD geometry consists of multiple planes for which the solid mechanics analogy will
have to be applied on. The CAD geometry consists of 1,048 vertices, 524 intersection curves
and 83 surfaces of which 21 surfaces are plane and hence, require in-plane nodal translation.
The linear mesh consists of 342,069 vertices, 307,858 quadrilateral faces and 68,412 triangular
faces on the CAD boundary. The resulting high order mesh with p=2 has 1,368,259 nodes all
lying on the boundary. The problem is solved using the CIL approach with Mooney-Rivlin
model. The minimum values of the three quality measures for this mesh are Q1 “ 0.883,
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Q2 “ 0.871 and Q3 “ 0.572 (corresponding to a triangular element), respectively. Figure 3.55
shows different profiles of the high-order curved surface mesh corresponding to a degree of
approximation p=2.

(a) CAD geometry (b) CAD geometry (c) Triangular surface elements (in
red)

(d) Hybrid surface mesh p=2 (e) Hybrid surface mesh p=2

(f) Hybrid surface mesh p=2 (g) Hybrid surface mesh p=2

(h) Hybrid surface mesh p=2

Figure 3.55: Multiple views of the high-order curved quad-dominant hybrid mesh of a F16
fighter

3.9 Conclusions

A unified framework for the generation of high-order curvilinear meshes derived via a solid me-
chanics analogy has been presented. This proposed theoretical and computational framework
encompasses the incremental linear elastic approach (wherein only the geometry is updated
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incrementally) and the fully non-linear approach, both previously applied in the context of a
posteriori high-order mesh generation. In addition, the new incrementally linearised elasticity
formulation (wherein the geometry, the tangent operator and the stresses are updated incre-
mentally), not previously applied to generate curvilinear high-order meshes, is included within
this unified framework. The material parameters are calibrated such that the tangent operators
of all the aforementioned approaches with various material models are identical in the reference
configuration, i.e. for the (undeformed) mesh with planar faces or edges. The derivation of all
the approaches, based on energy principles, is used to propose mesh quality measures based
on independent invariants of the strain energy density. The relation of the proposed quality
measures with indicators previously used in the context of high-order curved mesh generation
is discussed.

Several numerical examples are presented in both two and three dimensions, including
realistic geometries of interest to the solids, fluids and electromagnetics communities. A detailed
comparison of all the methodologies is made, including the quality of the generated high-order
meshes, the influence of material parameters and load increments on the resulting meshes,
the computational cost and the approximation properties of the meshes when applied to an
isoparametric finite element formulation.

In terms of the material parameters, the use of a Poisson’s ratio near the incompressible
limit is generally advised in order to maximise the quality of the resulting mesh. For isotropic
meshes, a low number of increments (e.g. five increments) is typically sufficient to obtain
the maximum possible quality, whereas for highly stretched meshes and for high-orders of
approximation (i.e. p ą 4) a higher number (e.g. 40 increments) is needed to obtain good
quality meshes. Both factors are in fact related as the results show that a higher number of
increments is needed when the Poisson’s ratio approaches the incompressible limit.

When the material parameters are kept the same, all the linearised approaches, in particu-
lar, the incremental linear elastic and the consistent incrementally linearised approach produce
meshes of very similar quality and only small differences are observed for highly stretched
meshes when high-orders of approximation are used and the Poisson’s ratio approaches the in-
compressible limit. In contrast, the non-linear approach has been found to produce poor quality
elements when a high-order approximation is utilised. The non-proportional displacement of
interior nodes with respect to the imposed displacement of boundary nodes has a significant
negative impact on the convergence of the non-linear solver. Only for low-order approximations
has the non-linear approach shown robustness and the ability to produce good quality meshes.
The importance of having a well-defined internal energy for the non-linear material model has
been illustrated using the transversely isotropic hyperelastic material. For highly stretched
meshes, buckling can be expected in the non-linear analysis and the Dirichlet-driven nature of
the problems demands a sophisticated and expensive arc-length technique to guarantee con-
vergence, hindering its practical use in an a posteriori mesh generation framework.

The three quality measures proposed for isotropic materials, namely, Q1 related to fibre
maps, Q2 related to surface maps and Q3 related to volume maps, show a similar trend with
respect to the material parameters. In fact, the first two quality measures are identical for two
dimensional plane strain problems. For all the examples considered, Q3 is the most impactful
indicator, which corresponds to the so-called scaled Jacobian traditionally used by the high-
order mesh generation community.

In terms of the computational cost, the non-linear approach is much more expensive than
the linearised approaches. For highly stretched meshes, where the Newton-Raphson scheme
may lose its quadratic convergence due to ill-conditioning of the system, a higher number of
iterations is required and the solver time is drastically increased. The linearised approaches
are not only much more economical but, in addition, more robust and produce better quality
meshes.

The approximation properties of the resulting meshes have been assessed and the results
show that a similar quality of mesh (as indicated by Q1, Q2 and Q3) translates in similar
interpolation errors (i.e. the quality indicators have been shown to be well chosen).
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Finally, it is apparent by now that, the quality of a high order mesh depends on the
restrictions imposed by the linear mesh. If a linear planar mesh is coarse in the vicinity of
a steep curvature, the resulting elements in the high order mesh would experience a large
distortion. However, the advantage of a posteriori approaches for mesh deformation based
on solid mechanics analogy is in the fact that there are multitude of established efficient and
parallel elasticity solver which can be utilised to generate computational meshes for realistic
industrial geometries, whereas this is not often the case for a priori mesh generation algorithms.
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Chapter 4

Convex Multi-Variable
Electromechanics

4.1 Introduction

In this chapter, the Convex Multi-Variable (CMV) class of electromechanics for large deforma-
tions large electric fields analyses is discussed. The CMV reversible nonlinear electro-elasticity
is a direct extension of the polyconvex elasticity recently presented and thoroughly pursued
by Gil and Ortigosa [113, 233, 232]. The variational framework for CMV designed to tackle
materials, specially dielectric elastomers which are characterised by displaying extremely large
deformations when exposed to a high electric field is shown to satisfy ellipticity and guarantee
material stability for the entire range of deformation.

The point of departure for such formulations is an assumed energy functional for the coupled
electromechanical system. Conceptually, essential and suitable mathematical requirements for
the energy functional such as ellipticity [16, 202], multi-variable convexity [113, 233], coer-
civity [270] and material frame indifference [29] can only be studied in a large deformation
context. From a phenomenological point of view, these requirements or rather restrictions
have important physical implications, in particular in guaranteeing the positive definiteness of
the generalised electromechanical acoustic tensor, existence of real wave speeds in the material
in the vicinity of an equilibrium configuration and the electromechanical stability of the ma-
terial [210, 233]. Apart from these requirements other forms of physical instabilities present
in dielectric elastomers such as pull-in instability, snap-through and the formation, propaga-
tion and nucleation of wrinkles can also be studied solely in the finite deformation regime
[246, 335, 198, 336, 177, 110, 216, 217].

Furthermore, the requirement for material frame indifference of the energy, dictates that
convex multi-variable energies typically expressed in terms of fundamental kinematic measures
tF ,H, Ju be re-expressed in terms of a set of symmetric kinematics tC,G, Cu to guarantee
the objectivity of the energy functional. This symmetrisation is in particular also redeeming
from particularisation to small strain point of view.

In this chapter we will discuss the convex multi-variable electro-elasticity based on a tensor
cross product formulation. In particular, the chapter is divided into four sections, namely

1. Section 4.2 presents the concept of multi-variable convexity in nonlinear electromechan-
ics and presents the tensor cross product based formulation for CMV and the simplifi-
cations that the tensor cross product algebra brings forth to the equations of massively
deformable electro-active polymers.

2. Section 4.3 discusses the objective representation of multi-variable convexity in non-
linear electromechanics and presents the tensor cross product based formulation for re-
expressing CMV energies in terms of symmetric kinematic measures.

3. Section 4.4 presents the spatial representation of multi-variable convexity in nonlin-
ear electromechanics and presents the tensor cross product based formulation for re-

2
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expressing CMV energies in an updated Lagrangian setting.

4. Section 4.5 presents the Legendre transformation of the convex multi-variable internal
energies to Helmholtz-like energies suitable for finite element implementation and the
algebra involved therein.

4.2 Convex multi-variable electro-elasticity

In this section, essential concepts of electro-elasticity are discussed as a key application area
for the current tensor contraction framework.

4.2.1 Kinematics

Let us consider the motion of an electro-mechanical body which in its initial configuration
is defined by a domain V of boundary BV with outward unit normal N . After the motion,
the body occupies a final configuration defined by a domain v of boundary Bv with outward
unit normal n, as shown in Figure 4.1. The pseudo-time (t) dependent mapping field φ links a
material particle from initial configurationX to final configuration x according to x “ φpX, tq.
The deformation gradient tensor F is defined as

x1, X1

x3, X3

x2, X2

dA

da =HdA

dX

dx = F dX

dV

dv = JdV

x = φ(X, t)

Figure 4.1: Motion map of a body V and the kinematic measures tF ,H, Ju.

F “∇0x “
BφpX, tq

BX
, (4.1)

In addition, with the help of the tensor cross product operations, the cofactor and Jacobian
(H “ CofF and J “ detF ) of the deformation are defined as, [65, 28, 29]

H “
1

2
F F ; HiI “

1

2
EijkEIJKFjJFkK ; (4.2a)

J “
1

3
H : F ; J “

1

3
HiIFiI . (4.2b)

As shown in Figure 4.1, tF ,H, Ju are the kinematic measures relating the differential fibre,
area and volume elements from initial tdX, dA, dV u to final tdx, da, dvu configuration.

4.2.2 Translational and rotational equilibruim

The kinematics of the electro-active continuum presented in subsection 4.2.1 must be described
through the conservation of linear momentum. In the absence of inertial effects, the global
conservation of linear momentum leads to the integral translational equilibrium equations

ż

BtV
t0dA`

ż

V
f0dV “ 0, (4.3)
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where f0 represents the body force per unit undeformed volume V and t0 the traction force
per unit undeformed area, applied on BtV Ă BV such that BtV Y BuV “ BV and BtV X BuV “
H. From (4.3), the local translational equilibrium equations and the associated boundary
conditions can be written as

DIVP ` f0 “ 0 in V ; (4.4a)

PN “ t0 on BtV ; (4.4b)

φ “ pφqBφV on BuV, (4.4c)

where P represents the first Piola-Kirchoff stress tensor. Furthermore, conservation of rota-
tional equilibrium leads to the well-known tensor condition PF T “ FP T .

4.2.3 Electrostatics: Gauss’s and Faraday’s laws

In addition to the conservation of translation and rotational equilibrium presented in sub-
section 4.2.2, the electro-active polymer represented by the continuum described in subsec-
tion 4.2.1 is subjected in its material configuration V to an electric volume charge ρe0 per unit
of undeformed volume and an electric surface charge ωe0 per unit of undeformed area applied
on BωV Ă BV . Hence, in the absence of magnetic fields, the integral version of the Gauss’s law
can be written in a Lagrangian setting as

ż

BωV
ωe0dA`

ż

V
ρe0dV “ 0. (4.5)

From (4.5), the local version of Gauss’s law and the associated boundary conditions can be
written as

DIVD0 ´ ρ
e
0 “ 0 in V ; (4.6a)

D0 ¨N “ ´ωe0 on BωV, (4.6b)

where D0 is the Lagrangian electric displacement vector. Furthermore, the integral version of
the static Faraday’s law can be written in a Lagrangian form for a closed curve C embedded in
V Y BV as

¿

C

E0 ¨ dX “ 0, (4.7)

where E0 is the Lagrangian or material electric field vector. The local version of (4.7) and the
associated boundary conditions can be written as

E0 “ ´∇0ϕ in V ; (4.8a)

ϕ “ pϕqBϕV on BϕV, (4.8b)

where ϕ is the scalar electric potential. In (4.8), BϕV represents parts of the boundary BV
where essential electric potential boundary conditions are applied such that BωV Y BϕV “ BV
and BωV X BϕV “ H. The spatial electric field vector E can be obtained by performing the
push forward (standard fibre transformation) on material electric field i.e. E0 “ F

TE.
Let us define δu and ∆u as virtual and incremental variations of x, respectively and δD0

and ∆D0 as virtual and incremental variations of D0, respectively, where it will be assumed
that δu, ∆u, δD0 and ∆D0 satisfy compatible homogeneous displacement based boundary
conditions that vanish on BuV and BϕV , respectively.

4.2.4 The internal energy density in convex multi-variable electro-elasticity

For the closure of the system of equations defined by (4.4), (4.6) and (4.8), two additional
constitutive laws are needed relating deformation and electric displacements to stresses and
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electric fields in the continuum, satisfying appropriate constitutive inequalities, in particular
ellipticity [78, 233]. In the case of reversible electro-elasticity, where thermal effects and electric
polarisation induced hysteresis are disregarded, the internal energy density e per unit of un-
deformed volume can be solely defined in terms of the deformation and electric displacement,
namely e “ ep∇0x,D0q. In this setting consistent linearisation of the internal energy e with
respect of virtual and incremental variation of the geometry and electric displacement leads to

Derδu; δD0s “ P : ∇0δu`E0 ¨ δD0, (4.9)

where the first Piola-Kirchhoff stress tensor P and the Lagrangian electric field E0 are com-
puted as

P “
BepF ,D0q

BF

ˇ

ˇ

ˇ

ˇ

F“∇0x

; E0 “
BepF ,D0q

BD0

ˇ

ˇ

ˇ

ˇ

F“∇0x

, (4.10)

Recently, Gil and Ortigosa [113, 233, 235, 234] have introduced the concept of multi-variable
convexity (CMV), which satisfies the well-posedness of the governing equations described in
subsection 4.2.2, and postulated as

epF ,D0q “ W̃ pF ,H, J,D0,dq; d “ FD0, (4.11)

where W̃ represents a convex multi-variable functional in terms of the extended set of arguments
VFHJD0d “ tF ,H, J,D0,du. Following [113], the first Piola-Kirchoff stress tensor and the
electric field vector and can be obtained from the linearisation of the convex multi-variable
energy as

Derδus “ DW̃ rDF rδus, DHrδus, DJrδus, DD0rδus, Ddrδuss

“ pΣF `ΣH F ` ΣJH `Σd bD0q : ∇0δu; (4.12a)

DerδD0s “ DW̃ rδD0, δFD0s “ pΣD0 ` F
TΣdq ¨ δD0, (4.12b)

from which the first Piola-Kirchhoff stress tensor and the electric field vector can be expressed
as

P “ ΣF `ΣH F ` ΣJH `Σd bD0; PiI “ ΣFiI ` EijkEIJKΣHjJFkK ` ΣJHiI ` ΣdiD0I ;

(4.13)

E0 “ ΣD0 ` F
TΣd; E0I “ ΣD0I

` FIiΣdi , (4.14)

where ΣA “ BW
BA , where A can represent any element from the set VFHJD0d. Furthermore,

consistent linearisation of the governing equations leads to

D2erδu, δD0; ∆u,∆D0s “ r∇0δu : δD0s

«

C̃ Q̃T

Q̃ θ̃

ff

„

: ∇0∆us
∆D0



(4.15)

with the constitutive tensors of the material namely, the fourth order elasticity tensor C̃, the
third order piezoelectric or coupling tensor Q̃ and the second order dielectric tensor θ̃, defined
as

C̃ “ B
2epF ,D0q

BF BF

ˇ

ˇ

ˇ

ˇ

ˇ

F“∇0x

; Q̃ “
B2epF ,D0q

BD0BF

ˇ

ˇ

ˇ

ˇ

ˇ

F“∇0x

; θ̃ “
B2epF ,D0q

BD0BD0

ˇ

ˇ

ˇ

ˇ

ˇ

F“∇0x

. (4.16)

Analogous to (4.13), a more physically insightful representation of the tangent operator can be
obtained as

D2erδu; δD; ∆u; ∆Ds “ rMFHJD0d
δ sT rHW̃ srM

FHJD0d
∆ s ` pΣH ` ΣJF q : p∇0δu ∇0∆uq

`Σd ¨ pp∇0δuq∆D0 ` p∇0∆uqδD0q, (4.17)
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where

rMFHJD0d
δ sT “ rp∇0δuq : p∇0δu F q : p∇0δu : Hq δD0 ¨ pp∇0δuqD0 ` FδD0qs;

rMFHJD0d
∆ s “

»

—

—

—

—

—

—

–

p∇0∆uq :

p∇0∆u F q :

p∇0∆u : Hq

∆D0¨

pp∇0∆uqD0 ` F∆D0q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with the Hessian operator rHW̃ s defined as

rHW̃ s “

»

—

—

—

—

—

–

W̃FF W̃FH W̃FJ W̃FD0 W̃Fd

W̃HF W̃HH W̃HJ W̃HD0 W̃Hd

W̃JF W̃JH W̃JJ W̃JD0 W̃Jd

W̃D0F W̃D0H W̃D0J W̃D0D0 W̃D0D0

W̃dF W̃dH W̃dJ W̃dD0 W̃dd

fi

ffi

ffi

ffi

ffi

ffi

fl

, (4.18)

where WAB “
B2 W̃
BABB , where A and B can represent any two elements from the set VFHJD0d.

Alternatively, following [113], the components C̃, Q̃ and θ̃ can be defined in terms of the set of
work-conjugates VFHJD0d as

C̃ “WFF ` F pWHH F q `WJJH bH ` C1 ` 2pWFH F qsym

` 2pWFJ bHq
sym ` 2pWFd bD0q

sym ` 2ppF WHJq bHq
sym

` 2ppF WHdq bD0q
sym ` 2pH b pWJd bD0qq

sym `A; (4.19a)

Q̃T
“WFD0 ` F WHD0 `H bWJD0 `QT

1 `QT
2 `QT

3 `QT
4 `QT

5 ; (4.19b)

θ̃ “WD0D0 `
`

WD0dF ` F
TWdD0

˘

` F TWddF , (4.19c)

where

AiIjJ “ EijpEIJP pΣH ` ΣJΣHqpP ; C1iIjJ “ pWddqij D0ID0J ,

and for any fourth order tensor T , T sym
iIjJ “

1
2pTiIjJ ` TjJiIq and

rQT
1 siIJ “ rWdD0siJD0I ;

rQT
2 siIJ “ rWFdsiIjFjJ ;

rQT
3 siIJ “ rF WHD0siIjFjJ ;

rQT
4 siIJ “ rH bWJdsiIjFjJ ;

rQT
5 siIJ “ rWddsijFjJD0I

In the context of finite elements, equations (4.13-4.16) need to be evaluated at every quadrature
point. Hence, the computational cost of numerical integration would be dictated primarily by
the evaluation of the work-conjugates and the Hessian of the internal energy [254, 251].

It is important to note that, the convex multi-variable electro-elastic formulation described
here is a direct extension of the polyconvex nonlinear elasticity presented in chapter 2. In fact
equivalency could be established between the two as shown in Figure 4.2.

4.2.5 A simple convex multi-variable constitutive model

A simple internal energy functional which complies with the definition of multi-variable con-
vexity in (4.11), can be defined as

W “ µ1IIF ` µ2IIH ` fpJq `
1

2ε1
IID0 `

1

2ε2J
IId, (4.20)
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Polyconvex Elasticity
- - - - - - - - - - - - - - -

W (F ,H, J)
- - - - - - - - - - - - - - -

ΣF =
∂W

∂F
- - - - - - - - - - - - - - -

ΣH =
∂W

∂H
- - - - - - - - - - - - - - -

ΣJ =
∂W

∂J

⇒

CMV Electro-elasticity
- - - - - - - - - - - - - - -
W (F ,H, J,D0,d)

- - - - - - - - - - - - - - -

ΣF =
∂W

∂F
- - - - - - - - - - - - - - -

ΣH =
∂W

∂H
- - - - - - - - - - - - - - -

ΣJ =
∂W

∂J
- - - - - - - - - - - - - - -

ΣD0
=

∂W

∂D0
- - - - - - - - - - - - - - -

Σd =
∂W

∂d

Figure 4.2: Extension of polyconvexity to Convex Multi-Variable (CMV) electro-elasticity,
showing internal energy and the associated work-conjugates

where fpJq was introduced in (2.12) and tµ1, µ2, ε1, ε2, κu, positive material constants. For
this model, P (4.13) and E0 (4.14) are

P “ 2µ1F ` 2µ2H F `

ˆ

f 1pJq ´
1

2ε2 J2
IId

˙

H; E0 “
1

ε1
D0 `

1

ε2 J
F Td, (4.21)

and the non-zero components of the Hessian operator HW1 are defined as

WFF “ 2µ1I; WHH “ 2µ2I; WJJ “

ˆ

f2pJq `
1

4ε2 J3
IId

˙

;

WJd “ ´
1

ε2J2
d; WD0D0 “

1

ε1
I; Wdd “

1

ε2J
I, (4.22)

where f 1pJq and f2pJq were defined in (2.14) and (2.16), respectively. The tensors C, Q and θ
can now be obtained from (4.22).

4.3 Objective representation in convex multi-variable electro-
elasticity

4.3.1 Kinematics

Based on the fundamental kinematic measures tF ,H, Ju defined in (4.1) and (4.2), a set of
symmetric kinematic measures namely C,G and C, can be defined as described in chapter 2

C “ F TF ; G “
1

2
C C “HTH; C “

1

3
G : C “ J2, (4.23)

whereC is the right Cauchy-Green strain tensor andG and C are its co-factor and determinant,
respectively. The directional derivatives of the kinematics with respect to incremental and
virtual variation of the geometry can be computed as described in chapter 2.

4.3.2 The internal energy density in objective convex multi-variable electro-
elasticity

The requirement for objectivity (i.e. invariance with respect to rotations in the material con-
figuration) implies that e must be independent of the rotational components of deformation.
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This can be facilitated by re-expressing the internal energy density in terms of a symmetric
kinematic measure such as the symmetric right Cauchy-Green tensor C as follows

ep∇0x,D0q “ esympC,D0q. (4.24)

In this setting consistent linearisation of the internal energy e with respect of virtual and
incremental variation of the geometry and electric displacement leads to

Desymrδu; δD0s “ S :
1

2
DCrδus `E0 ¨ δD0, (4.25)

where the second Piola-Kirchhoff stress tensor S and the Lagrangian electric field E0 are
computed as

S “ 2
BesympC,D0q

BC

ˇ

ˇ

ˇ

ˇ

F“∇0x

; E0 “
BesympC,D0q

BD0

ˇ

ˇ

ˇ

ˇ

F“∇0x

, (4.26)

wherein the first and second Piola-Kirchhoff tensors are related through P “ FS. For the
requirement of objectivity, the convex multi-variable energy W̃ (4.11) can be re-expressed in
terms of a set of symmetric kinematics defined in (4.23)

ep∇0x,D0q “ esympC,D0q “
ð
W̃ pF ,H, J,D0,dq “

ñ
WsympC,G, C,D0q, (4.27)

where esym represents the internal energy in terms of the right Cauchy Green strain tensor C
and Lagrangian electric displacement D0 and Wsym represents an internal energy defined in
terms of the extended symmetric mechanical kinemtic set Vmsym “ tC,G, Cu and the Lagrangian
electric displacement D0. It is worth noting that Wsym is not strictly convex with respect to
the individual components of the set tVmsym,D0u, but rather an objective re-expression of the

convex multi-variable functional W . Furthermore, the inclusion of the term d in W̃ is useful
in the context of studying material stability [113] which can be re-expressed in terms of the
combination of kinematics in tVmsym,D0u. Notice that, constructing a convex multi-variable

energy (i.e. W̃ ) is a necessary first step for a materially frame indifferent representation (i.e.
Wsym), but the vice-versa is not necessarily true or at times even obtainable.

Definition of an objective internal energy density such as in (4.27) is an essential requirement
for the particularisation of a multi-variable convex function to the case of small strains [254,
251]. Furthermore, this definition of the internal energy esym (4.27) facilitates the introduction
of a new set of work-conjugates which can now be defined as

ΣC “ 2
BWsym

BC
; ΣG “ 2

BWsym

BG
; ΣC “ 2

BWsym

BC
; ΣD0 “

BWsym

BD0
. (4.28)

For notational convenience, the following sets, featuring in subsequent sections, are introduced

Vmsym “ tC,G, Cu; Σm
Vsym

“ tΣC ,ΣG,ΣCu; (4.29a)

Ve “ tD0u; Σe
V “ tΣD0u; (4.29b)

V “ tVmsym,Veu; ΣV “ tΣ
m
Vsym

,Σe
Vu (4.29c)

Following [29, 113, 233], a physically more insightful representation for the second Piola-
Kirchhoff stress tensor S and the Lagrangian electric field E0 can be obtained through consis-
tent linearisation of (4.27)

Desymrδus “ DW rDCrδus, DGrδus, DCrδus, DD0rδuss

“ pΣC `ΣG C ` ΣCGq :
1

2
DCrδus; (4.30a)

DesymrδD0s “ DW rδD0s “ ΣD0 ¨ δD0, (4.30b)
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from which the second Piola-Kirchoff stress tensor and the electric field vector can be expressed
as

S “ ΣC `ΣG C ` ΣCG; (4.31)

E0 “ ΣD0 . (4.32)

Subsequently, the internal energy esym “ esympC,D0q can be further linearised leading to a
tangent operator (facilitating a Newton-Raphson solution) which can be defined as follows

D2esymrδu, δD0; ∆u,∆D0s “ r
1
2DCrδus : δD0s

„

C QT

Q θ

 „

: 1
2DCr∆us

∆D0



` S :
1

2
D2Crδu; ∆us,

(4.33)

with the fourth order elasticity tensor C, the third order coupling tensor Q and the second
order dielectric tensor θ defined as

C “ 4
B2esympC,D0q

BCBC

ˇ

ˇ

ˇ

ˇ

F“∇0x

; Q “ 2
B2esympC,D0q

BD0BC

ˇ

ˇ

ˇ

ˇ

F“∇0x

; θ “
B2esympC,D0q

BD0BD0

ˇ

ˇ

ˇ

ˇ

F“∇0x

.

(4.34)

Analogous to (4.31), a more physically insightful representation of the tangent operator can be
obtained as

D2esymrδu; δD0; ∆u; ∆D0s “ rMCGCD0
δ sT rHCGCD0

Wsym
srM∆s ` pΣG ` ΣCCq : p1

2DCrδus
1
2DCr∆usq

` S : rp∇0δuq
T p∇0∆uqs, (4.35)

where

rMCGCD0
δ sT “ r12DCrδus : 1

2DGrδus : 1
2DCrδus δD0¨s;

rMCGCD0
∆ s “

»

—

—

—

–

: 1
2DCr∆us

: 1
2DGr∆us

1
2DCr∆us

∆D0

fi

ffi

ffi

ffi

fl

,

with the Hessian operator rHWsyms defined as

rHWsyms “

»

—

—

–

4WsymCC 4WsymCG 4WsymCC 2WsymCD0

4WsymGC 4WsymGG 4WsymGC 2WsymGD0

4WsymCC 4WsymCG 4WsymCC 2WsymCD0

2WsymD0C
2WsymD0G

2WsymD0C
WsymD0D0

fi

ffi

ffi

fl

, (4.36)

where the components of C,Q and θ can now be defined in terms of the set of work-conjugates
ΣV defined in (4.29) as follows

C “WsymCC
`C

`

WsymGG
C
˘

`
`

WsymCCGbG
˘

`WsymCG
C `C WsymCG

`WsymCC
bG`GbWsymCC

` pC WsymCC
q bG`Gb pWsymCC

Cq; (4.37a)

QT “WsymCD0
`C WsymGD0

`GbWsymCD0
; (4.37b)

θ “WD0D0 . (4.37c)

It is important to note that, as opposed to the convex multi-variable Hessian operator expressed
in terms of the fundamental kinematic set tF ,H, J,D0,du in (4.18), the Hessian operator in
(4.36) is not strictly positive definite as multi-variable convexity is not defined with respect to
the set Vmsym and, hence, ellipticity (i.e. rank-one convexity) of the internal energy based on
this constitutive term alone cannot be established.

It is important to note that, the objective convex multi-variable electro-elastic formulation
described here is a direct extension of the frame invariant polyconvex nonlinear elasticity pre-
sented in chapter 2. In fact equivalency could be established between the two as shown in
Figure 4.3.
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Polyconvex Elasticity
- - - - - - - - - - - - - - -

W (C,G, C)
- - - - - - - - - - - - - - -

ΣC =
∂W

∂C
- - - - - - - - - - - - - - -

ΣG =
∂W

∂G
- - - - - - - - - - - - - - -

ΣC =
∂W

∂C

⇒

CMV Electro-elasticity
- - - - - - - - - - - - - - -
W (C,G, C,D0)

- - - - - - - - - - - - - - -

ΣC =
∂W

∂C
- - - - - - - - - - - - - - -

ΣG =
∂W

∂G
- - - - - - - - - - - - - - -

ΣC =
∂W

∂C
- - - - - - - - - - - - - - -

ΣD0 =
∂W

∂D0

Figure 4.3: Extension of frame invariant polyconvexity to objective Convex Multi-Variable
(CMV) electro-elasticity, showing internal energy and the associated work-conjugates

4.3.3 A simple objective convex multi-variable constitutive model

A simple internal energy functional which complies with the definition of objective multi-
variable convexity in (4.27), can be defined as

W “ µ1IC ` µ2IG ` fpCq `
1

2ε1
IID0 `

1

2ε2

?
C
IId, (4.38)

where fpCq was introduced in (2.24). For this model, S (4.31) and E0 (4.32) are

S “ 2µ1I ` 2µ2I C `

ˆ

f 1pCq ´
1

2ε2C
IId

˙

H; E0 “
1

ε1
D0 `

1

ε2

?
C
F Td, (4.39)

and the non-zero components of the Hessian operator HW1 are defined as

WCC “

ˆ

f2pCq `
1

4ε2C
?
C
IId

˙

; WD0D0 “
1

ε1
I, (4.40)

where f 1pCq and f2pCq were defined in (2.26) and (2.29), respectively. The tensors C, Q and
θ can now be obtained from (4.40).

4.4 Convex multi-variable electro-elasticity in spatial setting

In this section, the convex multi-variable electro-elasticity is presented in spatial setting. Our
future development on a unified continuum electromechanics formulation for linear, geometri-
cally linearised and nonlinear approach to electro-elasticity would be based on this formulation
and in an updated Lagrangian framework.

4.4.1 The Cauchy stress tensor, spatial electric field vector and tangent
operator

With a particularisation to the case of small strains in mind, in addition to the first and second
Piola-Kirchhoff stress tensors and Lagrangian electric field vector, it is also necessary to derive
expressions for the Cauchy σ (or Kirchhoff τ ) stress tensors and the spatial electric field vector
E. The expressions for the Cauchy stress tensor, spatial electric field vector and spatial tangent
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elasticity tensor can be derived using the standard push forward operations [78, 318, 31], for
the case of classical electro-elasticity

τ “ Jσ “ FSF T ; (4.41)

Jc “ rCsIJKLrF siIrF sjJ rF skKrF slL; (4.42)

D0 “H
TD; (4.43)

E “ F´TE0 (4.44)

where D0 is the spatial electric displacement vector and σ is the symmetric second order
Cauchy stress tensor and c is the fourth order spatial tangent elasticity operator introduced
in chapter 2. For the case of convex multi-variable electro-elasticity, similar push forward
operations can be applied on the work-conjugates to obtain the Cauchy stress tensor and the
spatial electric field vector as

Jσ “ τ “ J pσC ` σG I ` σCIq ; (4.45)

E “ F´TΣD0 (4.46)

where the spatial work conjugates are given

JσC “ FΣCF
T ; JσG “HΣGH

T ; JσC “ CΣC . (4.47)

The spatial form of the tangent operator can be computed using the standard push-forward
operations to yield

D2erδu; δD; ∆u; ∆Ds “ rSδsTφ˚rHW srS∆s ` JpσG ` σCIq : p∇δu ∇∆uq (4.48)

` Jσ :

„

p∇δvqT p∇∆uq



,

where

rSδs “ r∇δu : p∇δu Iq : p∇δu : Iq HT δD¨s, (4.49)

rS∆s “

»

—

—

–

: ∇∆u
: p∇∆u Iq
p∇∆u : Iq

¨HT∆D

fi

ffi

ffi

fl

, (4.50)

with the fourth order tensor c given as

Jφ˚rHWsymms

“

»

—

–

pWCCqIJKLF iIF jJF kKF lL pWCGqIJKLF iIF jJHkKHlL J2pWCCqIJF iIF jJ pWCD0
qIJKF iIF jJF kK

pWGCqKLIJHkKHlLF iIF jJ pWGGqIJKLHiIHjJHkKHlL J2pWGCqIJHiIHjJ pWGD0
qIJKHiIHjJHkK

J2pWCCqJIF iIF jJ J2pWCGqJIHiIHjJ J2pWCCqJ
2 J2pWCD0

qIF iI

pWD0C
qKIJF kKF iIF jJ pWD0G

qKIJHkKHiIHjJ J2pWD0C
qIF iI pWD0D0

qIF iIF jJ

fi

ffi

fl

.

(4.51a)

4.4.2 Governing equations of continuum electromechanics in spatial setting

Let us assume that the domain defined by the deformable body is subjected to a body force
per unit of deformed volume f and a traction force per unit of deformed area t applied on
Btv P Bv, such that Btv Y Buv “ Bv and Btv X Buv “ H. The conservation of linear momentum
in the global from leads to the integral of the translational equilibrium equations as

ż

v
fdv `

ż

Btv
tda “ 0. (4.52)
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The above integral equation governing the physics of a deformable system, can be summarised
in the local (strong) form and spatial setting as follows [30, 29, 28].

divσ ` f “ 0 in v; (4.53a)

σn “ t on Btv; (4.53b)

φ “ φ̄ on Buv. (4.53c)

In addition to the conservation of translation and rotational equilibrium in subsection 4.4.2,
the electro-active polymer is subjected in its spatial configuration v to an electric volume charge
ρe per unit of deformed volume and an electric surface charge ωe per unit of deformed area
applied on Bωv Ă Bv. Hence, in the absence of magnetic fields, the integral version of the
Gauss’s law can be written in a updated Lagrangian (spatial) setting as

ż

Bωv
ωeda`

ż

v
ρedV “ 0. (4.54)

From (4.54), the local version of Gauss’s law and the associated boundary conditions can be
written as

divD ´ ρe “ 0 in v; (4.55a)

D ¨ n “ ´ωe on Bωv, (4.55b)

Furthermore, the integral version of the static Faraday’s law can be written in a Lagrangian
form for a closed curve C embedded in v Y Bv as

¿

C

E ¨ dx “ 0, (4.56)

The local version of (4.56) and the associated boundary conditions can be written as

E “ ´∇ϕ in v; (4.57a)

ϕ “ pϕqBϕv on Bϕv. (4.57b)

In (4.57), Bϕv represents parts of the boundary Bv where essential electric potential boundary
conditions are applied such that Bωv Y Bϕv “ Bv and Bωv X Bϕv “ H.

4.5 Helmholtz-like energy density and Legendre transforma-
tion

In the case of pursuing a standard variational implementation via the finite element method,
where the scalar electric potential is preferred as an unknown over the electric displacement
field vector, it is typically preferred to work with the Helmholtz’s like energy Φ “ ΦpC,´∇0ϕq,
defined as [113, 233]

ΦpC,´∇0ϕq “ ´sup
D0

t´∇0ϕ ¨D0 ´ esympC,D0qu , (4.58)

wherein the second Piola-Kirchhoff stress tensor S and the Lagrangian electric displacement
D0 are computed as

S “ 2
BΦpC,E0q

BC

ˇ

ˇ

ˇ

ˇ

E0“´∇0ϕ

; D0 “ ´
BΦpC,E0q

BE0

ˇ

ˇ

ˇ

ˇ

E0“´∇0ϕ

. (4.59)

Further linearisation of the Helmholtz’s energy leads to the three constitutive tensors analogous
to (4.33)

CΦ “
B2ΦpC,E0q

BCBC

ˇ

ˇ

ˇ

ˇ

E0“´∇0ϕ

; QΦ “
B2ΦpC,E0q

BCBE0

ˇ

ˇ

ˇ

ˇ

E0“´∇0ϕ

; θΦ “
B2ΦpC,E0q

BE0BE0

ˇ

ˇ

ˇ

ˇ

E0“´∇0ϕ

,

(4.60)
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where the subscript E0 “ ´∇0ϕ implies that the electric field is computed from the gradient
of the electric potential since, individual variations of the fields can also be assumed. When
the internal energy is a complex multi-variable function of the set V, the nonlinearity of the
convex multi-variable function esym can make it impossible to obtain an explicit representation
of the constitutive tensors in (4.60). Whence, it is typically more suitable to perform this step
numerically, by utilising a nonlinear iterative scheme. In the context of finite element analysis,
by exploiting the relationship between the internal energy and the Helmholtz’s energy through
the Legendre transform in (4.58), it is possible to compute, via a Newton-Raphson algorithm
per quadrature point, these tensors as

rθΦsij “ ´rθs
´1
ij ; rQΦsijk “ ´rθΦsmirQsjkm; rCΦsijkl “ rCsijkl ´ rQsijmrQΦsmkl.

(4.61)

For a detailed representation of different electromechanical energies, the reader can refer to Gil
and Ortigosa [113].
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Chapter 5

Curvilinear Finite Elements for
Large Deformations - Large Electric
Fields Electromechanics

5.1 Introduction

This chapter presents a high order finite element implementation of the convex multi-variable
electro-elasticity for large deformations - large electric fields analyses combined with curvilinear
meshes generated through the polyconvex elastic framework described in chapter 3. A great
deal of emphasis is put on accurate geometrical representation of the electromechanical compo-
nents throughout all the examples, by relying on the aforementioned curvilinear mesh generator.
The performance of the method under near incompressibility and bending actuation scenarios
is analysed with extremely thin and highly stretched components and compared to the per-
formance of mixed variational principles recently reported by Gil and Ortigosa [113, 233, 232]
for convex multi-variable electro-elasticity. Although convex multi-variable constitutive models
are elliptic hence, materially stable for the entire range of deformations and electric fields, as
presented in the last chapter, other forms of physical instabilities are not precluded in these
models. In particular, physical instabilities present in dielectric elastomers such as pull-in in-
stability, snap-through and the formation, propagation and nucleation of wrinkles and folds
are numerically studied with a detailed precision in this chapter, verifying experimental find-
ings [246, 335, 198]. To this end, we present virtual prototyping of many application-oriented
dielectric elastomers carried out with an eye on pattern forming in soft robotics and other
potential medical applications and the instabilities inherent in these components that could be
harnessed for many other applications.

Admittedly, this class of electromechanics has been primarily applied to simplified geome-
tries where the aim has been to verify ideas and the computational frameworks rather than to
simulate realistic electromechanical components. Through simulations, we show instabilities
and massive wrinkling in dielectric films. To the best of the author’s knowledge, instabilities in
Dielectric Elastomers (DEs) have not been numerically studied with this level of detail yet most
of our simulations possessing millions of degrees of freedom and being as close to the realistic
situations as possible. To be able to simulate such massive systems, efficient and meticulously
designed thread and data parallel software libraries are needed. One such numerical framework
is the outcome of this thesis, which combines many state of the art implementation designs
for high order accurate simulation of convex multi-variable formulations for the analyses of
dielectric elastomer films. This computational framework encompasses the curvilinear mesh
generator developed in chapter 3 (PostMesh), utilises the data parallel capabilities of a newly
developed tensor contraction framework Fastor, whose interface design is thoroughly discussed
in the final chapter and integrates them all into one single open source computational framework
called Florence, available under MIT license from https://github.com/romeric/florence.
Some of the computational tools that Florence is built on are presented in

2

https://github.com/romeric/florence
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Florence: Core Hierarchy & Design

Curvilinear Mesher Material Library Linear Solvers

OpenBLAS, MKL, Eigen

OpenCascade

PostMesh: Mesh Deformation

Automated FE Assembler

OpenMP, Intel TBB

Fastor: SIMD Vectoriser

UmfPack, MUMPS, Pardiso

BiCGSTAB, (GM/MIN)RES

Algebraic Multigrid (AMG)

Figure 5.1: The developed massively parallel open source computational framework for high
order curvilinear finite elements for CMV electromechanics, its requirements and dependencies

As can be seen from the Figure 5.1, the developed high performance high order curvilinear
finite element framework for coupled electromechanical systems (Florence) depends on many
other state of the art, open standard and open source technologies. In particular, a core con-
stituent of the current framework is the curvilinear mesh generation framework (PostMesh)
which itself is based on OpenCascade for CAD and geometry processing. This in combination
with the use of optimised/vendor BLAS libraries help in building high order meshes in an
efficient multi-threaded environment. The high order meshes are then curved using the poly-
convex elasticity framework described in chapter 3. The second ingredient of the framework,
is the convex multi-variable material library. These materials are typically defined program-
matically at the energy level in a terse, intuitive and nearly mathematical format which are
then automatically translated to efficient low-level multi-threaded C code, using a be-spoke
finite element assembler in conjunction with OpenMP or Intel TBB. The tensor contraction
engine Fastor, is used in this process to perform heavy compile time code transformation to
emit FLOP optimal and further data parallel code for numerical integration of these material
models. The aspect of high performance implementation of the code is described in detail in
chapter 9. Finally, the framework has interfaces for a suite of massively parallel direct and
iterative sparse linear solvers that can be used for solving the system of equations arising from
high order finite element discretisation.

It should be noted that much of the work in this chapter is based on the authors work on
convex multi-variable electromechanics presented in [253]. The chapter is organised as follows.
In section 5.2, a variational framework for high order displacement-potential electromechan-
ics is described. In section 9.3, a series of numerical examples pertaining to the capability
of the current framework in modelling DEs are analysed, starting from the h and p conver-
gence properties of the curvilinear finite element framework presented in subsection 5.3.1. The
effect of accurate boundary representation using high order curvilinear finite elements is anal-
ysed in subsection 5.3.2 and compared to high order planar elements (elements with planar
faces/edges). In subsection 5.3.3, the performance of the current high order finite element
displacement-potential approach is compared to those of mixed Hu-Washizu formulations pre-
sented in [113, 233, 232]. Finally, a series of examples pertaining to the massive deformation
of dielectric elastomers are presented in subsection 5.3.4. We also study the benefit of high
order finite elements in simulating electromechanics. The inherent instabilities in DEs such as
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pull-in instability and the formation of wrinkles are studied with detailed precision using h and
p refinements, pinpointing the robustness and the high performant capability of the current
framework.

5.2 Variational formulation

5.2.1 Displacement-electric potential based variational formulation

A variational principle can be established by the total energy minimisation defined in terms
of the internal energy of the system esym “ esympC,D0q. The total potential energy of the
electro-active system in this case can be written in the complementary form as

Π̄epx˚,D˚
0q “ inf

x,D0

#

ż

V
esympC,D0q dV ´Πm

extpxq `

ż

BϕV
pD0 ¨Nq ϕ̄ dA

+

;

s.t.

#

DIVD0 “ ρ0 in V

D0 ¨N “ ω0 in BωV
, (5.1)

where px˚,D˚
0q denotes the exact solution and Πm

extpxq is the work done by external mechanical
forces. Note that the last term in (5.1) accounts for the work done by the imposed essential
boundary condition and its inclusion is necessary when starting from a complementary energy.
The constraint defined by the Gauss’s law is enforced as a Lagrange multiplier to yield an
energy potential Πepx˚, ϕ˚,D˚

0q as

Πepx˚, ϕ˚,D˚
0q “ inf

x,D0

sup
ϕ

#

ż

V
esympC,D0q dV ´

ż

V
f0 ¨ x dV ´

ż

δtV
t0 ¨ x dA

`

ż

V
ϕ pρe0 ´DIVD0q dV `

ż

BωV
ϕ pωe0 ´ JD0K ¨Nq dA`

ż

BϕV
pD0 ¨Nq ϕ̄ dA

+

, (5.2)

Application of the Gauss divergence theorem to (5.2) yields an alternative representation of
the variational principle as

Πepx
˚, ϕ˚,D˚

0q “ inf
x,D0

sup
ϕ

#

ż

V
esympC,D0q dV `

ż

V
D0 ¨∇0ϕdV ´Πextpx, ϕq

+

, (5.3)

where the electric potential ϕ acts as the Lagrange multiplier needed to enforce the constraints
and px˚, ϕ˚,D˚

0q denotes the exact solution and Πextpx, ϕq represents the external coupled
electromechanical work additively decomposed into the purely mechanical Πm

extpxq and electrical
Πe

extpϕq components

Πm
extpxq “

ż

V
f ¨ x dV `

ż

BtV
t0 ¨ x dA;

Πe
extpϕq “ ´

ż

V
ρe0 ϕdV ´

ż

BωV
ωe0 ϕdA,

where

Πextpx, ϕq “ Πm
extpxq `Πe

extpϕq.

Application of the Legendre transform enables above variational principle (5.3) to be reformu-
lated as

ΠΦpx
˚, ϕ˚q “ inf

x
sup
ϕ

#

ż

V
ΦpC,´∇0ϕqdV ´Πextpx, ϕq

+

. (5.4)
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Note that the image of the Helmholtz-like energy ΠΦpx
˚, ϕ˚q is indeed identical to the image of

the complementary energy, if one includes the contribution of Dirichlet forces as done in (5.1).
This have been recognised recently by Miehe et. al. [210] although the author admittedly
provides no solution to this problem. The appearance of the Dirichlet term in (5.1) can be
proven easily if one starts from an appropriate Hu-Washizu principle.

In addition, it is worth mentioning that, the use of the term Helmholtz-like energy is due to
the fact that the Helmholtz energy is predominantly used in the context of thermal problems
for the free energy expressed in terms temperature and the Legendre transformation therein to
obtain the internal energy expressed in terms of entropy.

The stationary condition of the Helmholtz-like functional in (5.4) with respect to changes
in the geometry leads to the principle of virtual work (or power), written as

DΠΦrδus “

ż

V
S :

1

2
DCrδus dV ´Πextrδus. (5.5)

Analogously, the stationary point with respect to changes in the electric potential leads to the
variational statement for the Gauss’s law as

DΠΦrδϕs “

ż

V
D : ∇0δϕ dV ´Πextrδϕs. (5.6)

It is now straightforward to perform finite element discretisation of (5.4) in terms of tx, ϕu.
This finite element discretisation is fairly standard and the interested reader can refer to the
author’s work [253, 233]. In the current setting, equal order high order isoparametric finite
elements are utilised for the interpolation of the primary variables i.e. tx, ϕu. In this context,
(5.4) can be solved for in a standard monolithic way as described in Algorithm 1.

Algorithm 1 The nonlinear electromechanics solver

procedure Monolithic Solver
Input geometry, material properties and analysis parameters
Initialise F “ 0, x “X and R “ 0
for each increment n do

Compute incremental nodal forces ∆F
Compute electromechanical nodal forces F “ F`∆F
Compute electromechanical residuals R “ R´∆F
while ||R||{||F|| ą tolerance do

Assemble K
Solve Ku “ ´R
Update the geometry x “ x` u
for every quadrature point do

Given E0 compute D0 implicitly via 4.37(c)
Compute CΦ,QΦ and θΦ using (4.61)
Compute second Piola-Kirchhoff stress tensor S using (4.31)

end for
Compute traction forces T
Find R “ T´ F

end while
end for

end procedure

5.3 Numerical examples

In this section a series of numerical examples for electromechanics are presented. These in-
clude a) (mesh refinement) h and (polynomial enrichment) p convergence studies for high
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order displacement-potential formulation for convex multi-variable internal energies presented
in section 5.2, b) the impact of accurate geometrical representations on the solution of large
deformation electromechanical problems and, c) comparison of the current framework with the
mixed Hu-Washizu variational principles presented in [233, 114]. Apart from these benchmark
studies, a series of examples pertaining to the massive deformation and the instabilities in DEs
such as the formation of folds and wrinkles is studied in detail using the current framework.
The finite element implementation involves equal order standard isoparametric discretisation
of the electromechanical variables tx, ϕu, starting with at least quadratic basis functions. As
a standard nomenclature in high order finite element analysis, polynomial interpolation over
tetrahedra are denoted by p and polynomial enrichment over hexahedra are denoted by q. Un-
less otherwise specified, for all the examples, the curvilinear meshes are generated using the
consistently linearised solid mechanics analogy presented in chapter 3, using a Mooney-Rivlin
model with a Poisson’s ratio of 0.45 and 10 load increments. In addition, all the analyses are
carried out with the high performance domain-specific data parallel tensor contraction finite
element framework Fastor [251] also presented as the last chapter of this thesis and the mas-
sively parallel multi-frontal direct sparse solver MUMPS and Pardiso are primarly used for the
solution of system of linear equations. For the purpose of assessing the performance of the
proposed monolithic approach the final example is solved using the algebraic multigrid (AMG)
solver with the standard Ruge-Stuben aggregations, c.f. [293, 103, 60, 311].

5.3.1 h & p convergence of the proposed high order framework

As a starting point, it is essential to examine the h and p convergence properties of the proposed
high order displacement-potential formulation for large deformations large electric fields (fully
coupled monolithic approach) described in chapter 4 and subsection 5.2.1. Hence, the objective
of this example is to a) assess the convergence of different variables in tx, ϕ,V,ΣVu using h and p
refinements, b) examine optimality of the algorithm in terms of convergence properties on high
order curved tetrahedral and hexahedral meshes around a dielectric elastomeric patch, obtained
using the mesh deformation technique described in [254] and, c) showcase the scalability of the
framework with high polynomial enrichment. The geometry of the dielectric patch is shown in
Figure 5.2. A similar convergence study for an eleven field Hu-Washizu type mixed variational
formulation in terms of the set of unknowns tx,F ,H, J, ϕ,d,ΣF ,ΣH ,ΣJ ,ΣD0 ,Σdu is pre-
sented in [233]. The constitutive model considered is based on a convex multi-variable energy
functional expressed in terms of the invariants of the set V as follows

Wel,1pC,G, C,D0q “ µ1

n
ÿ

i“1

αiI
i
C ` µ2

n
ÿ

i“1

βiI
i
G ´ 2

˜

µ1

n
ÿ

i“1

iαi3
i´1 ` 2µ2

n
ÿ

i“1

iβi3
i´1

¸

ln
?
C

`
λ

2
p
?
C ´ 1q2 `

1

2ε1
IID0 `

1

2ε2

?
C
IId,

(5.7)

where Ip‚q denotes the trace of the entity p‚q and IIp‚q the squared of the L2 norm of the entity
p‚q with IId “D0 ¨CD0. Furthermore, tµ1, µ2, λ, ε1, ε2u represent positive material constants
with αi’s and βi’s denoting scaling coefficients. The material parameters in (5.7) used for this
example are presented in Table 5.1, where n “ 2, α1 “ β1 “ 1 and α2 “ β2 “ 0.2 are chosen.
The problem is constructed so that smoothness of the solution is guaranteed. For that purpose,

µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2) ε2 (N/V2)
1 1{2 1 4 4

Table 5.1: Material properties for example 5.3.1
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the following simple exact fields associated with the fields x and ϕ are considered

xexact “X `

$

&

%

γ1 sinX1

γ2 cosX2

γ3psinX3 ` cosX3q

,

.

-

; ϕexact “ ϕ0 sinX1, (5.8)

where for this benchmark example, γ1 “ 0.1, γ2 “ 0.2, γ3 “ 0.3 and ϕ0 “ 104V are chosen.
The deformation gradient tensor and the Lagrangian electric field can now be computed as

F exact “

»

–

1` γ1 cosX1 0 0
0 1´ γ2 sinX2 0
0 0 1` γ3pcosX3 ´ sinX3q

fi

fl ; Eexact
0 “ ´

$

&

%

ϕ cosX1

0
0

,

.

-

.

(5.9)

The remaining exact fields in the set Vexact “ tCexact,Gexact, Cexact,Dexact
0 u can now be ob-

tained for the smooth displacement and electric potential fields, from (5.9). Application of
(4.23) on (5.9) yields the exact right Cauchy-Green tensor, its cofactor and determinant for
the smooth fields (5.8) as

Cexact “ F exactTF exact; Gexact “
1

2
Cexact Cexact; Cexact “

1

3
Gexact : Cexact. (5.10)

Similarly, the Lagrangian electric displacement vector can be computed by applying (4.26) on
(5.7) as

Dexact
0 “

ˆ

1

ε1
I `

1

ε2

?
Cexact

Cexact

˙´1

Eexact
0 . (5.11)

Once all the elements of the set Vexact have been determined, it is possible to obtain the set
of exact work conjugates Σexact

V “ tΣC
exact,ΣG

exact,Σexact
C ,Σexact

D0
u via (4.28). These enable

to compute the second Piola-Kirchhoff stress tensor Sexact from (4.31). Finally, the associated
volumetric force and electric charge in mechanical and electrical equilibrium with the exact first
Piola-Kirchhoff stress tensor P exact “ F exactSexact and exact Lagrangian electric displacement
field Dexact

0 are determined from (4.4) and (4.55), respectively as

f0px
exact, ϕexactq “ ´DIVP exact; ρ0px

exact, ϕexactq “ DIVDexact
0 . (5.12)

For the convergence studies, three different high order curvilinear unstructured tetrahedral
meshes and one high order curvilinear structured hexahedral mesh for the dielectric patch
in Figure 5.2 are considered with 532 elements, 9220 elements, 26807 elements for the first
three and 5000 elements for the last one, respectively, as shown in Figure 5.4. As will be
described shortly, these discretisations are chosen such that the maximum segment fitting in
a curved element (denoted by h) is successively refined for h-convergence. The placements
of high order nodes on curved boundaries of the meshes are given particular importance, in
that they have been computed through an arc-length based projection from high order planar
meshes with Warburton nodal distribution [254]. The curved volume mesh is then obtained by
applying the consistently linearised elastic analogy [254, 328, 5, 100]. It is worth mentioning
that the quality of the curvilinear meshes directly impact the h and p convergence property
(optimality) of the finite element interpolation scheme. To this end, Table 5.2 and Table 5.3
report the three fundamental quality measures (where Q1 quantifies distortion of edges, Q2

quantifies distortion of faces and Q3, also known as scaled Jacobian, quantifies volumetric
distortion of the element itself) of the curved tetrahedral and hexahedral meshes, respectively;
c.f. [254]. Optimal symmetric quadrature rules for tetrahedra reported in [323] are utilised for
numerical integration of high order tetrahedral elements. For hexahedral elements, a simple
tensor product based quadrature rule is utilised.

For studying h-convergence properties, only tetrahedral meshes are considered. The conver-
gence rate of different primary and derived variables tx, ϕ,V,ΣVu are then studied by compar-
ing the interpolated solution and analytical solution for a fixed p and successive h-refinement,
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p
Coarse (532 elements) Medium (9220 elements) Fine (26807 elements)

DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3
p “ 2 1027 ˆ4 0.888 0.875 0.790 17934 ˆ4 0.962 0.924 0.885 52590 ˆ4 0.953 0.909 0.866
p “ 3 3077 ˆ4 0.881 0.843 0.746 54018 ˆ4 0.936 0.869 0.799 158352 ˆ4 0.947 0.893 0.838
p “ 4 6861 ˆ4 0.874 0.813 0.738 120473 ˆ4 0.926 0.850 0.771 352838 ˆ4 0.935 0.871 0.800
p “ 5 12911ˆ4 0.851 0.807 0.711 226516 ˆ4 0.904 0.831 0.721 662848 ˆ4 0.924 0.843 0.765
p “ 6 21759ˆ4 0.846 0.771 0.652 381373 ˆ4 0.891 0.828 0.713 1115196ˆ4 0.901 0.837 0.757

Table 5.2: Distortion quality of high order curvilinear tetrahedral meshes

p DoFs Q1 Q2 Q3
p “ 2 49943 ˆ4 0.999 0.984 0.914
p “ 3 147364 ˆ4 0.993 0.972 0.889
p “ 4 341885 ˆ4 0.987 0.961 0.853
p “ 5 659106 ˆ4 0.981 0.934 0.820
p “ 6 1129027 ˆ4 0.971 0.900 0.797

Table 5.3: Distortion quality of high curvilinear hexahedral mesh

Figure 5.2: CAD geometry of the dielectric patch

similar to the strategy followed in [254, 233]. To monitor the convergence rate, the L2pV q norm
of the error is computed for all quantities of interest. It is important to note, since the meshes
are curvilinear (and unstructured), successive refinement based on element size or element edge
size will not guarantee the expected h-convergence. As a result, the L2pV q norms of the vari-
ables are reported as a function the largest segment that can fit within a curved element. This
can be seen as a generalisation of edge size based refinement, as for planar meshes, the largest
segment represents the largest element edge. The computation of the largest segment for the
computational mesh is carried out through a straight-forward sampling strategy illustrated in
Figure 5.3 for triangular, quadrilateral, tetrahedral and hexahedral elements. After travers-
ing the whole computational mesh, the minimum value of all the largest segments is chosen
as h. For curvilinear meshes the L2pV q norms of the variables are reported as a function of
the diameter (the largest segment that can fit within a curved region) of the element. After
traversing the whole computational mesh, the minimum value of all the diameters is chosen as h
[145, 285]. The tetrahedral meshes reported in Table 5.2 are chosen such that they correspond
to successive refinement in this quantity.

Figure 5.5 shows h-convergence of the variables tx, ϕ,V,ΣVu for four levels of p-refinement
(i.e. p “ 2, 3, 4, 5). Note that unlike in [233], while the displacements and electric potential
are primary (solved) variables, the rest of variables are secondary (derived). As can be
observed in Figure 5.5 for both low and high order polynomial interpolations, the expected
rate of convergence is achieved for both primary (p ` 1 convergence rate) and derived (p
convergence rate) variables. Notice that for this study, the multi-precision floating point library
(MPFR) is utilised for arbitrary floating point accuracy. Apart from pinpointing the optimality
and accuracy of the high order electromechanical solver on complex curved meshes, the h-
convergence plots also prove that the framework scales reliably with high p and millions of
degrees of freedom. Next, the p-convergence of tetrahedral elements for a fixed mesh (the
finest mesh) is considered and compared to the p-convergence properties of hexahedral elements.
Notice from Table 5.2 and Table 5.3 that the hexahedral mesh is chosen such that for every
p, the number of nodes in the tetrahedral and hexahedral meshes are within a 5% difference.
Once again, the degree of interpolation is successively increased leading to p convergence of
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Figure 5.3: Illustration of computing the diameter (largest segment) in curvilinear meshes using
sampling and tessellation strategy, for p=2 triangle and q=3 quadrilateral, p=5 tetrahedra and
q=2 hexahedra

(a) (b) (c)

Figure 5.4: Three representative curvilinear meshes used for convergence studies; a) medium
tetrahedral mesh (9220 elements) b) fine tetrahedral mesh (26807 elements), and c) fine hexa-
hedral mesh (5000 elements)

the L2pV q norm of the same afore-mentioned quantities. Figure 5.6 shows p convergence of
the L2pV q for arguments of the set tx, ϕ,V,ΣVu. Once again, optimal rates of convergence for
both curvilinear tetrahedral and hexahedral elements are obtained.
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Figure 5.5: h convergence of L2pV q norm of the error for different kinematic and kinetic
variables, (a) & (b) p “ 2, (c) & (d) p “ 3 , (e) & (f) p “ 4 and (g) & (h) p “ 5. Rζ indicates
the rate of convergence of quantity ζ.

5.3.2 Effect of accurate boundary representation in nonlinear electro-elasticity

Having studied the convergence properties of high order curvilinear finite elements for modelling
convex multi-variable electromechanics in the previous section, the objective of this section is to
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Figure 5.6: p convergence of L2pV q norm of the error for different kinematic and kinetic
variables for mesh with 9220 elements.

examine if accurate geometrical representation through high order curvilinear finite elements,
does play a role in capturing the physics of soft elastomeric materials better compared to the
standard high order finite elements with planer faces/edges. The examples in this section are
also motivated by the fact that, the vast majority of finite element simulations of electrome-
chanical devices are carried out using either low order or high order finite elements with planer
faces [269, 319, 240, 233, 114, 210, 241], with possible geometrical simplifications and at times
even de-featuring [273].

To this end, the notable example of electromechanical plate with a hole is chosen for exam-
ination [269]. For this example, once again, one tetrahedral mesh and one hexahedral mesh is
chosen and the polynomial degree is successively enriched, while keeping the mesh size h fixed.
Additionally, for both examples, the material model chosen is based on the following convex
multi-variable strain energy representation

Wel,2 “ µ1IC ` µ2IG ´ 2pµ1 ` µ2qln
?
C `

λ

2
p
?
C ´ 1q2 `

1

2ε1
IID0 `

1

2
?
Cε2

IId, (5.13)

with material constants as given in Table 5.4. The Poisson’s ratio corresponding to parameters
µ1, µ2 and λ, is ν “ 0.357. The mesh quality information for the plate with the hole is listed in

µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2) ε2 (N/V2)
1e5 1e5 5e5 ε0 5ε0

Table 5.4: Material parameters for (5.13) with the vacuum permittivity ε0 “ 8.85418781ˆ10´12

(N/V2)

Table 5.5 and the geometry and the tetrahedral and hexahedral meshes are shown in Figure 5.7
and Figure 5.8, respectively. A constant electric voltage of 2ˆ 108V {m is applied through the

p
Tetrahedral Hexahedral

DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3
p{q “ 2 340 ˆ4 0.982 0.965 0.948 363 ˆ4 0.980 0.961 0.942
p{q “ 3 938 ˆ4 0.990 0.980 0.971 1012 ˆ4 0.982 0.966 0.951
p{q “ 4 2021 ˆ4 0.986 0.973 0.960 2165 ˆ4 0.981 0.963 0.947
p{q “ 5 3681 ˆ4 0.990 0.980 0.970 3966 ˆ4 0.979 0.959 0.941
p{q “ 6 6097 ˆ4 0.990 0.979 0.969 6559 ˆ4 0.977 0.955 0.935

Table 5.5: Distortion quality of high order curvilinear tetrahedral and hexahedral meshes

whole thickness and symmetric mechanical Dirichlet boundary conditions are imposed on 1/4th
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of the plate. This induces stretching of the electromechanical plate and as a result of the outer
boundaries being fixed the plate is thickened in the region away from the hole and shrunk in
thickness in the vicinity of the hole. Figure 5.9 shows the quadratic convergence of Newton-

Figure 5.7: CAD representation of plate with circular hole with dimensions 10 ˆ 20 ˆ 2m3.
The circular hole with a radius of 5m is centred at r0, 0, 0sT

(a) (b)

(c) (d)

Figure 5.8: Curvilinear meshes used for comparison a) p “ 3 planar tetrahedra, b) p “ 3
curvilinear tetrahedra, c) p “ 3 planar hexahedra and, d) p “ 3 curvilinear hexahedra

Raphson for the last load increment for all polynomial degrees on curvilinear tetrahedral and
hexahedral meshes, respectively. It is worth mentioning that, since the planar and curvilinear
meshes do not possess the same volume, a systematic study of the difference in error norms
of quantities is not feasible. However, since both planar and curved meshes share the same
(p{q “ 1) vertices, a comparison of certain quantities of interest at these vertices can be carried
out. Notice that since the node is shared between neighbouring elements appropriate stress
recovery is required. This will lead to some oscillatory results in stresses (c.f. subsection 5.3.3
for further investigation in this regard). In the current setting, the order of quadrature rule
to integrate stresses have been purposefully increased to 2pp ` 1q to remove these oscillations
as far as feasible. Table 5.6 lists the results of σxx, σyy and hydrostatic pressure phyd at the
tip of the circular hole within the plate for planar and curvilinear tetrahedral meshes, for an
intermediate load increment (n “ 20). From the table it is apparent that the planar mesh
introduces a significant amount of stress concentration at the tip, whereas for curvilinear mesh
the values of stresses at tip are significantly lower (although still existent and oscillatory in
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Figure 5.9: Quadratic convergence of Newton-Raphson on curvilinear a ) tetrahedral mesh and,
b) hexahedral mesh

nature). Similarly, Table 5.7 lists the results of σxx, σyy and hydrostatic pressure phyd at the
tip of the circular hole within the plate for planar and curvilinear hexahedral meshes. A similar
conclusion can be drawn for hexahedral meshes, where the stresses obtained on curvilinear mesh
are consistently lower than those of planar mesh across all polynomial degrees. Notice that in
line with the results from the previous section, with polynomial enrichment the concentration
of stresses at the tip completely vanishes for curvilinear meshes. This is not the case for planar
meshes regardless of enrichment, although they seem to converge to a particular value.

p
Planar Curvilinear

σxxpPaq σyypPaq phydpPaq σxxpPaq σyypPaq phydpPaq

p “2 59.327 72.14 44.237 8.871 13.134 -9.721
p “3 -18.569 -48.812 -21.979 -12.238 -6.544 -12.506
p “4 -4.473 62.69 13.855 -21.267 8.097 -2.869
p “5 -21.858 -33.012 -18.998 -5.964 -7.21 -2.802
p “6 7.576 22.864 11.136 -0.931 -2.782 1.136

Table 5.6: Evolution of stresses at the circular tip of the plate for tetrahedral meshes

p
Planar Curvilinear

σxxpPaq σyypPaq phydpPaq σxxpPaq σyypPaq phydpPaq

q “2 -35.733 389.798 115.414 -27.944 278.284 81.263
q “3 -14.044 456.388 137.744 -10.701 329.368 98.884
q “4 -0.833 497.554 166.209 -0.573 61.953 20.981
q “5 -4.415 495.226 160.13 -3.302 36.381 11.642
q “6 0.707 505.523 169.399 0.053 5.819 1.404

Table 5.7: Evolution of stresses at the circular tip of the plate for hexahedral meshes

A representation of stress concentration for the plate with circular hole is shown figuratively
in Figure 5.10 only for p{q “ 5 meshes, for the final deformed configuration. It is evident from
the figures that as opposed to the meshes with planar faces/edges, curvilinear meshes perform
much better in reporting a smoother representation of the stress near the circular region. A sim-
ilar conclusion is drawn across all polynomial degrees for tetrahedral and hexahedral elements
(not reported, for the purpose of brevity). For instance, the maximum hydrostatic pressure at
the tip of the circular hole within the plate located at r5, 20, 2sT is phyd “ ´4.982ˆ 104 Pa for
the hexahedral mesh with planar faces/edges, whereas only phyd “ ´0.104Pa for curvilinear
hexahedral mesh. This clearly confirms that the appearance of non-physical stress concen-
trations can be significantly reduced through curvilinear meshes accurately representing the
geometry. Similar behaviour has also been reported by the computational fluid dynamics com-
munity, where an inaccurate geometric representation leads to non-physical entropy production
[274, 273]. However, it is important to note that, non-physical stress concentrations cannot
be completely resolved using curvilinear meshes with standard finite elements without enhanc-
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ing the finite element functional spaces either through blending functions [142, 296] or more
generally through exact geometrical representation [272, 274, 273]. A similar study consider-
ing exact geometrical representation through NURBS-enhanced finite elements is reported in
[273]. In line with the theme of this work, the aim of this study has been to assess and report
the performance of curvilinear meshes in comparison to high order meshes with planar facets
purely based on geometrical enhancements.

(a) (b)

(c) (d)

Figure 5.10: Evolution of voltage induced hydrostatic pressure in a plate with circular hole, a)
planar p “ 5 mesh, b) curved p “ 5 mesh, c) planar q “ 5 mesh and, d) curved q “ 5 mesh

5.3.3 Comparison of higher order displacement potential based formulation
with 11 field mixed formulation for electro-elasticity

The objective of the examples presented in this section is to compare the performance of the
displacement-potential formulation (DPF) discretised using high order tetrahedral and hex-
ahedral finite elements with the 11 field mixed Hu-Washizu variational formulation (MWF)
(based on the set tx,F ,H, J, ϕ,d,ΣF ,ΣH ,ΣJ ,ΣD0 ,Σdu) for electro-elasticity presented in
[113, 233, 114, 233], on curvilinear meshes. While for the DPF formulation, an equal order
interpolation for all the variables (x, ϕ) is used (for tetrahedra and hexahedra), the MWF
formulation utilises a quadratic interpolation for x and ϕ, linear discontinuous interpolation
for F ,H, J,d,ΣF ,ΣH ,ΣD0 ,Σd and a piecewise constant interpolation for J and ΣJ and is
primarily developed for 10-noded tetrahedra [233]. These formulations are compared against
with an eye on two fundamental issues pertaining to the modelling of large deformation large
electric field electromechanics namely, shear-locking and volumetric locking. To this end, three
dielectric cantilever patches with aspect ratio t10, 100, 1000u are considered, as shown in Fig-
ure 5.11. The problem is analysed under compressible and nearly incompressible scenarios with
Poisson’s ratio 0.45 and 0.499 respectively. A series of curvilinear meshes are then produced
for p “ t2, 3, 4, 5u and q “ t2, 3, 4, 5u for each aspect ratio. In addition, three h-refinement
levels are considered using a coarse, a medium and a fine description for each aspect ratio and
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each polynomial degree. An attempt is made to keep the total number of nodes in the compu-
tational mesh for every polynomial degree within the same range (within 5% difference). The
necessary information regarding the quality of the curvilinear meshes are listed in Table 5.8
and Table 5.9, for tetrahedral meshes and hexahedral meshes, respectively. Note that, for a
given p and h-refinement level, the size of the computational mesh is the same for all aspect
ratios, in that, to obtain different aspect ratios, the mesh is appropriately scaled in the thick-
ness direction. This certainly leads to extremely stretched elements but does not change the
distortion of quality of the mesh as far as curvilinear mesh quality measures are concerned.

(a) (b) (c)

Figure 5.11: Geometry of the patch for three different aspect ratios a) 10, b) 100 and, c) 1000

∆V

L
W = L/5

T = {L/10, L/100, L/1000}

Electrodes

1

Figure 5.12: Description of the boundary conditions

p
Coarse Medium Fine

DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3
p “ 2 2842 ˆ4 (1652) 0.971 0.943 0.909 4686 ˆ4 (2730) 0.965 0.936 0.911 9916 ˆ4 (5910) 0.980 0.959 0.938
p “ 3 2859 ˆ4 (396) 0.911 0.784 0.586 4656 ˆ4 (710) 0.925 0.837 0.734 9838 ˆ4 (1866) 0.952 0.898 0.836
p “ 4 2835 ˆ4 (126) 0.852 0.690 0.500 4693 ˆ4 (326) 0.872 0.733 0.611 9819 ˆ4 (698) 0.945 0.886 0.819
p “ 5 2856ˆ4 (82) 0.873 0.758 0.651 4651 ˆ4 (172) 0.952 0.908 0.866 9889 ˆ4 (396) 0.944 0.890 0.840

Table 5.8: Distortion quality of high order curvilinear tetrahedral meshes

p
Coarse Medium Fine

DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3
q “ 2 2885 ˆ4 (244) 0.972 0.987 0.957 4665 ˆ4 (472) 0.986 0.970 0.953 9805 ˆ4 (928) 0.990 0.980 0.969
q “ 3 2853 ˆ4 (76) 0.959 0.913 0.863 4605 ˆ4 (148) 0.979 0.957 0.935 9805 ˆ4 (292) 0.979 0.958 0.935
q “ 4 2873 ˆ4 (32) 0.818 0.618 0.361 4650 ˆ4 (68) 0.950 0.897 0.842 9793 ˆ4 (124) 0.950 0.898 0.842
q “ 5 2756ˆ4 (16) 0.822 0.625 0.369 4700 ˆ4 (32) 0.834 0.656 0.401 9801 ˆ4 (64) 0.853 0.723 0.781

Table 5.9: Distortion quality of high order curvilinear hexahedral meshes

For comparison an ideal dielectric elastomer is considered with the following convex multi-
variable internal energy description

Wel,3 “ µ1IC ` µ2IG ´ 2pµ1 ` µ2qln
?
C `

λ

2
p
?
C ´ 1q2 `

1

2ε1
IId, (5.14)

with the material parameters as given in Table 5.10.
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Parameters µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2)
Values (for ν “ 0.45) 1e5 0 9e5 4ε0
Values (for ν “ 0.499) 1e5 0 4.99e7 4ε0

Table 5.10: Material parameters for (5.14) with the vacuum permittivity ε0 “ 8.85418781 ˆ
10´12 (N/V2)

In order to be able to apply appropriate boundary conditions, it is made sure that all
computational meshes have at least two elements across the thickness. For every aspect ratio,
the patch is clamped at r0, X, Y sT and a constant electric voltage is applied across the half
thickness T {2 (where T represents the patch thickness), as shown in Figure 5.12. It is certainly
not feasible to apply the same amount of electric voltage while varying the patch aspect ratio
and hence Table 5.11 lists the Dirichlet boundary conditions considered for the three aspect
ratios.

Aspect Ratio 10 100 1000
Electric Voltage (V {m) 1e7 7.5e4 1.8e2

Table 5.11: Applied electric voltage as Dirichlet boundary condition for three aspect ratios

In order to compare different kinematic and kinetic quantities of interest for different formu-
lations, two different physical points in the patches are considered namely, A - the node located
at rL,W {2, T {2sT , and B - the point interior to the computational mesh r0.98L, 0.49W, 0.49T sT

(c.f. Figure 5.12).
Table 5.12 and Table 5.13 compare the results obtained for different kinematics and kinetics

quantities with displacement potential formulation using high order tetrahedral and hexahe-
dral elements with the 11 field mixed formulations, for aspect ratio 10 and Poisson’s ratio
0.45 and 0.499, respectively. For this comparison, the problem is solved in 50 load increments
and the comparison is performed at increment 12, which corresponds to the onset of nonlinear
deformation. The first observation from the tables is that the DPF based discretisations have
an asymptotically upper bound convergence while the MWF based results have an asymp-
totically lower bound convergence. This can be observed studying the convergence of a given
quantity for a fixed polynomial degree and successive h-refinements. This convergence pattern
is more pronounced in the case of MWF. Consequently, for a fixed polynomial degree, it can
be observed that MWF has a consistent 2%-5% higher displacements and strains estimate
rate.

Regarding the stresses, as can be seen from the σxz results, the differences between the
formulations are significant. While the results for the MWF show a convergence pattern, the
results of the DPF do not seem to converge as coherently, with some clear pressure oscillations
(as p{q and h-refinements are carried out). The σzz and hydrostatic pressure still do not seem
to be affected, primarily due to the fact that these components have a much higher electro-
mechanical stress contribution coming from the electric displacement (which is the applied
Dirichlet boundary condition).

The conclusion drawn from the above set of results is that for thick electromechanical beams
both high order DPF and MWF implementations capture the physical behaviour of the system
accurately without showing any signs of shear or volumetric lockings. Importantly, this signifies
that high order discretisations can capture nearly incompressible scenarios reliably [302, 143,
321]. The oscillations in stresses is an expected phenomenon for DPF implementations [233,
271, 28] which seems to persist even with polynomial enrichment. Unlike the problems reported
in subsection 5.3.1, the convergence rate of stresses here can not be ascertained, since the
polynomial enrichment here, comes with the trade-off of coarsening the computational mesh to
keep the problem size the same. In this regard, MWF implementation maintains a consistent
accuracy by virtue of explicitly solving for kinetic variables.

Note that, so far only the aspect ratio of the patch has been considered and no remarks
have been made regarding the aspect ratio of the elements in the mesh. It is important to
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mention that high order elements are at a severe disadvantage here compared to their low-
order or MWF counterparts in that, polynomial enrichment leading to coarsening of the mesh
also inherently implies dramatic stretching for high order elements. It is certainly not feasible
to control the aspect ratio of the patch and the aspect ratio of the elements at the same time,
while also having to keep the size of the computational mesh the same across all polynomial
enrichments. This also signifies that, for p “ q, the computational meshes do not necessarily
exhibit the same elemental aspect ratios. It is still astounding to observe that, high order
elements perform fairly well regardless.

Quantity Refinement p “ 2 p “ 3 p “ 4 p “ 5 q “ 2 q “ 3 q “ 4 q “ 5 11Mixed

uA
x pmq

Coarse 0.15 0.1506 0.1502 0.1505 0.1505 0.1506 0.1506 0.1506 0.1595
Medium 0.1505 0.1503 0.1505 0.1506 0.1506 0.1506 0.1507 0.1506 0.1542
Fine 0.1505 0.1508 0.1505 0.1506 0.1506 0.1506 0.1507 0.1506 0.1535

uA
z pmq

Coarse 0.9572 0.9555 0.9565 0.9551 0.958 0.9597 0.9598 0.9603 1.049
Medium 0.9566 0.9576 0.9603 0.9596 0.9583 0.96 0.9604 0.9603 1.0022
Fine 0.9571 0.96 0.9597 0.9594 0.9585 0.96 0.9604 0.9603 0.9948

FA
xz

Coarse -0.0176 -0.0186 -0.018 -0.0184 -0.0178 -0.0184 -0.0183 -0.0183 -0.0199
Medium -0.0183 -0.0181 -0.018 -0.0183 -0.0178 -0.0185 -0.0183 -0.0183 -0.0191
Fine -0.0183 -0.0186 -0.0178 -0.0184 -0.0178 -0.0185 -0.0183 -0.0183 -0.0191

HA
zx

Coarse -0.0184 -0.0184 -0.0182 -0.0186 -0.0181 -0.0184 -0.0183 -0.0183 -0.0198
Medium -0.0184 -0.0181 -0.0183 -0.0182 -0.018 -0.0185 -0.0184 -0.0183 -0.019
Fine -0.0184 -0.0181 -0.0186 -0.0184 -0.018 -0.0185 -0.0184 -0.0183 -0.0192

σB
xzpPaq

Coarse 68.817 -34.4955 8.4401 2.5424 20.9594 -16.3045 -4.2272 -8.6977 -24.0193
Medium 1.5908 -10.4219 16.6441 -17.0173 11.9318 -4.436 -4.8418 -8.9388 -15.3804
Fine -3.9871 -63.5881 19.221 -15.5529 7.1833 -4.433 -4.8497 -8.9573 -4.7419

σB
zzpPaq

Coarse 228.8202 242.9458 167.4105 225.4981 227.3906 208.8909 220.5269 233.9105 262.6845
Medium 226.3231 304.8385 190.6815 232.3852 228.7893 202.9177 228.5124 234.1146 262.0383
Fine 226.7235 228.4325 192.3997 227.9372 229.1137 202.8566 228.503 234.1104 233.9687

pBhydpPaq
Coarse 258.7676 262.7815 228.257 256.8133 249.9223 258.8183 253.0553 260.2188 283.1432
Medium 256.2272 239.7233 239.8217 256.7475 249.6441 259.3416 254.3613 260.1902 279.219
Fine 257.2179 258.3805 255.9474 256.809 249.4617 259.3333 254.3594 260.1998 229.3169

Table 5.12: Comparison of high order displacement potential and 11 field mixed formulations
for different kinematic and kinetic measures, for aspect ratio 10 and Poisson’s ratio 0.45

Quantity Refinement p “ 2 p “ 3 p “ 4 p “ 5 q “ 2 q “ 3 q “ 4 q “ 5 11Mixed

uA
x pmq

Coarse 0.1603 0.1614 0.1606 0.1576 0.1621 0.1607 0.1613 0.1603 0.1682
Medium 0.1609 0.1606 0.1609 0.1603 0.1622 0.1607 0.1614 0.1603 0.1647
Fine 0.1611 0.1612 0.1611 0.1599 0.1622 0.1607 0.1614 0.1603 0.1641

uA
z pmq

Coarse 1.0215 1.0273 1.0274 0.949 1.0265 1.031 1.0299 1.0198 1.109
Medium 1.0256 1.028 1.0213 1.0175 1.0282 1.0306 1.0317 1.0197 1.0737
Fine 1.0256 1.0304 1.0326 1.0175 1.0286 1.0306 1.0317 1.0198 1.0659

FA
xz

Coarse -0.0189 -0.0201 -0.019 -0.019 -0.0203 -0.0187 -0.0201 -0.0191 -0.021
Medium -0.0195 -0.0188 -0.0189 -0.0193 -0.0203 -0.0187 -0.0202 -0.0191 -0.0205
Fine -0.0197 -0.0198 -0.0191 -0.0212 -0.0203 -0.0187 -0.0202 -0.0191 -0.0205

HA
zx

Coarse -0.02 -0.02 -0.0193 -0.0191 -0.0204 -0.0192 -0.0198 -0.0194 -0.0209
Medium -0.0197 -0.0195 -0.0194 -0.0192 -0.0205 -0.0191 -0.02 -0.0194 -0.0204
Fine -0.0198 -0.019 -0.0198 -0.0199 -0.0205 -0.0191 -0.02 -0.0194 -0.0205

σB
xzpPaq

Coarse 89.1516 -23.91 14.7041 0.2679 7.9494 39.9045 -41.9385 17.966 -25.4328
Medium 10.3683 60.0207 38.6844 -20.1666 6.9024 27.4752 -32.0594 17.139 -18.2278
Fine -3.7742 -90.0163 12.6685 -

143.9537
6.0727 27.538 -32.0799 17.0549 -4.8466

σB
zzpPaq

Coarse 234.1627 260.194 146.468 244.717 143.7517 299.7924 199.8753 270.1902 376.1902
Medium 245.7591 362.475 203.2137 255.0402 144.1905 299.4855 200.6011 270.5423 282.167
Fine 233.4144 265.2387 177.1516 192.5099 144.4195 299.4976 200.6389 270.5092 204.6006

pBhydpPaq
Coarse 273.3164 279.5418 241.9163 274.1948 273.0657 273.9475 273.383 273.9117 402.374
Medium 273.4977 272.6952 253.7051 274.2576 273.0683 273.934 273.4753 273.9096 294.6149
Fine 273.7066 274.0771 259.1145 270.249 273.0699 273.9341 273.4752 273.9103 246.635

Table 5.13: Comparison of high order displacement potential and 11 field mixed formulations
for different kinematic and kinetic measures, for aspect ratio 10 and Poisson’s ratio 0.499

Turning the attention to thinner beams, the results for the patch with the aspect ratio 100
are analogous to those with the aspect ratio 10 and offer no further insight, and are hence
omitted for the purpose of brevity. The same analysis is then carried out with extremely
thin beams with aspect ratio 1000 featuring highly stretched elements. The corresponding
loading from Table 5.11 is applied. Table 5.14 and Table 5.15 compare the results obtained
for different kinematics and kinetics quantities with displacement potential formulation using
high order tetrahedral and hexahedral elements with the 11 field mixed formulations, for aspect
ratio 1000 and Poisson’s ratio 0.45 and 0.499, respectively.

As can be observed from the tables, the p “ 2 elements exhibit severe shear locking in
this case. Comparing the results of thick and thin beams, it is evident that this phenomenon
occurs solely due to the high aspect ratio (slenderness of the beam) [206, 205]. Interestingly,
although not as dramatic, the MWF implementation also exhibits shear locking. On the other
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hand, hexahedral elements have a consistent performance across all polynomial degrees. It is
important to mention that, this phenomenon can not be attributed to the nearly incompressible
nature of the material, due to two reasons. First, for p “ 2 elements, the thick beams do not
exhibit locking neither at ν “ 0.45 nor at ν “ 0.499. Second, MWF performs specifically
well for nearly incompressible scenarios and explicitly solves for the J variable through an
augmented Hu-Washizu variational principle [113]. Also notice that, for this aspect ratio, even
p “ 3 elements exhibit some amount of locking. The oscillations in the stress on the other
hand, for DPF formulations is huge, at high polynomial degrees. This is in part due to the
fact that, higher order elements are much more stretched. For instance, the coarsest p “ 5
elements have an aspect ratio of 215 and the coarsest q “ 5 elements have an aspect ratio of
450.

Quantity Refinement p “ 2 p “ 3 p “ 4 p “ 5 q “ 2 q “ 3 q “ 4 q “ 5 11Mixed

uA
x pmq

Coarse -0.0057 -0.037 -0.04437 -0.0478 -0.0566 -0.056 -0.0536 -0.0527 0.0005
Medium 0.0021 -0.049 -0.0473 -0.0487 -0.057 -0.0571 -0.0529 -0.0532 -0.0156
Fine 0.0017 -0.0483 -0.0494 -0.0499 -0.0572 -0.0572 -0.0537 -0.0561 -0.0252

uA
z pmq

Coarse 0.0437 2.3622 2.8948 2.9245 3.0755 3.0593 2.9972 3.0944 0.5598
Medium 0.0677 2.7467 2.9379 2.9545 3.0875 3.0916 2.9803 3.0929 1.672
Fine 0.2951 2.7054 2.9584 2.9941 3.0927 3.0956 3.0022 3.0972 2.094

FA
xz

Coarse -0.0074 -0.0467 -0.0435 -0.0235 -0.0604 -0.0599 -0.0589 -0.054 -0.0004
Medium -0.0013 -0.0541 -0.0437 -0.0444 -0.0606 -0.0606 -0.0586 -0.055 -0.0001
Fine -0.0061 -0.0547 -0.0537 -0.0455 -0.0606 -0.0607 -0.059 -0.0516 -0.0003

HA
zx

Coarse -0.0075 -0.0467 -0.04535 -0.0235 -0.0604 -0.06 -0.0589 -0.054 -0.0406
Medium -0.0013 -0.0541 -0.0438 -0.0445 -0.0606 -0.0606 -0.0586 -0.0551 -0.0106
Fine -0.0061 -0.0547 -0.0537 -0.0456 -0.0607 -0.0607 -0.059 -0.0516 -0.0345

σB
xzpPaq

Coarse 18.3433 -0.0816 -1.2205 -0.9087 0.6522 0.5042 -0.4751 0.7071 -0.1453
Medium -0.0358 -1.1296 8.3123 2.6078 0.7813 0.3317 0.2968 1.1267 0.4453
Fine -0.1437 -0.8996 1.2107 3.3222 0.892 0.333 0.2834 1.1086 0.1926

σB
zzpPaq

Coarse -32.2983 -15.9872 541.2936 63.4422 0.0401 0.1828 0.8809 -0.7323 1.6931
Medium -1.173 -10.6548 327.1866 120.7646 -0.0127 0.1375 0.1661 0.2904 4.1625
Fine -0.3662 2.8504 23.2398 4.5291 -0.0542 0.1445 0.0937 0.308 14.0885

pBhydpPaq
Coarse -24.8172 -23.6293 410.2216 42.8566 2.7135 2.8305 3.7971 2.0094 -4.2656
Medium -8.1182 -16.7676 308.1874 111.348 2.6489 2.8169 2.8075 2.4095 5.391
Fine -6.7439 -3.6837 26.1795 10.0663 2.5984 2.8229 2.7651 2.4154 15.0638

Table 5.14: Comparison of high order displacement potential and 11 field mixed formulations
for different kinematic and kinetic measures, for aspect ratio 1000 and Poisson’s ratio 0.45

Quantity Refinement p “ 2 p “ 3 p “ 4 p “ 5 q “ 2 q “ 3 q “ 4 q “ 5 11Mixed

uA
x pmq

Coarse 0.0022 -0.0329 -0.0563 -0.0564 -0.0603 -0.0618 -0.0607 -0.0618 0.0004
Medium 0.0022 -0.0489 -0.0559 -0.0574 -0.0642 -0.0615 -0.0615 -0.0605 -0.0194
Fine 0.0022 -0.0434 -0.0577 -0.0582 -0.0614 -0.0616 -0.0615 -0.6165 -0.0312

uA
z pmq

Coarse 0.0062 2.1839 2.9353 3.0931 3.1536 3.2548 3.2635 3.2618 0.5988
Medium 0.0024 2.496 2.9301 2.9984 3.2623 3.2082 2.9336 3.2518 1.8414
Fine 0.0104 2.8819 2.933 2.9997 3.2017 3.2099 3.1395 3.2548 2.3124

FA
xz

Coarse -0.0007 -0.0441 -0.0505 -0.0515 -0.0626 -0.0691 -0.0603 -0.0621 -0.0004
Medium -0.0002 -0.0565 -0.0564 -0.0526 -0.0643 -0.063 -0.0592 -0.0044 -0.0001
Fine -0.0002 -0.0501 -0.0561 -0.0582 -0.063 -0.063 -0.0613 -0.0593 -0.0004

HA
zx

Coarse -0.0007 -0.0441 -0.0205 -0.0515 -0.0627 -0.0691 -0.0604 -0.0621 -0.0448
Medium -0.0002 -0.0565 -0.0565 -0.0527 -0.0643 -0.063 -0.0592 -0.0044 -0.0115
Fine -0.0002 -0.0501 -0.0561 -0.0583 -0.063 -0.063 -0.0613 -0.0593 -0.038

σB
xzpPaq

Coarse -0.058 -1.0561 0.2593 0.191 0.7204 0.7001 0.7089 0.7071 -0.2034
Medium -0.0656 -1.022 5.1248 -39.3918 0.8225 0.5512 0.3729 -9.6306 0.6378
Fine -0.1293 -0.8051 10.014 28.8039 0.8635 0.5506 0.364 -

206.3348
0.2668

σB
zzpPaq

Coarse 47.1482 -
395.4936

-33.2631 538.5343 -2.8369 3.3726 3.3814 3.3796 2.1594

Medium 0.6649 49.3672 -
414.2999

2113.4412 -4.1608 6.1501 1.802 2217.1176 4.6069

Fine -0.6984 13.3289 330.097 2189.0055 -5.4436 6.173 1.4294 3478.8777 14.6644

pBhydpPaq
Coarse 38.1504 -

407.0878
-41.0376 528.9243 0.4472 6.5811 6.5899 6.5881 -5.0029

Medium -7.9517 40.8982 -
420.7844

985.5186 -0.8781 9.456 5.1897 739.779 6.6814

Fine -9.1691 5.7871 350.556 710.8945 -2.1342 9.4748 4.8289 1165.274 15.8006

Table 5.15: Comparison of high order displacement potential and 11 field mixed formulations
for different kinematic and kinetic measures, for aspect ratio 1000 and Poisson’s ratio 0.499

The conclusion drawn from the experiments so far is that, both DPF and MWF are capable
of capturing the behaviour of compressible and nearly incompressible dielectric elastomers
fairly well. However, for thin beams, low order DPF discretisations on tetrahedra as well
MWF suffer from shear locking (resolvable through the use of a finer discretisation), while
high order DPF discretisations are able to cope up with thin beams and resolve the primary
variables accurately at the expense of a huge oscillation in derived variables such as stresses.
To separate the issue of volumetric and shear locking further a different set of experiments
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are now considered using only DPF implementation by applying an extremely high electric
voltage on the patches and lowering the Poisson’s ratio to ν “ 0.35. The loading scenario for
different aspect ratios is listed in Table 5.16.

Aspect Ratio 10 100 1000
Electric Voltage (V {m) 2.6e7 1e5 4e2

Table 5.16: Applied electric voltage as Dirichlet boundary condition for three aspect ratios

Figure 5.13 shows the hydrostatic pressure for the patch with aspect ratio 10 (thick) solved
with the medium mesh. Once again, it can be seen that even for large deformations and finite
strains, the DPF implementation with tetrahedra does not suffer from any locking, although
some oscillation in the pressure could be observed, across all polynomial degrees. Similarly,
Figure 5.14 shows the evolution of the co-factor component H13 on the coarse mesh. For this
aspect ratio, which could be considered a thin beam, DPF implementation with tetrahedra
once again produces accurate results.

hyd hyd hyd

(a) (b) (c)

Figure 5.13: Voltage induced hydrostatic pressure phyd for the medium mesh using a) p “ 2,
b) p “ 3 and, c) p “ 4

(a) (b) (c)

Figure 5.14: Voltage induced large strain (Hxz) for the coarse mesh using a) p “ 2, b) p “ 3
and, c) p “ 4

As evident by now, the challenging problem is the extremely thin beams with aspect ratio
1000 shown in Figure 5.14 . Notice that both p “ 2 and p “ 3 elements exhibit severe shear
locking for this aspect ratio, confirming the fact that this locking is purely due to stretching
of the elements. Only p “ 4 elements (and beyond) are able to capture this deformation
accurately. Interestingly, as shown in Figure 5.16 the q “ 2 elements also lock at this level
of deformation. Certainly, the problem of shear locking could in part be remedied by using
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h-refinement. As shown in Figure 5.17, even with the fine mesh the q “ 2 elements suffer from
shear locking.

(a) (b) (c)

Figure 5.15: Voltage induced large strain (Fzx) for the fine mesh using a) p “ 2, b) p “ 3 and,
c) p “ 4

(a) (b) (c)

Figure 5.16: Voltage induced large strain (Fzx) for the fine mesh using a) q “ 2, b) q “ 3 and,
c) q “ 4

(a) (b) (c)

Figure 5.17: Voltage induced large strain (Fzx) for the fine mesh using a) q “ 2, b) q “ 3 and,
c) q “ 4

The examples presented here show a clear advantage for the application of high order
elements in electromechanics. Modelling of dielectric elastomeric beams with high aspect ratio
is indeed a challenging problem. Mixed formulations based on convex multi-variable electro-
elastic strain energies have an unrivalled performance in capturing the pressure and other
derived quantities of interest, but still could suffer from shear locking at extremely high aspect



5.3. NUMERICAL EXAMPLES 21

ratios. Note that the performance of high order elements could still be superior if the element’s
aspect ratio was preserved during polynomial enrichment (which was not the case for here).
The analyses performed in this section was carried out with the clear goal of keeping the size
of the computational domain the same across all polynomial enrichments.

5.3.4 Virtual prototyping of massive deformations and instabilities in di-
electric elastomers through high performance numerical simulations

The objective of this section is to numerically study the behaviour of highly stretchable di-
electric elastomers undergoing massive deformations through virtual prototyping of a series
of electromechanical components. One of the main goals of these set of examples is to gain
insights into the onset of instabilities such as pull-in instability [246, 335] and the subsequent
formation of wrinkles in dielectric elastomers. The occurrence of these phenomena have been
experimentally verified by Plante and Dubowsky [246], where a large applied electric potential
has led to massive deformation of a dielectric elastomer sheet with eventual partial wrinkling
of the sheet. Zhao et. al. [335], Mao [198] and others [336, 177] have also reported insta-
bilities in DEs through numerical studies, albeit in relatively simplified settings. Here, an
attempt is made to model dielectric elastomeric components which could potentially be ap-
plied as compliant actuators in soft robotics, medical devices and similar applications. From a
computational point of view, four ingredients are needed to simulate such massive deformations
in DEs namely, a) a convex multi-variable expansion of the electromechanical internal energy
ensuring ellipticity [113, 233, 232, 114] b) accurate representation of the dielectric elastomeric
components, c) high order finite element analyses to capture extreme deformations and finally,
d) high performance kernels for rapid prototyping and modelling DEs. Having established all
the aforementioned necessities, a diligent endeavour is put in the upcoming examples to present
application-oriented numerical modelling of dielectric elastomers. Unless otherwise specified,
all the examples in this section are modelled using the ideal dielectric elastomer material pre-
sented in (5.13) with material parameters listed in Table 5.4. For majority of these examples,
the meshes are extremely fine in order to capture the formation of wrinkles (despite polyno-
mial enrichment) and, as a consequence, the distortion quality of curvilinear meshes are almost
unity.

A massively deformable dielectric cylinder

The first example considered is that of a dielectric shell-like cylindrical structure shown in
Figure 5.18(a) with 10m outer radius, 0.333m thickness and 25m length, centred at r0, 0, 0sT .
The model is made up of 27000 (p “ 3) curvilinear tetrahedral elements with 179122 points
in the computational mesh corresponding to a total of 716488 degrees of freedom (shown in
Figure 5.18(b)). An ideal dielectric elastomer is used as material model and the material

x

y

z

(a) (b)

Figure 5.18: Geometry and a curved tetrahedral mesh of the dielectric shell-like cylindrical
structure with 10m radius 0.333m thickness and 25m length, centred at r0, 0, 0sT
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properties are shown in Table 5.17. The following set of boundary conditions are applied.

µ1 (Pa) µ2 (Pa) λ (Pa) ε´1
1 (V2/N) ε2 (N/V2)

1e5 0 4e5 0 4ε0

Table 5.17: Material parameters with the vacuum permittivity ε0 “ 8.85418781ˆ10´12 (N/V2)

uy “ 0 rms at X “ r0, y, zsT ;

ux “ 0 rms at X “ rx, 0, zsT ;

u “ 0 rms at X “ r10, y, zsT ;

ϕ “ 0 rV s at Rin;

ω0 “ 1.4ˆ 10´4Λ rQ{m2s at Rout,

where Rin “ 9.6667m is the inner radius, Rout “ 10m is the outer radius and Λ

Λ P r0, 1s Ă R

is simply a load factor controlling the application of surface charge such that, Λ “ 0. represents
start of the load increment and Λ “ 1. represents end of the load increment (application of full
load). The usage of load factor as a pseudo-time step to quantify the application of load is a
standard practice in nonlinear quasi-static analyses [68, 56, 66]. The above non-uniform set of
boundary conditions causes the cylinder to deform asymmetrically. Furthermore, the disparity
in electric charge between the electrodes across the thickness causes the thickness to shrink.
As shown in Figure 5.19, when the voltage is small, the elastomer deforms slightly, and the
charge increases with the electric voltage approximately linearly. As the voltage increases, the
elastomer’s surface area expands significantly, and a small increase in the voltage adds a large
amount of displacement on the cylinder. Consequently, after the voltage reaches a maximum
value the voltage needed to maintain the charge drops [246]. This corresponds to the pull-
in instability [335] causing regions of the cylinder to snap-back to fully new configuration
possessing a different thickness. As more charge is applied at this state, the difference between
the thick and thin regions causes the surface of the cylinder to fold and form wrinkles. This
can be clearly observed in Figure 5.19(c,f). Notice that at the extreme loading state the
elements closer to symmetry surfaces become considerably thinner and a complete zone of
compression is formed at this region. Since the formation of wrinkles causes the cylinder to
maintain different circumferential expansion at different regions along the length, one measure
to quantify actuation property is to report the electric voltage as a function of circumferential
expansion. One such graph is shown in Figure 5.20 for different positions along the length
of the cylinder. The figure confirms the experimental findings in [246] that the formation of
wrinkles is beyond the point of pull-in instability, when the surface is a mixture of thinner and
thicker regions.

Next, two q “ 3 hexahedral meshes are chosen for the cylinder and two sets of boundary
conditions are applied on each one respectively. The meshes correspond to 1.5M and 3.2M
degrees of freedom, approximately. The first set of boundary conditions is similar to the
previous analysis, however instead of surface charge now an electric potential of 5.2ˆ 107V is
applied at the inner radius. The second set of boundary conditions corresponds to

u “ 0 rms at X “ r0, y, zsT ;

u “ 0 rms at X “ rx, 0, zsT ;

ϕ “ 0 rV s at Rin;

ϕ “ 5.2ˆ 107Λ rV s at Rout,
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Evolution of charge induced stresses in dielectric cylindrical structure with accu-
mulated load factor Λ being a) σyy at Λ “ 0.678 b) σyy at Λ “ 0.785, c) σyy at Λ “ 1.0 d) σxy
at Λ “ 0.678 e) σxy at Λ “ 0.785, f) σxy at Λ “ 1.0

where Λ is now the load factor quantifying the application of electric potential for the nonlinear
quasi-static analysis. Due to symmetry, only 1/8th of geometries are analysed. Figure 5.21
shows the evolution of the Fxz component of the deformation gradient tensor with voltage
history. The first observation is that since the boundary condition is now through applied
voltage and not electric charge as in the previous analysis, the voltage will always constantly
increase and hence there is no negative or downward slope in voltage vs strain curves, up until
the point of electric breakdown. The second observation from Figure 5.21 is that, unlike in the
case of applied charge where the surfaces near symmetry boundary conditions become thinner,
here these surfaces undergo twisting to accommodate for the constant applied electric voltage.
The formation of coarse wrinkles at r0, x, ysT is not present in this case.

Finally, unlike the two previous analyses, the third example with the second set of bound-
ary conditions for the hexahedral mesh mentioned above is completely uniform in terms of
loading. As can be seen in Figure 5.22 this set of boundary conditions imposes a homogeneous
circumferential expansion. However, once the electric voltage is high enough, coarse wave-like
wrinkles starting from the central point along the length of the cylinder are formed propagating
towards the two ends of the cylinder.

The above three examples of cylindrical shell-like DEs pinpoint the different actuation
properties that can be activated different sets of boundary conditions. In addition, they verify
the capability of the current framework to cope with extremely fine meshes and high polynomial
enrichment to capture massive deformations and wrinkling in dielectric elastomers.
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Figure 5.20: Non-dimensional quantity Φ{pH
b

µ1

ε2
q quantifying electric voltage as a function of

circumferential expansion, showing points of snap-through, pull-in instability and formation of
coarse wrinkles in dielectric elastomer. H stands for thickness and R̃ “ 9.8333 is the averaged
radius accounting for thickness stretch

Capsule

The next example considered is that of a dielectric capsule, shown in Figure 5.23(a,b) centered
at r0, 0, 0sT with an in-plane radius of 10m, thickness of 0.5m and a bulging factor of 2m in
the out of plane direction. The mesh considered (shown in Figure 5.23(c)) has 10112 elements
and for an interpolation degree q “ 3 there are 365584 points in the computational mesh which
corresponds to 1462336 degrees of freedom. Due to symmetry, only 1{4th of the geometry is
analysed. A set of symmetric mechanical Dirichlet boundary conditions are applied on the
mesh with an applied electric voltage across the thickness, as described in the following.

u “ 0 rms at X “ r0, y, zsT ;

uz “ 0 rms at X “ rx, 0, zsT ;

ϕ “ 0 rV s at Rin;

ϕ “ 2.5ˆ 107Λ rV s at Rout.

This problem is in particular interesting in shape and pattern forming through actuation.
Figure 5.24 shows the hydrostatic pressure at different loading stages. As can be observed
the capsule undergoes massive deformation to adopt a squared shape from an initial circular
configuration, as the electric voltage is applied. The capsule deforms significantly when the
electric voltage is high to adopt the new shape. After the point of snap-through as more voltage
is applied, a compression zone is formed at the centre. As the electric voltage is increased, this
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(a) (b)

(c) (d)

Figure 5.21: Evolution of voltage induced strain Fxz in dielectric cylindrical structure with
accumulated load factor Λ being a) Λ “ 0.538 b) Λ “ 0.769, c) Λ “ 0.923 and, d) Λ “ 1.0

(a) (b) (c)

(d) (e) (f)

Figure 5.22: Evolution of voltage induced strain (co-factor of the deformation gradient) Hzy in
dielectric cylindrical structure with accumulated load factor Λ being a) Λ “ 0.490 b) Λ “ 0.686,
c) Λ “ 0.784, d) Λ “ 0.882, e) Λ “ 0.941 and, f) Λ “ 1.0
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(a) (b) (c)

Figure 5.23: Dielectric capsule centred at r0, 0, 0sT with an in-plane radius of 10m, thickness of
0.5m and a bulging factor of 2m a,b) CAD geometry and c) q “ 3 structured hexahedral mesh

compression zone rapidly moves from the centre towards the edges of the deformed capsule sig-
nalling the propagation of compressed band through a highly inflated capsule. The occurrence
of this phenomenon is indeed analogous to the ones reported in the previous section, in that,
after the point of pull-in instability the thicker regions expand at the expense of the thinner
region resulting in zones of compression and propagation of pressure as a wave through the
capsule.

(a) (b) (c)

(e) (d) (f)

Figure 5.24: Evolution of voltage induced hydrostatic pressure in dielectric capsule with the
accumulated load factor Λ being a) Λ “ 0.411, b) Λ “ 0.767, c) Λ “ 0.823, d) Λ “ 0.882, e)
Λ “ 0.946 and, f) Λ “ 1.0
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Capturing folds and coarse wrinkles in dielectric plates with and without inclusions

The objective of this study is to show the effect of inclusions and the capability of the current
high order curvilinear framework in capturing folds and coarse wrinkles with very coarse meshes
through polynomial enrichments. To this effect, two dielectric plates are considered one with-
out holes or inclusions and one with multiple circular inclusions distributed non-homogeneously
through the plate, as shown in Figure 5.25. The mesh considered for the plate without inclusion
is an extremely coarse 12 ˆ 12 ˆ 1 structured hexahedral mesh (with only one element across
the thickness). For a polynomial degree of q “ 6 there are 37303 points in the computational
mesh corresponding to a total of 149212 degrees of freedom. For the plate with inclusions, the
mesh considered is an unstructured tetrahedral with 2147 elements, as shown in Figure 5.25(d).
For an interpolation degree of p “ 4, there are 26943 points in the computational mesh corre-
sponding to a total of 107772 degrees of freedom.

x

z

y

(a) (b) (c) (d)

Figure 5.25: Geometries and meshes for the dielectric plates of size 100 ˆ 100 ˆ 1m3, a,b)
without inclusions and, c,d) with inclusions

The following set of boundary conditions are applied on both plates

u “ 0 rms at X “ r0, y, 0sT ;

u “ 0 rms at X “ r100, y, 0sT ;

u “ 0 rms at X “ rx, 0, 0sT ;

u “ 0 rms at X “ rx, 100, 0sT ;

ϕ “ 0 rV s at X “ rx, y, 0sT ;

ϕ “ 4.98ˆ 107Λ rV s at X “ rx, y, 1sT .

Figure 5.26 shows the evolution of deformation in the plate (without inclusions) at multiple
loading stages and Figure 5.27 shows the final configuration of the plate. The formation of folds
and coarse wrinkles can be clearly seen from the figures. Notice how the high order curvilinear
elements are able to capture this intrinsic property of dielectric elastomers with a very coarse
discretisation.

Similarly, Figure 5.28 shows the evolution of strain component Fxz in the plate with inclu-
sions at multiple loading stages and Figure 5.29 shows the final configuration of the plate. The
formation of folds can be clearly seen from the figures. However, unlike in the case of plate
with no inclusions, the deformation pattern is completely non-uniform and the plate does not
deform as much. Once again, notice how the high order curvilinear elements are able to capture
foldings in dielectric elastomers with an increased level of detail despite a coarse discretisation.

It should be noted that, in the electromechanics community most researchers use low order
preferably linear and planar q “ 1 elements for their simulation. To this end, Figure 5.30
shows the performance of different polynomial degrees in capturing coarse wrinkles, in a slightly
modified geometry i.e. the same plate but a square hole in the center. Notice from the figure
that q “ 1 elements at this level of refinement fail to present a good description of the voltage
induced deformation in the plate.

Finally, the same plate is now analysed but under application of a surface charge of 2.5ˆ
10´4 Q{m2. Figure 5.31 shows the evolution of norm of displacement under various stages of
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(a) (b) (c) (d)

Figure 5.26: Evolution of norm of displacements in dielectric plate with the accumulated load
factor Λ being a) Λ “ 0.482, b) Λ “ 0.602, c) Λ “ 0.843 and, d) Λ “ 1.0

Figure 5.27: Formation of folds in dielectric plate (at the final deformed configuration) captured
on a 12ˆ 12ˆ 1 hexahedral mesh with q “ 6 polynomial interpolation

(a) (b) (c) (d)

Figure 5.28: Evolution of strains Fxz in dielectric plate with inclusions with the accumulated
load factor Λ being a) Λ “ 0.482, b) Λ “ 0.602, c) Λ “ 0.843 and, d) Λ “ 1.0

loading (without the color contours). As can be seen under the application of surface charge
the problem is more stable and the analysis can be performed at a much higher loading stage
leading to a severe formation of folds and multiple stages of snap-through.

While folding and the formation of single layer coarse wrinkles can be captured accurately
using the high order curvilinear elements, as presented in the next section, multi-layer wrinkling
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Figure 5.29: Formation of folds in dielectric plate with inclusions (at the final deformed con-
figuration) captured on an unstructured tetrahedral mesh with p “ 4 polynomial interpolation

q = 1 q = 2 q = 3 q = 4

q = 5 q = 6 q = 7 q = 8

Figure 5.30: A comparison of performance of high order cuvilinear elements in capturing wrin-
kles

Figure 5.31: Evolution of norm of displacements in dielectric plate under the application of
surface charge

and the propagation and nucleation of extremely fine wrinkles would still require a refined
computational mesh.



30 CHAPTER 5. CONVEX MULTI-VARIABLE ELECTROMECHANICS

Dielectric thin film undergoing massive wrinkling

The objective of this final example is to study the voltage induced instability in a thin dielec-
tric elastomeric film undergoing massive formation, propagation and nucleation of wrinkles.
Instabilities in the form of wrinkling have also been studied in [198, 336, 177]. For the analysis,
a hexahedral mesh with two polynomial enrichments is considered namely q “ 2 and q “ 6
with 268140 and 1.4M degrees of freedom, respectively. The latter allows for a highly detailed
propagation of wrinkles through the film in terms of geometry and solution accuracy. The CAD
geometry and mesh of the film are shown in Figure 5.32 with 100m radius and 1m thickness
centred at r0, 0, 0sT .
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Figure 5.32: Dielectric thin film with 100m radius and 1m thickness centred at r0, 0, 0sT , a)
CAD geometry and, b) q “ 2 mesh

The following set of boundary conditions is applied on the film

u “ 0 rms at X “ rx, y, 0sT s.t. x2 ` y2 “ 1002;

ϕ “ 0 rV s at X “ rx, y, 0sT ;

ϕ “ 5ˆ 107Λ rV s at X “ rx, y, 1sT .

This above set of boundary conditions essentially implies fixing the mechanical variables at the
outer boundary of the base of the film and applying an electric voltage across the thickness
of the film. This forces the film to bend perpendicularly and expand in area. The electric
voltage is applied adaptively on the film through 1000 load increments. Figure 5.33 shows the
evolution of stress components σxz and σyz in dielectric film for q “ 2 mesh. As can be observed
under low electric voltage, the region near the boundary of the circular film starts bulging up.
This allows the film to expand in area and shrink in thickness in this region. As the voltage is
increased the thick regions surrounding the thin ones start to expand and bulge facilitating the
formation and further propagation of wrinkles. Under further increase in voltage all the regions
start to possess similar thickness and the film straightens again allowing for nucleation of many
wrinkles. The process of wrinkling starts once again, when the voltage is further increased. The
process keeps repeating itself as voltage keeps increasing up until the point of complete electric
breakdown. Note that the formation of deep channels near the boundary require polynomial
enhancement despite a very fine mesh to capture the massive voltage induced bending caused
by wrinkles.

The same problem is then analysed using q “ 6 elements, however now after the formation a
certain number of wrinkles in the film, the load is released. Figure 5.34 shows the deformation
history of the film together with the evolution of hydrostatic pressure. As the load is released,
the deep channels around the boundary start to move inwards, leaving a thick bended layer
behind. As the whole load cycle is completed the film starts flattening and forming a plate
with multiple tiny wrinkles on the surface.

Finally, the aspect ratio of the film is decreased from 1{100 to 1{20 i.e. the radius is decreased
to 20m and the same problem with release load cycle is analysed using the q “ 6 mesh. The
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Figure 5.33: Evolution of voltage induced stress components σxz (a,b,c,d,e,f) and σyz (g,h,i,j,k,l)
in dielectric film with the accumulated load factor Λ being a,g) Λ “ 0.580, b,h) Λ “ 0.725, c,i)
Λ “ 0.798, d,j) Λ “ 0.870, e,k) Λ “ 0.943 and, f,l) Λ “ 1.0

deformation pattern is the same as in the previous analysis, however, since now there is little
room for the formation of multiple thick and thin regions, wrinkling is limited. As shown in
Figure 5.35 a deep channel is formed near the boundary that starts propagating inwards till it
reaches the centre. The film starts occupying a balloon shape at this stage. As the voltage is
increased, the centre of the film starts bending in the opposite direction, allowing the formation
of another layer of wrinkles to propagate outwards. Once the wrinkle is propagated through
the film by reaching the boundaries, another layer of wrinkles starting from the centre starts
propagating outwards. The process is repeated and in the process, multiple wrinkles start
nucleating before hitting the boundary. Under the completion of the release cycle, the film
starts flattening leaving multiple extremely fine wrinkles behind on the surface.

Overall, the problem of analysing the formation of wrinkles in dielectric elastomers is a
challenging one, in that it requires a very fine mesh. With coarse meshes it is possible to
capture folds using high order curvilinear elements, however multi-layer wrinkling might not
even occur using coarse meshes. Even high polynomial enrichments do not allow for a wave
like deformation of a single element in a wrinkled state, and hence h-refinement is absolutely
necessary. Where polynomial enrichment really helps is in massive bending of single elements
during the formation of deep channels. The examples discussed afore, pinpoint the robustness
and the high performant capability of the framework in capturing massive deformations and
wrinkling in dielectric elastomers with a remarkable level of detail.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.34: Evolution of voltage induced hydrostatic pressure in dielectric film with the ac-
cumulated load factor Λ being a) Λ “ 0.221, b) Λ “ 0.332, c) Λ “ 0.443, d) Λ “ 0.554, e)
Λ “ 0.665, f) Λ “ 0.887, g) Λ “ 0.943, h) Λ “ 0.971, and, i) Λ “ 1.0

Dielectric hemispherical film undergoing massive wrinkling

The objective of this example is to once again study the voltage induced instability in a thin
dielectric elastomeric hemispherical film undergoing massive formation, propagation and nu-
cleation of wrinkles. For the analysis, a hexahedral mesh with polynomial enrichment q “ 2
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Figure 5.35: Evolution of voltage induced hydrostatic pressure in dielectric film with the ac-
cumulated load factor Λ being (left to right - top to bottom) Λ “ 0.0, Λ “ 0.124, Λ “ 0.249,
Λ “ 0.374, Λ “ 0.499, Λ “ 0.624, Λ “ 0.749, Λ “ 0.874, Λ “ 0.886, Λ “ 0.899, Λ “ 0.911,
Λ “ 0.918, Λ “ 0.921, Λ “ 0.924, Λ “ 0.928, Λ “ 0.93, Λ “ 0.934, Λ “ 0.936, Λ “ 0.94,
Λ “ 0.942, Λ “ 0.949, Λ “ 0.952, Λ “ 0.955, Λ “ 0.958, Λ “ 0.96, Λ “ 0.962, Λ “ 0.964,
Λ “ 0.965, Λ “ 0.966, Λ “ 0.968, Λ “ 0.969, Λ “ 0.97, Λ “ 0.971, Λ “ 0.972, Λ “ 0.974,
Λ “ 0.975, Λ “ 0.976, Λ “ 0.978, Λ “ 0.979, Λ “ 0.98, Λ “ 0.981, Λ “ 0.982, Λ “ 0.984,
Λ “ 0.985, Λ “ 0.986, Λ “ 0.988, Λ “ 0.989, Λ “ 0.99, Λ “ 0.991, Λ “ 0.992, Λ “ 0.994,
Λ “ 0.995, Λ “ 0.996, Λ “ 0.998, Λ “ 0.999 and, Λ “ 1.0

is considered, where the number of degrees of freedom in the computational mesh are almost
7.6M. This allows for a highly detailed propagation of wrinkles through the film in terms of
geometry and solution accuracy. The CAD geometry and mesh of the film are shown in Fig-
ure 5.36 with 10mm radius and 0.1mm thickness centred at r0, 0, 0sT . Due to symmetry only
1/4th of the geometry is solved for. We solve for three different set of boundary conditions for
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x

z

y

(a) (b)

Figure 5.36: Dielectric arc with 10mm radius and 0.1mm thickness centred at r0, 0, 0sT , a)
CAD geometry and, b) q “ 2 mesh

this geometry. The first situtation is when all the faces of the geometry shown above (except
conic faces) are mechanical fixed in all direction and electric potential is applied through the
thickness. This can be written as The following set of boundary conditions is applied on the
film

u “ 0 rmms at X “ r0, y, zsT ;

u “ 0 rmms at X “ rx, 0, zsT ;

u “ 0 rmms at X “ rx, y, 0sT ;

ϕ “ 0 rV s at R “ Rin;

ϕ “ 5ˆ 103Λ rV s at R “ Rout.

Figure 5.37 shows the evolution of hydrostatic pressure in dielectric hemispherical sheet for
q “ 2 mesh. As can be observed due to the nature of the boundary condition, under low
electric voltage, the region near the boundary of the film starts bulging up. This allows the
film to expand in area and shrink in thickness in this region. As the voltage is increased the
thick regions surrounding the thin ones start to expand and bulge facilitating the formation
wrinkles, in this region. As can be observed the formation of coarse wrinkles around edges is
primarly due to the boundary conditions in that the mechanical degrees of freedom are fixed
around this region. In these example we in particular show the capabilities of the current high
order convex multi-variable electromechanical formulation for capturing folds and wrinkles. A
more detailed analysis could be carried out to obtain the points of snap-through and critical
voltage for the design of these devices.

The next boundary condition corresponds to a set of symmetric boundary conditions at the
edges except the base z “ 0, in that

ux “ 0 rmms at X “ r0, y, zsT ;

uy “ 0 rmms at X “ rx, 0, zsT ;

u “ 0 rmms at X “ rx, y, 0sT ;

u “ 0 rmms at X “ r0, 0, Rins
T ;

ϕ “ 0 rV s at R “ Rin;

ϕ “ 5ˆ 103Λ rV s at R “ Rout.

The tip point of the arc at the pole to allow a more rigorous formation of wrinkles. At
the absence of this mechanical fixture, the dielectric arc will have more capacity to expand
uniformly and develop less dramatic wrinkles.
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(a) (b) (c)

(d) (e) (f)

Figure 5.37: Evolution of voltage induced hydrostatic pressure in dielectric film with the ac-
cumulated load factor Λ being a) Λ “ 0.489, b) Λ “ 0.653, c) Λ “ 0.734, d) Λ “ 0.857, e)
Λ “ 0.938, and, f) Λ “ 1.0

Figure 5.38 shows the evolution of strains in dielectric hemispherical sheet. As can be
observed due to the symmetric nature of the boundary condition, there is no bulding of the
dielectric sheet near the corners but more uniform wave like wrinkles are formed initiating from
the top (pole) of the arc and travelling downwards. This allows the film to expand in area and
shrink in thickness once again. As the voltage is increased the tip of the sphereical arc gets
distored heavily and the component reaches a geometrical tolerance in terms of functionality.
This behaviour could be remedied numerically by refining the mesh around the tip which has
been the case for this problem. However, even with fine meshes there would finally reach a
point where the dielectric film would be in a severely non-functional state.

The other way to allow formation of multiple wrinkles, is to fix the region around the
tip of the hemispherical film using a cap holding mechanism shown as follows The associated
boundary condition for this case (the third case) is given as follows

ux “ 0 rmms at X “ r0, y, zsT ;

uy “ 0 rmms at X “ rx, 0, zsT ;

u “ 0 rmms at X “ rx, y, 0sT ;

u “ 0 rmms at X “ r0, y, zsT Y rx, 0, zsT s.t. R “ Rin;

ϕ “ 0 rV s at R “ Rin;

ϕ “ 5ˆ 103Λ rV s at R “ Rout.

The fourth item in the above boundary condition set essentially implies fixing the arc in
from inside around the edges where symmetry boundary conditions are imposed. This allows
the arc to roll on one side (outwards) and in the process expand. However, the existence of
a cap holding the region around the tip means that this expansion is not possible beyond a
limit and wrinkles should be expected in the vicinity of this region. This problem is once again
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Figure 5.38: Evolution of voltage induced strain in dielectric film with the accumulated load
factor Λ being a) Λ “ 0.489, b) Λ “ 0.653, c) Λ “ 0.734, d) Λ “ 0.857, e) Λ “ 0.938, f)
Λ “ 1.0, g) Λ “ 0.857, h) Λ “ 0.938, and, i) Λ “ 1.0

using 350 load increments and the load is released in the last 100 increments

Figure 5.41 shows the evolution of strains in dielectric hemispherical sheet. As can be
observed, similar to the first example, due to the nature of the boundary condition, under low
electric voltage, the region near the boundary that is near the cap fixture in this case starts to
form wrinkles very early on. The most exciting stage during the analysis is the unloading stage
where multiple layers of wrinkles are being formed. Since the unloading happens beyond the
critical voltage limit, the film has already formed many regions with different levels of thickness.
As the unloading occurs the wrinkles propagate through the thin regions much faster than the
thick region making the wrinkles stick deeper into the thick regions for a longer time and as
a result these thick regions get distorted heavily, whereas the thin regions experience faster
propagation of wrinkles and less formation of channels. A close up of this phenomenon is
shown in Figure 5.40.



5.4. CONCLUSIONS 37

Figure 5.39: Rear and front view of cap fixture mechanism for hemispherical dielectric film

5.4 Conclusions

A high order finite element implementation of the convex multi-variable electro-elasticity for
large deformations large electric fields simulations was presented in this chapter. Accurate geo-
metrical representation through a high performance curvilinear finite element framework based
on a posteriori mesh deformation technique is developed to accurately discretise the under-
lying displacement-potential variational formulation. The performance of the method under
near incompressibility and bending actuation scenarios is analysed with extremely thin and
highly stretched components and compared to the performance of mixed variational principles.
Although convex multi-variable constitutive models are elliptic and hence, materially stable
for the entire range of deformations and electric fields, other forms of physical instabilities are
not precluded in these models. In particular, physical instabilities present in dielectric elas-
tomers such as pull-in instability, snap-through and the formation, propagation and nucleation
of wrinkles and folds are numerically studied with a detailed precision in this work, verifying
experimental findings. In this context, the combination of h and p refinement proves to be
essential to capture the inherent instabilities in dielectric elastomers. While the formation of
folds and coarse wrinkles can be accurately captured by high order curvilinear elements us-
ing extremely coarse meshes, nucleation of wrinkles and multi-layer wrinkling require mesh
refinement in addition to polynomial enrichment.



38 CHAPTER 5. CONVEX MULTI-VARIABLE ELECTROMECHANICS

Figure 5.40: Close up of thick regions experiencing deeper formation of wrinkles
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.41: Evolution of voltage induced strain Hzy in dielectric film with the accumulated
load factor Λ being a) Λ “ 0.228, b) Λ “ 0.293, c) Λ “ 0.358, d) Λ “ 0.488, e) Λ “ 0.553, and,
f) Λ “ 0.618, g) Λ “ 0.749, h) Λ “ 0.830, i) Λ “ 0.912, j) Λ “ 0.944, k) Λ “ 0.973, and, l)
Λ “ 1.0
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Chapter 6

Curvilinear Finite Elements for
Small Deformations - Large Electric
Fields Electromechanics

6.1 Introduction

In an important intermediate class of problems for electromechanics, the large deformation
characteristics of the system are neglected, whereas the nonlinearity still present in the mate-
rial emanates from the electrostriction of the material through the Maxwell (for vacuum V8)
or Minkowski (for material V ) stress tensors [89, 171, 241, 111]. Theoretical aspects of these
formulations were first introduced in Landau and Lifshitz [171]. The practical relevance of
Maxwell stress tensor has led to a widespread utilisation of these formulations for exploiting
electrostriction and magnetostriction. Unfortunately, electrostrictive models based on the util-
isation of Minkowski stress tensor, in the generic case of anisotropy do not satisfy material
frame indifference (i.e. objectivity or invariance of the energy with respect to rotations) of
the electromechanical (total) stress tensor, due to the inherent non-symmetric nature of the
Minkowski stress. Several authors in the past have used ad-hoc solutions, such as symmetrisa-
tion of the total stress tensor, or consideration of the conservation of angular momentum in the
formulation, as a remedy [241, 262]. Nevertheless, the extended electromechanical Hessian still
remains non-symmetric, which dictates the development of specialised non-symmetric finite
element frameworks. Recently, Bustamente [38] has shown that physically admissible energy
functionals can be constructed by choosing suitable constitutive restrictions such that their
linearisation yields symmetric objective Minkowski-type stresses. The merit of starting from
an energy principle is that no symmetrisation is required for the stresses and the resulting finite
element discretisation is guaranteed to be symmetric.

This chapter presents a computational framework suitable for geometrically linearised small
deformation large electric field electromechanics. A convex multi-variable strain energy descrip-
tion based on the works of Gil and Ortigosa [113, 233, 232] is chosen for modelling EAPs under
actuation and energy harvesting scenarios. For the case of small strains, following Busta-
mente [38], this chapter extends the framework developed by Gil and Ortigosa [113, 233] to the
case of geometrically linearised electrostriction, to redress the aforementioned inconsistencies
for the class of intermediate formulations. Importantly, all the aforementioned mathematical
requirements are imposed at a large deformation level to arrive at a physically admissible en-
ergy functional. In this context, convex multi-variable energies typically expressed in terms
of fundamental kinematic measures tF ,H, Ju are re-expressed in terms of a set of symmet-
ric kinematics tC,G, Cu to guarantee the objectivity of the energy functional. Linearisation
with respect to geometrical fields is then performed by perturbing the energy in the vicinity
of the reference configuration. Analogous to [254], this is achieved through a staggered scheme
where the equations of electrostatics are solved in a nonlinear fashion whereas the linearised
mechanical equations are updated incrementally.

2
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It should be noted that much of the work in this chapter is based on the authors work
on linearised electromechanics presented in [253, 175]. The chapter is organised as follows.
In section 6.2 we discuss the kinematics of the linearised electromechanics together with an
appropriate variational formulation. This is followed by numerical examples in section 6.3,
showcasing the realm of applicability and benefits of the linearised scheme in capturing small
strains yet large displacements in electromechanical systems. Finally conclusions are given in
section 6.4.

6.2 Incrementally linearised electromechanics

6.2.1 Symmetric linearised kinematics

Typically when strains are small i.e. E ăă 1, (where E “ 1
2pC ´ Iq is the Green-Lagrange

strain tensor, in this case), the nonlinear term(s) in the kinematics can be ignored such that,
if u is the displacement vector, then

F “∇0u` I; (6.1a)

C “ F TF “

ˆ

∇0u` I

˙Tˆ

∇0u` I

˙

(6.1b)

“ I `

ˆ

p∇0uq
T `∇0u

˙

` p∇0uq
T p∇0uq,

E “
1

2

ˆ

p∇0uq
T `∇0u

˙

`
1

2
p∇0uq

T p∇0uq, (6.1c)

where the small strain tensor can be approximated as

ε “
1

2

ˆ

p∇uqT `∇u
˙

, (6.2)

where the distinction between material configuration and spatial configuration is now irrelevant.
The internal energy is subsequently expressed in terms of ε and linearised. Besides, (6.2) can
be identified as a Taylor series expansion of a nonlinear strain measure (Green-Lagrange strain
tensor E in this case) up to the first order term, i.e. we can essentially write

ε “
1

2

ˆ

p∇uqT `∇u
˙

`Op∇uq2. (6.3)

The nature of this approximation inherently limits the choice of linearised internal energies that
can be constructed for representing a wide range of physically plausible modes of deformation
[32, 137], specifically the ones suitable for electromechanical applications. Furthermore during
consistent linearisation of the potential energy, second directional derivatives are required which
heralds an up to second order Taylor series expansion of the kinematics. To this end, a set of
symmetric linearised kinematics can be introduced using tC,G, Cu as the starting point and
a Taylor series expansion of up to second order term, where virtual and incremental variations
are now both denoted by u, itself

C̄ “

„

C `
1

2
DCrus `

1

4
D2Crus



F“I

`OpDCrusq3 (6.4a)

“ I `
1

2

ˆ

p∇uqT `∇u
˙

`
1

4

ˆ

p∇uqT p∇uq ` p∇uqT p∇uq
˙

,

Ḡ “

„

G`
1

2
DGrus `

1

4
D2Grus



F“I

`OpDGrusq3; (6.4b)

“ I `
1

2
I

ˆ

p∇uqT `∇u
˙

`
1

4
I

ˆ

p∇uqT p∇uq ` p∇uqT p∇uq
˙
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`
1

4

ˆ

p∇uqT `∇u
˙ ˆ

p∇uqT `∇u
˙

`OpDGrusq3;

C̄ “

„

C `
1

2
DCrus `

1

4
D2Crus



F“I

`OpDCrusq3 (6.4c)

“ 1`

ˆ

p∇uqT `∇u
˙

: I `
1

4
I :

ˆ

p∇uqT p∇uq ` p∇uqT p∇uq
˙

`
1

4
I :

«

ˆ

p∇uqT `∇u
˙ ˆ

p∇uqT `∇u
˙

ff

`OpDCrusq3.

It is easy to identify the emergence classical small strain tensor ε “ 1
2

ˆ

p∇uqT`∇u
˙

. However,

importantly new high order terms also arise in this process, which in the presence of a suitable
strain energy typically lead to some kind of prestress effect [131]. Furthermore, it should be
noted that the above Taylor series expansion is exact in C, in the sense

D3Crus “ 0 ñ OpDCrusq3 “ 0, (6.5)

Although, this approximation is not exact in G and C. This one of the fundamental reasons,
why in chapter 3 the variational principle for consistent incrementally linearised approach was
presented in terms of C alone. In order to have a unified framework, the variational formulation
in the last chapter and consequently in this chapter are also going to be in terms of C alone.

6.2.2 Variational Formulation

As discussed in section 6.1, a particular class of coupling in electromechanics deals with small
strains coupled with nonlinear electrostatics. To this end, the variational principle described in
chapter 4 can be particularised for the case of small strains. Extending, the strategy presented
in [254, 253, 14], let us consider the total potential energy (5.4) cast in an iterative (Newton-
Raphson) form

ΠΦintpx
˚n`1

k`1 , ϕ
˚n`1

k`1 q “

ż

V
ΦpCn`1

k`1 ,´p∇0ϕq
n`1
k`1qdV, (6.6)

where superscripts denote increments and subscripts denote iterations. A geometrically lin-
earised formulation for electro-elasticity can be obtained by perturbing the potential energy
(6.6). However note that in contrast to the approach presented in [254], particularisation of
(6.6) for small strains through consistent linearisation with respect to the variations in electro-
static fields and mechanical fields cannot be performed simultaneously, as it leads to high order
tensorial quantities without clear physical interpretations. However, as shown in Figure 6.1, for
small deformations, the geometry could be solved for incrementally with only the electrostatic
equations requiring a full Newton-Raphson procedure. This gives rise to the staggered scheme
presented in the following subsection.

6.2.3 The staggered approach to incrementally linearised electromechanics

To elaborate the staggered approach emanating from the variational principle, let us reconsider
(6.6) which in fully discretised form (using the finite element method) can be written as

«

Kuu
n`1
k`1 Kuφ

n`1
k`1

Kφu
n`1
k`1 Kφφ

n`1
k`1

ff«

Uu
n`1
k`1

Uφ
n`1
k`1

ff

“ ´

«

Ru
n`1
k`1

Rφ
n`1
k`1

ff

, (6.7)

where Kuu represents the fully discrete purely mechanical stiffness matrix, Kφφ the fully
discrete matrix associated with electrostatic variable(s) and Kuφ and Kφu the fully discrete
electromechanical coupled matrices. The above discrete form particularised to the staggered
case of (5.3) can be established as shown in Algorithm 2. Algorithm 2 in particular implies a



6.2. INCREMENTALLY LINEARISED ELECTROMECHANICS 5

staggered system in which the geometry is updated incrementally, but the associated electro-
static variables are solved for iteratively. More specifically, as shown in Figure 6.1 the geometry,
the mechanical and the coupling matrices are frozen during the iterative (implicit) solution of
the electrostatic variables. An algorithmic representation of this staggered scheme is presented
in Algorithm 2 where N represents the external electrical nodal force vector. Note that an
initial step for solving the mechanical variables is necessary in this case i.e. Kuu

0
0Uu

0
0 “ ´Ru

0
0

to account for Dirichlet driven problems. Since the above staggered approach requires the
solution of a scalar field electric potential through solving the discretised Gauss’s law, the sav-
ing in computational cost can be tremendous within its range of applicability (small strains).
However as the voltage induced deformation increases a high number of increments might be
needed to obtain the results of fully nonlinear monolithic approach. This staggered scheme can
be termed as traction based staggered approach to electromechanics, as the electrical solution
is fed into the mechanical problem through traction boundary conditions.

xn = φn(X)

xn+1 = φn(X) + u

xn+1 = φn+1(X)

xn0 ; ϕ
n
k

xn0 ; ϕ
n
k+1

Freeze Geometry

Figure 6.1: Schematic representation of the staggered incrementally linearised scheme.

Algorithm 2 The incrementally linearised electromechanics solver

procedure Staggered Solver
Assemble & solve the mechanical problem Kuu

0
0Uu

0
0 “ ´Ru

0
0

for each increment n do
Compute electrostatic residual R̂n`1

φ0
“ Rφ

n`1
0 ´Kφu

n
0Uu

n
0

while ||R̂n`1
φk`1

|| ą tolerance do

Assemble & solve the electrostatic problem Kφφ
n`1
k`1Uφ

n`1
k`1 “ ´R̂n`1

φk`1

Compute electrostatic traction forces Tφ
n`1
k`1

Update electrostatic residual R̂n`1
φk`1

“ Tφ
n`1
k`1 ´Nφ

n`1
k`1

Accumulate mechanical residual Rφu
n`1
k`1 “ Tu

n`1
k`1 ´Nu

n`1
k`1

end while
Compute the force vector Fuφ

n
0 “ Kuφ

n
0Uφ

n`1
k`1

Solve the corrected mechanical problem Kuu
n
0Uu

n`1
0 “ ´Ru

n
0 ´Rφu

n`1
k`1 ` Fuφ

n
0

Update the geometry xn`1 “ xn `Uu
n`1
0

Assemble Kuu
n`1
0 , Kuφ

n`1
0 and Kφu

n`1
0

Set n` 1 to n
end for

end procedure

A slightly modified version of this scheme is presented in Algorithm 3 where in this case
the newly computed electric potential is used to update the coupling (off-diagonal) blocks of
the coupled system and then the traction forces coming from electrical solution is computed
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through this coupling sub-matrix. This approach can be termed as potential based staggered
approach. In practice, the results obtained with thses two approaches are not far different from
each other, and hence we will not delve into discussing this aspect.

Algorithm 3 The incrementally linearised electromechanics solver

procedure Staggered Solver
Assemble & solve the mechanical problem Kuu

0
0Uu

0
0 “ ´Ru

0
0

for each increment n do
Compute electrostatic residual R̂n`1

φ0
“ Rφ

n`1
0 ´Kφu

n
0Uu

n
0

while ||R̂n`1
φk`1

|| ą tolerance do

Assemble & solve the electrostatic problem Kφφ
n`1
k`1Uφ

n`1
k`1 “ ´R̂n`1

φk`1

Compute electrostatic traction forces Tφ
n`1
k`1

Update electrostatic residual R̂n`1
φk`1

“ Tφ
n`1
k`1 ´Nφ

n`1
k`1

Accumulate mechanical residual Rφu
n`1
k`1 “ Tu

n`1
k`1 ´Nu

n`1
k`1

end while
Assemble Kuφ

n`1
0

Compute the force vector Fuφ
n`1
0 “ Kuφ

n`1
0 Uφ

n`1
k`1

Solve the corrected mechanical problem Kuu
n
0Uu

n`1
0 “ ´Ru

n
0 ´Rφu

n`1
k`1 ` Fuφ

n`1
0

Update the geometry xn`1 “ xn `Uu
n`1
0

Assemble Kuu
n`1
0 and Kφu

n`1
0

Set n` 1 to n
end for

end procedure

In the current setting, similar to our previous developments, equal order high order isopara-
metric finite elements are utilised to solve for the primary variables i.e. tx, ϕu.

6.3 Numerical examples

In this section a series of numerical examples for geometrically linearised electromechanics are
presented. These include comparison of monolithic (nonlinear) approach with the incrementally
linearised staggered approach and the range of applicability of the latter approach in actuation.
Apart from these benchmark studies, a series of examples pertaining to the small deformation
are showcased. We will in particular, also showcase that the current staggered approach also
copes up really well with large displacement small strain problems. The finite element imple-
mentation involves equal order standard isoparametric discretisation of the electromechanical
variables tx, ϕu, starting with at least quadratic basis functions. Unless otherwise specified,
for all the examples, the curvilinear meshes are generated using the consistently linearised solid
mechanics analogy presented in [254, 328], using a Mooney-Rivlin model with a Poisson’s ratio
of 0.45 and 10 load increments. In addition, all the analyses are carried out with the high
performance domain-specific data parallel tensor contraction finite element framework Fastor

based on the authors’ previous work [251] and the massively parallel multi-frontal direct sparse
solver MUMPS is used for the solution of system of linear equations.

6.3.1 An electromechanical plate with multiple holes

The objective of this example is to study the performance and the range of applicability of the
staggered approach for small strain actuation and energy harvesting problems. To this end,
two actuation problems are considered, based on two material models. For the first problem,
the material model used is that of (5.13) with material constant given by (5.4). This problem
is in particular a simple one due to the fact that electric field is a linear function of electric
displacement and hence chosen for the purpose of benchmarking the staggered scheme. For the
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second problem, the following stabilised convex multi-variable energy functional is considered
[232]

Wel,2 “ µ1IC ` µ2IG ´ p2µ1 ` 4µ2 ` 12µeqln
?
C `

λ

2
p
?
C ´ 1q2 `

1

2ε1
IID0 `

1

2ε2

?
C
IId

(6.8)

`µe

ˆ

I2
C `

2

µeεe
ICIId `

1

µ2
eε

2
e

II2
d

˙

,

with material properties listed in Table 6.1. In this model the electric field and electric displace-

µ1 (Pa) µ2 (Pa) µe (Pa) λ (Pa) ε´1
1 (V2/N) ε2 (N/V2) ε2 (N/V2)

2.3e4 1.15e5 800 8e5 0 4.5ε0 1050ε0

Table 6.1: Material parameters for (6.8) with the vacuum permittivity ε0 “ 8.85418781ˆ10´12

(N/V2)

ment are coupled implicitly and hence this model tests the true performance of the staggered
approach. The computational meshes considered are shown in Figure 6.2 together with the
CAD geometry. The mesh has 3819 elements and for an interpolation degree p “ 3 there are
47317 points in the mesh corresponding to a total of 189268 degrees of freedom. To study

(a) (b)

Figure 6.2: Electromechanical plate with holes a) CAD geometry and, b) p “ 4 curvilinear
mesh

the performance of the staggered scheme the error incurred in staggered scheme is quantified
relative to (fully nonlinear) monolithic approach as

||e||staggered
L2 “

«

||ηmonolithic ´ ηstaggered||

||ηmonolithic||

ff
1
2

. (6.9)

Typically, the range of applicability of the staggered electrostrictive scheme can be de-
termined by successively increasing the electric voltage and observing the error produced by
the scheme [335]. In the current setting, the following non-dimensional quantity is chosen to
quantify the increase in electric voltage

W “ Φ{pH

c

µ

ε
q, (6.10)

where Φ denotes the applied potential and H represents the plate thickness. For the ideal
dielectric model µ and ε can be related to material parameters as

µ “ 2pµ1 ` µ2q;
1

ε
“

1

ε1
`

1

ε2
. (6.11)
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Similarly, for the stabilised material described in (6.8), µ and ε can be found as

µ “ 2pµ1 ` 2µ2 ` 6µeq;
1

ε
“

1

ε1
`

1

ε2
`

12

εe
. (6.12)

The plate is clamped at the two ends along the length and the electric voltage is applied through
the thickness of the plate such that W increases from 0.1 to 1.0. Figure 6.3 shows the relative
L2 norm of the staggered approach as function of number of increments for different values
of W. As can be observed, certainly as the W and hence the voltage induced deformation
increases, the error incurred in staggered approach increases. The convergence of the staggered
approach is approximately linear for both models. Interestingly, even under the application
of extremely high voltage, the results of the staggered scheme seem to converge to the results
of the monolithic approach. However, opting for such high number of increments may not be
computationally practical. For engineering accuracy and large scale problems, the staggered
scheme pays off as it only involves an iterative solution of the Gauss’s law for the scalar electric
potential.

101 102 103
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10−7
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||st
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||st

a
g
g
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W = 0.547

W = 0.773

W = 1.000

(a) (b)

Figure 6.3: Convergence of the staggered scheme with respect to the monolithic solver as a
function of increase in applied voltage quantified by W as defined in (6.10)

Finally, Figure 6.4 shows the amount of voltage induced strains in the plate. Notice that
despite large displacements, the strains are still small within the context of dielectric elastomers.

6.3.2 A simplified jelly fish undergoing voltage induced large displacement

In this section we consider, a simplified jelly fish example, modelled as half of a hollow ellipsoidal
structure as shown in Figure 6.5. The geometry has a thickness of 1mm, with inner radius
49mm and outer radius 50mm, and the major axis of the ellopsoidal being 250mm. An ideal
dielectric elastomer is used for the analysis with p “ 3 for the analysis. The mesh has 97084
elements and 561954 nodes on the domain

The problem is solved by fixed the jelly fish geometry in the base and applying an electric
potential of 5kV across the thickness. The problem is solved dynmically using a Newmark’s
Beta method using 200 time steps for 120 seconds. Figure 6.6 shows the deformation of the jelly
fish through time. As can be seen from the figure, it is evident that the jelly fish is experiencing
large displacements although the straining in the ellispoid is not that massive. This confirms
that the current staggered approach is capable of capturing large displacements if the strains
are still small.

6.3.3 A self-rolling electromechanical actuator

In this section we consider a cylinderical electromechanical actuator which undergoes self-rolling
under the action of electric potential. The problem is once again solved using the staggered
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(a) (b)

(c) (d)

Figure 6.4: Voltage induced strains Cxx in electromechanical plate

(a) (b)

Figure 6.5: Geometry and mesh of the tetrahedral ellipsoidal jelly fish
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6.6: Voltage induced displacements uz in jelly fish at time steps a) 1, b) 20, c) 40, c)
60, d) 80, e) 100, f) 120, g) 120, h) 130, i) 140, j) 150, k) 160, l) 170, m) 180, n) 190, o) 200
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presented in this chapter. The geometry of the cylinder is exactly the same as the cylinder
considered in chapter 5, shown in Figure 5.18. We consider a q “ 2 hexahedral elements for
this analysis.

The cylinder is fixed on all but faces except the surfaces of revolution and an electric
potential of 5ˆ107V is applied through the thickness. The problem is solved using the staggered
approach with an ideal dielectric elastomer. The problem is once again solved dynamically with
900 time steps over 60 seconds. However, this problem is virtually designed in a particular way
such that every 20 percent loading there is 5 seconds of constant loading. Figure 6.7 shows the
voltage induced deformation of the cylinder using the staggered scheme. As can be observed
the staggered scheme is once again to capture massive displacements induced due to applied
voltage. As can be seen the maximum strain induced is only 4 percent.

6.4 Conclusions

A staggered scheme for geometrically linearised electromechanics based on convex multi-variable
energies was presented in this chapter. The linearised variational formulation leads to sym-
metric Minkowski stresses without the need for further ad-hoc symmetrisation used in the
literature. The resulting high order curvilinear finite elements used for discretisation is solved
using a staggered approach such that the only the nonlinear electrostatic equations are solved
iteratively. The mechanical problem is frozen during these iterations and update using either
electrically induced tractions or electric potential per increment. The formulation is essentially
similar in spirit to the linearised elasticity problem presented in chapter 3. Through numerical
examples we have shown that the staggered scheme is able to capture large displacements as
well as long as the strains induced in the components are relatively small. This is in particular
very interesting, since the many problems exhibit large displacements without undergoing large
strains and the computational time savings for these problems using a staggered approach is
going to be significant.
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Figure 6.7: Voltage induced strains Cxz in electromechanical plate
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Chapter 7

Linearised Electromechanics -
Particularisation to Sensing and
Energy Harvesting Piezoelectric
Continua & Beams

7.1 Introduction

In this chapter, a new computational framework is introduced for the analysis of three di-
mensional linear piezoelectric beams and continua using hp-finite elements. Unlike existing
publications on piezoelectric beams, the framework is extremely generic and suitable for static,
modal and dynamic analyses; it is not restricted to either actuation or energy harvesting ap-
plications and, moreover, it can cope with any anisotropy or electric polarisation orientation.
Derived from first principles, namely the fundamental equations of continuum piezoelectricity,
a new set of beam balance equations is presented based on a Taylor series expansion for the
displacement and electric potential across the cross section of the beam. The coupled nature of
the piezoelectric phenomenon at a beam level arises via a series of mechanical (and electrical
counterparts) stress and strain cross sectional area resultants. To benchmark the numerical
algorithm, and in order to aid prospective researchers, a new closed-form solution is presented
for the case of cantilever type systems subjected to end tip mechanical/electrical loads. To
the best of the authors’ knowledge, the analytical solution for this prototypical example has
not been previously presented. Numerical aspects of the hp-discretisation are investigated in-
cluding the exponential convergence of the hp-refinements and the consideration of linear or
quadratic electric potential expansions across the cross section of the beam.

It should be noted that much of the work in this chapter is based on the authors work on
linear theory of piezoelectricity presented in [250]. The structure of the chapter is as follows.
Section 7.2 describes the balance equations of electromechanics and in Section 7.3 we introduce
the kinematics and electrostatics of three-dimensional piezoelectric beams. Section 7.4 describes
the variational formulation from which the mechanical and electrical cross sectional balance
equations are obtained in Section 7.5. Analytical solutions for planar piezoelectric beams are
presented in Section 7.6 and the hp-finite element discretisation of the variational formulation
is presented in Section 7.7. Finally, in Section 7.8 a series of numerical simulations ranging
from static to modal and dynamic analyses are reported.

7.2 Balance equations of electromechanics

Let Ω Ă R3 be a bounded contractible domain occupied by a continuum during the time
interval r0,Ts and Γ be its boundary, equipped with a unit outward normal n, as shown in

2
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Figure 7.1. In this case, the static Faraday and Gauss laws can be summarised as follows

curlE “ 0 and divD ` ρe “ 0 in Ωˆ r0,Ts, (7.1)

where E denotes the electric field intensity vector, D is the electric displacement vector and
ρe is the volume charge density. As Ω is a contractible domain, the electric field vector E
can be reformulated as E “ ´∇φ, where φ is a scalar potential field. Dirichlet and Neumann
boundary conditions can then be introduced as

φ “ ψ̄ on Γψ ˆ r0,Ts, (7.2a)

D ¨ n “ ω on ΓD ˆ r0,Ts. (7.2b)

where Γ “ ΓDYΓψ and ΓDXΓψ “ H. In the context of small deformations, the motion of the
continuum can be defined by a displacement field u : Ωˆr0,Ts Ñ R3, such that px, tq ÞÑ upx, tq,
where x P Ω represents a material point and t P r0,Ts the time. The conservation of linear
momentum equation is defined as

divσ ` ρb “ ρ:u in Ωˆ r0,Ts, (7.3)

where ρ is the density of the continuum, σ is the symmetric (conservation of angular momen-
tum) Cauchy stress tensor, b is a body force per unit of mass and a superimposed dot (double

dot) indicates partial (double) differentiation with respect to time (e.g. 9 :“ B
Bt and : :“ B2

Bt2
).

Dirichlet, Neumann and initial conditions can be introduced as

u “ ū on Γu ˆ r0,Ts, (7.4a)

σn “ t on Γσ ˆ r0,Ts, (7.4b)

u “ u0 in Ω̄ˆ 0, (7.4c)

9u “ 9u0 in Ω̄ˆ 0, (7.4d)

where Γ “ Γσ Y Γu and Γσ X Γu “ H. The coupled electro-mechanical initial boundary value
problem, defined by equations (7.1) to (7.4), must be complemented with two closure equations
related to the electro-mechanical nature of the continuum. For a conservative material, the
closure equations can be derived from the enthalpy density of the system Ψ defined in terms
of the electric field vector E and the small strain tensor ε as follows

σpε,Eq :“
BΨpε,Eq

Bε
and Dpε,Eq :“ ´

BΨpε,Eq

BE
, ε :“

1

2

`

∇u`∇uT
˘

, (7.5)

expressing the total Cauchy stress tensor σ and the electric displacement vector D in terms
of the electric field E and the small strain tensor ε. A variety of electro-mechanical consti-
tutive models are available in the literature defined in terms of different enthalpy expressions
[111, 142]. In the case of linear piezoelectricity, σ and D obtained this way render algebraic
summations of mechanical (¨)m and electrical (¨)e components.

The electric displacement D can be expanded as

D “Dm `De; Dm :“ P : ε, De :“ εE, (7.6)

where ε is the symmetric second order dielectric permittivity tensor and P is the third order
piezoelectric tensor verifying rPsijk “ rPsikj . Analogously, the total Cauchy stress tensor σ
can be decomposed additively as

σ “ σm ` σe; σm :“ C : ε, σe :“ ´E ¨P . (7.7)

Piezoelectric materials exhibit anisotropic behaviour and, hence, C is the general fourth order
anisotropic elasticity tensor satisfying rCsijkl “ rCsjikl “ rCsijlk “ rCsklij . It is important to
emphasise that the conservation of angular momentum requires the symmetry of σ but not
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of its individual components σm and σe. Finally, the initial boundary value problem of the
coupled problem is defined by equations (7.1)-(7.4), (7.6)-(7.7).

Γ
σ

Γ
un

Ω

ρb

Γ
D

Γ
ψn

Ω

qe

(a) (b)

Figure 7.1: Decomposition of (a) Mechanical Boundary Γ “ ΓσYΓu and ΓσXΓu “ H and (b)
Electrical Boundary Γ “ ΓD Y Γψ and ΓD X Γψ “ H

7.3 Kinematics and electrostatics of three-dimensional piezo-
electric beams

7.3.1 Kinematics

Let us consider the motion of a beam Ω Ă R3 as shown in Figure 7.2 [57]. The beam in
the undeformed configuration has a straight axis of length l and is completely characterised
with an orthonormal reference triad te1, e2, e3u, where e3 is parallel to the beam axis and
teαupα “ 1, 2q lie in the plane which defines the cross sectional area A (with boundary BA) of
the beam Ω “ Aˆ l1. Assuming for simplicity that this reference frame (placed at r0, 0, x3s

T )
coincides with the global one (placed at r0, 0, 0sT ), as shown in Figure 7.2, the beam current
configuration x “ rx1, x2, x3s

T can be defined through a mapping ϕ : Ωˆ r0, T s Ñ R3 as

x1

x2

x3

e1

e2

e3

c1

c2

c3

ϕ(x, t)

O

Figure 7.2: Motion of beam in R3. The initial orthonormal triad te1, e2, e3u transforms to the
orthonormal triad tc1, c2, c3u.

px, tq ÞÑ ϕpx, tq “ x3e3 `wpx3, tq `Λpx3, tqppx1, x2q, (7.8)

1Throughout the remainder of the chapter, any Greek indices will be assumed to vary in the integer interval
[1,2] and Latin indices to vary in the integer interval [1,2,3].
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where ppx1, x2q :“ xαeα is the position vector of a material point within the cross section
A with respect to the origin of the triad te1, e2, e3u

2, wpx3, tq is the displacement vector of
the reference triad origin and Λpx3, tq is an orthogonal tensor evaluated at the triad origin
and representing the transformation of the reference orthonormal triad te1, e2, e3u to a new
orthonormal triad tc1, c2, c3u according to ci “ Λei. It is well known, this rotation tensor Λ
can be obtained in terms of the exponential mapping of a skew symmetric second order tensor
θ̂ and can be expanded in the form

Λ “ exppθ̂q “ I ` θ̂ `
1

2!
θ̂

2
`

1

3!
θ̂

3
` . . . as }θ̂} Ñ 0 (7.9)

where } ¨ } denotes the standard Euclidean vector norm and θ̂ is the skew-symmetric tensor
associated with θ [126]. Note that for any arbitrary vector v P R3 the following identity is
fulfilled

θ ˆ v “ θ̂v. (7.10)

In the case of small rotations and neglecting high order terms, the rotation tensor can be
approximated as Λ » I ` θ̂ yielding a final displacement field u : Ω ˆ r0, T s Ñ R3 (refer to
equation (7.8)) defined as

px, tq ÞÑ upx, tq “ wpx3, tq ` θpx3, tq ˆ ppx1, x2q, (7.11)

where the vectors w “ wiei and θ “ θiei are collectively called the generalised beam displace-
ments. Expression (7.11) represents a time dependent affine mapping for any material point
contained within the cross sectional area A of the beam. Noticing that ∇u “ Bu

Bxi
b ei and

Bp
Bxα

“ eα, the small strain tensor ε can be rewritten as

ε “
1

2

„

pεm ` κm ˆ pq b e3 ` e3 b pε
m ` κm ˆ pq



, (7.12)

where

εm :“
Bw

Bx3
` e3 ˆ θ, κm :“

Bθ

Bx3
, (7.13)

are called the strain resultants of the linear beam model, which characterise translational
deformation and rotational deformation, respectively.

7.3.2 Electrical Mapping

Similar to the previous section, we postulate a Taylor series expansion for the electric potential
φ : Ωˆ r0, T s Ñ R in the form

px, tq ÞÑ φpxq “φ |p0,0,x3,tq
` ppx1, x2q ¨∇φ |p0,0,x3,tq

`

1

2
ppx1, x2q ¨Hφ |p0,0,x3,tq

ppx1, x2q ` . . . as }ppx1, x2q} Ñ 0 (7.14)

in terms of the time dependent electric potential φ, its vector gradient ∇φ and its second order
tensor Hessian Hφ defined at the reference triad origin r0, 0, x3s

T . It is possible to neglect high
order terms Op}ppx1, x2q}

3q by assuming that the spatial variation of the electric potential in
the cross section of the beam is sufficiently well defined via ∇φ and Hφ, in line with references
[39, 166]. Notice that any lower order electric potential interpolation across the section of the
beam would yield a non-varying electric field vector E across A. With this assumption in place,
we can introduce an approximate electric potential field ψ : Ωˆ r0, T s Ñ R defined as

px, tq ÞÑ ψpx, tq :“ φpx3, tq ` ppx1, x2q ¨ βpx3, tq `
1

2
ppx1, x2q ¨ γpx3, tq ppx1, x2q, (7.15)

2Note that unless otherwise stated, Einstein’s summation convention will be assumed.
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where ψ represents a parabolic expansion across the cross sectional area A of the beam, com-
pletely defined in terms of φ, β and γ, namely scalar, vector and symmetric second order tensor
beam axis-varying functions. It is important to remark that the only approximation for the
distribution of the electric potential is established across the section of the beam (see Figure
7.3). The variation along the beam axis remains without any approximation.

The electric field vector E can now be obtained by computing the gradient of the newly
introduced electric potential ψ as E :“ ´∇ψ yielding (refer to equation (7.15)), after some
algebraic manipulation

E “ ´εe ´ pe3 b pqκ
e ´ V : ςe ´W : γ, (7.16)

where

εe :“
Bφ

Bx3
e3 ` β, κe :“

Bβ

Bx3
, ςe :“

Bγ

Bx3
, (7.17)

with the third order tensors V and W defined by

V :“ e3 b
1

2
ppb pq , W :“ eα b

1

2
ppb eα ` eα b pq . (7.18)

Considering equation (7.16), it is interesting to notice the similarities with the definition
of the small strain tensor ε (7.12). Notice how the first two terms on the right hand side of
equation (7.16) stem from the linear contribution in (7.15) (as in formula (7.12)) whereas the
last two terms stem from the quadratic contribution in (7.15).

Piezoelectric Layer

Polarisation in x1 Direction

l

h

b

Piezoelectric Layer

Polarisation in x2 Direction

l

h

b

Piezoelectric Layer

Polarisation in x3 Direction

l

h

b

e1

e2

e3

Figure 7.3: Electrostatics of a three-dimensional piezoelectric beam

The new initial boundary value problem, adapted to a three-dimensional beam problem, is
then defined by equations (7.1-7.7) and (7.11,7.15), which combine the governing equations of
both elastodynamics and electrostatics, initial and boundary conditions, the coupling electro-
mechanical equations for σ andD, the beam kinematics assumption u and the electric potential
spatial distribution ψ. Notice that the initial and boundary conditions must be compatible with
the assumptions for the beam kinematics and the electric potential spatial distribution. The
variables of the resulting electromechanical beam model in a general three-dimensional beam
problem are tw,θ, φ,β,γu defined in l ˆ r0, T s.

7.4 Variational formulation

In order to establish the variational formulation of the problem, the following spaces of admis-
sible trial functions u and ψ are considered:

Vuū :“ tu | u :“ w ` θ ˆ p, u “ ū on Γu ˆ r0, T su, (7.19)
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Vψ
ψ̄

:“

"

ψ | ψ :“ φ` p ¨ β `
1

2
p ¨ γ ¨ p, ψ “ ψ̄ on Γψ ˆ r0, T s

*

, (7.20)

with the component functions tpw ¨ eiq, pθ ¨ eiq, φ, pβ ¨ eαq, peα ¨ γeβqu P H
1pΩq. Following a

standard variational methodology [111, 142], the variational form (virtual work) of the initial
boundary value problem is given as:

Find pu, ψq P Vuū ˆ Vψ
ψ̄

such that

δW pu, ψ; δu, δψq :“ δWiner ` δW
m
int ` δW

e
int ´ δW

m
ext ´ δW

e
ext “ 0, (7.21)

for all pδu, δψq P Vu0 ˆ Vψ0 where

δWiner :“

ż

Ω
ρ:u ¨ δu dΩ, (7.22a)

δWm
int :“

ż

Ω
σ : δε dΩ, (7.22b)

δWm
ext :“

ż

Ω
ρb ¨ δu dΩ`

ż

Γσ
t ¨ δu dΓ, (7.22c)

δW e
int :“ ´

ż

Ω
D ¨ δE dΩ, (7.22d)

δW e
ext :“

ż

Ω
ρeδψ dΩ`

ż

ΓD
ωδψ dΓ, (7.22e)

represent the different contributions (e.g. inertial, internal, external, mechanical, electrical) to
the total virtual work and

δε “
1

2

´

∇δu` p∇δuqT
¯

, δE “ ´∇δψ. (7.23)

Substituting the expressions for δu (7.19) and δψ (7.20) into equation (7.23) results in

δε “
1

2

„

pδεm ` δκm ˆ pq b e3 ` e3 b pδε
m ` δκm ˆ pq



, (7.24a)

δE “ ´δεe ´ pe3 b pqδκ
e ´ V : δςe ´W : δγ, (7.24b)

where

δεm :“
Bδw

Bx3
` e3 ˆ δθ, δκm :“

Bδθ

Bx3
, (7.25a)

δεe :“
Bδφ

Bx3
e3 ` δβ, δκe :“

Bδβ

Bx3
, δςe :“

Bδγ

Bx3
, (7.25b)

represent the virtual mechanical and electrical beam strains.
Substituting the expressions for u (7.11) and δu (7.19) into (7.22a) yields (after integration

over the cross sectional area A) the inertial virtual work

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (7.26)

where

AD :“

ż

A
ρIdA, SD :“

ż

A
ρp̂ dA, ID :“

ż

A
ρp̂p̂TdA, (7.27)

represent the mass AD, first area moment SD and second area moment ID tensors of the
cross sectional area A. Notice that p̂ represents the skew symmetric tensor associated with the
position vector p. When considering a reference frame whose origin coincides with the centre
of mass of the cross sectional area A, then SD “ 0. Moreover, if the reference frame is aligned
along the so-called principal directions, the second area moment tensor ID becomes diagonal.
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Analogously, substituting the expression for δε (7.24a) into (7.22b) yields (after integration
over the cross sectional area A) the internal mechanical virtual work

δWm
int “

ż

l
rδεm ¨Qm ` δκm ¨Mms dx3, (7.28)

with

Qm :“

ż

A
σe3dA, Mm :“

ż

A
pˆ pσe3qdA. (7.29)

In above equation (7.28), Qm represents the internal shear/axial force whereas Mm repre-
sents the internal bending/torsion moment.

Substituting the expression for δu (7.19) into (7.22c) yields (after integration over the cross
sectional area A) the mechanical external virtual work

δWm
ext “ rδw ¨Q

m ` δθ ¨Mms
l
0 `

ż

l
rδw ¨ qm ` δθ ¨mms dx3, (7.30)

where

qm :“

ż

A
ρbdA`

ż

BA
tdΓ, mm :“

ż

A
ppˆ ρbq dA`

ż

BA
ppˆ tq dΓ. (7.31)

In above equations (7.30) and (7.31), qm and mm represent a possible external distributed
force and moment, respectively, acting along the beam axis. The first term in squared brackets
on the right hand side of equation (7.30) represents mechanical actions (force and moment)
applied at both ends of the beam, namely x3 “ 0 and x3 “ l.

From the electrical point of view, substituting the expression for δE (7.24b) into (7.22d)
yields (after integration over the cross sectional area A) the internal electrical virtual work

δW e
int “

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : Oe ` δγ : P es dx3, (7.32)

where

Qe :“

ż

A
DdA, M e :“

ż

A
pD ¨ e3qp dA, (7.33a)

P e :“

ż

A
D ¨WdA, Oe :“

ż

A
D ¨ VdA. (7.33b)

In above equations (7.32) and (7.33a), it is very interesting to observe the similarities between
Qe and M e and their mechanical counterparts (7.29), namely Qm and Mm, respectively. In
addition, due to the quadratic nature of the electric potential distribution, two extra second
order tensors arise, that is P e and Oe expressed in terms of the third order tensors W and V
already defined in (7.18).

Finally, substituting the expression for δψ (7.20) into (7.22e) yields (after integration over
the cross sectional area A) the electrical external virtual work as

δW e
ext “ rδφ pQ

e ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oes dx3, (7.34)

where

qe :“

ż

A
ρedA`

ż

BA
ω dΓ, (7.35a)

me :“

ż

A
ρep dA`

ż

BA
ωp dΓ, (7.35b)

oe :“

ż

A

ρe

2
ppb pq dA`

ż

BA

ω

2
ppb pq dΓ. (7.35c)

Again, it is interesting to note the similarities between the above expressions qe, me (7.35)
and those of qm, mm (7.31). In above equation (7.34), qe, me and oe represent possible
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distributed electrical effects per unit of length. Moreover, pQe ¨ e3q, M
e and Oe represent

electrical actions applied at both ends of the beam, namely x3 “ 0 and x3 “ L.

For completeness, the final virtual work expression characterising the behaviour of the
piezoelectric beam can be written as

Find pu, ψq P Vuū ˆ Vψ
ψ̄

such that

δW :“ δWiner ` δWint ´ δWext “ 0, (7.36)

for all pδu, δψq P Vu0 ˆ Vψ0 where

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (7.37a)

δWint “

ż

l
rδεm ¨Qm ` δκm ¨Mms dx3

`

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oes dx3, (7.37b)

δWext “ rδw ¨Q
m ` δθ ¨Mms

l
0 `

ż

l
rδw ¨ qm ` δθ ¨mms dx3

` rδφpQe ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oes dx3. (7.37c)

7.5 Mechanical and electrical cross sectional balance equations

7.5.1 Beam balance equations

As it is well known in standard beam theory [126], further manipulation of the above variational
form (7.36)-(7.37) can lead to the so-called beam balance equations, which are indeed written
as,

BQm

Bx3
` qm “ AD :w ` SD:θ, in l ˆ r0, T s, (7.38a)

BMm

Bx3
´Qm ˆ e3 `m

m “ STD :w ` ID:θ, in l ˆ r0, T s, (7.38b)

BpQe ¨ e3q

Bx3
` qe “ 0, in l ˆ r0, T s, (7.38c)

BM e

Bx3
´ pI ´ e3 b e3qQ

e `me “ 0, in l ˆ r0, T s, (7.38d)

BOe

Bx3
´ P e ` oe “ 0, in l ˆ r0, T s, (7.38e)

The above set of equations represent a set of balance equations in terms of internal area re-
sultants Qm, Mm, Qe, M e, P e and Oe. Initial conditions (7.4c-7.4d), boundary conditions
(7.2a,7.4a), mechanical strains (7.12-7.13) and their electrical counterparts (7.16-7.17) comple-
ment the above system of partial differential equations (7.38) to form the initial boundary value
problem of the three-dimensional piezoelectric beam. Specifically, compatible initial conditions
can be defined in terms of axis varying functions w0, 9w0,θ0, 9θ0 : r0, ls Ñ R3 as

upx1, x2, x3, tq “ w0px3q ` θ0px3q ˆ ppx1, x2q in Ωˆ 0, (7.39a)

9upx1, x2, x3, tq “ 9w0px3q ` 9θ0px3q ˆ ppx1, x2q in Ωˆ 0, (7.39b)
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Dirichlet (and corresponding Neumann) boundary conditions can be defined at either end of
the beam x3 “ 0 or x3 “ l by

w “ w̄, θ “ θ̄, φ “ φ̄, β “ β̄, γ “ γ̄, (7.40a)

Qm “ Q̄
m
, Mm “ M̄

m
, Qe ¨ e3 “ Q̄e, M e “ M̄

e
, Oe “ Ō

e
. (7.40b)

Naturally, wherever a Dirichlet boundary condition is defined, a corresponding Neumann
boundary condition cannot be used. Finally, in order to close the system defined by (7.12-
7.13), (7.38), (7.39) and (7.40), it is necessary to establish relationships between the internal
area resultants and the mechanical/electrical strains.

7.5.2 Internal area resultants

From the mechanical standpoint, having introduced the additive decomposition of the total
Cauchy stress tensor σ in equation (7.7), we now proceed to find the traction vector acting in
a cross sectional area A of the beam defined by the outward unit normal e3, namely σe3. For
the mechanical contribution σm, combining equations (7.7) and (7.12), it yields

σme3 “ Ξpεm ` p̂Tκmq, rΞsij “ rCsikjlre3skre3sl. (7.41)

Analogously, for the electrical contribution σe, combining equations (7.7) and (7.16), it
yields

σee3 “ Θ pε
e ` pe3 b pqκ

e ` V : ςe `W : γq , rΘsij “ rPsjikre3sk. (7.42)

The first internal area resultant Qm, also known as the axial/shear force, can now be computed
from equations (7.29), (7.41) and (7.42) as

Qm “ Amεm ` Smκm `Ae
1ε
e ` Se1κ

e ` Se2 : γ ` Ie1 : ςe, (7.43)

where

Am :“

ż

A
Ξ dA, Sm :“

ż

A
Ξp̂TdA, Ae

1 :“

ż

A
ΘdA,

Se1 :“

ż

A
Θpe3 b pqdA, Ie1 :“

ż

A
ΘVdA, Se2 :“

ż

A
ΘWdA,

The first two terms on the right hand side of (7.43) stem from strain contributions whereas
the remainder stem from electrical contributions. The second internal area resultant Mm, also
known as bending/torsion moment, can also be computed from equations (7.29), (7.41) and
(7.42) as

Mm “ pSmqT εm ` Imκm ` Se3ε
e ` Ie2κ

e ` Ie3 : γ `Ge
1 : ςe, (7.45)

where

Im :“

ż

A
p̂Ξp̂TdA, Se3 :“

ż

A
p̂ΘdA, Ie2 :“

ż

A
p̂Θpe3 b pqdA,

Ge
1 :“

ż

A
p̂ΘVdA, Ie3 :“

ż

A
p̂ΘWdA.

From the electrical standpoint, having introduced the additive decomposition of the electric
displacement D in equation (7.6), we can obtain after combining equations (7.6), (7.12) and
(7.16)

Dm “ ΘT pεm ` p̂Tκmq, (7.47)

and

De “ ´εpεe ` pe3 b pqκ
e ` V : ςe `W : γq. (7.48)
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The third internal area resultant Qe can now be computed from equations (7.33a), (7.47) and
(7.48) as

Qe “ pAe
1q
T εm ` pSe3q

T κm ´Ae
2ε
e ´ Se4κ

e ´ Se5 : γ ´ Ie4 : ςe, (7.49)

where

Ae
2 :“

ż

A
εdA, Se4 :“

ż

A
εpe3 b pqdA,

Ie4 :“

ż

A
εVdA, Se5 :“

ż

A
εWdA.

Analogously, the fourth M e, fifth P e and sixth Oe internal area resultants can be computed
from equations (7.33a-7.33b), (7.47) and (7.48) as

M e “ pSe1q
T εm ` pIe2q

T κm ´ pSe4q
T εe ´ Ie5κ

e ´ Ie6 : γ ´Ge
2 : ςe,

P e “ pSe2q
T εm ` pIe3q

T κm ´ pSe5q
T εe ´ pIe6q

T κe ´ Ie7 : γ ´Ge
3 : ςe,

Oe “ pIe1q
T εm ` pGe

1q
T κm ´ pIe4q

T εe ´ pGe
2q
T κe ´ pGe

3q
T : γ ´ Je : ςe,

(7.51)

where

Ie5 :“

ż

A
ppb e3qεpe3 ˆ pqdA, Je :“

ż

A
V˚T εVdA, Ie6 :“

ż

A
ppb e3qεWdA,

Ge
2 :“

ż

A
ppb e3qεVdA, Ge

3 :“

ż

A
W˚T εVdA, Ie7 :“

ż

A
W˚T εWdA.

Finally, we can summarise all of the above relationships between internal area resultants and
mechanical/electrical strains in the following table matrix format3

»

—

—

—

—

—

—

–

Qm

Mm

Qe

M e

P e

Oe

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

Am Sm Ae
1 Se1 Se2 Ie1

Im Se3 Ie2 Ie3 Ge
1

´Ae
2 ´Se4 ´Se5 ´Ie4
´Ie5 ´Ie6 ´Ge

2

´Ie7 ´Ge
3

Sym ´Je

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

εm

κm

εe

κe

: γ
: ςe

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.53)

As expected, the resulting matrix is symmetric and has a saddle point structure due to its
derivation from the enthalpy density of the system. In the case of dealing with a homogeneous
material across the section of the beam, namely constant mechanical and electrical properties
within the area section A, if the origin of the reference triad te1, e2, e3u is chosen as the centre
of mass of the section, then the tensors Sm, Sek pk “ 1 . . . 5q and Ge

k pk “ 1 . . . 3q vanish
(e.g. their integrand is of odd order in the position vector p). Finally, we note that the initial
boundary value problem representing the behaviour of a piezoelectric three-dimensional beam
is defined by equations (7.12), (7.13), (7.38), (7.39), (7.40) and (7.53).

7.6 Analytical solution of planar piezoelectric beams

The aim of this section is to present closed-form solutions for some particular cases of piezoelec-
tric beams, which will enable the benchmarking of the finite element implementation presented
in a subsequent section of this chapter. In addition, the presentation of closed-form solutions
is of interest to prospective researchers in order to validate their piezoelectric beam models.
To the best of our knowledge, closed-form solutions of two-way coupled piezoelectric beams
with quadratic distribution of electric potential within the cross section do not exist in the
literature.

3Notice that the entries in columns one to four correspond to second order tensors whereas the entries in
columns five and six correspond to third order tensors.
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We will focus on the analysis of two-dimensional beams (placed on the plane defined by
Ox1x3) where distributed effects along the beam will be disregarded (i.e. qm “ 0, mm “ 0,
qe “ 0, me “ 0, oe “ 0) and we will seek solutions to static problems where inertial terms
are neglected (e.g. ρ “ 0). In addition, we will particularise our solutions to beams with
homogeneous cross sectional area where the origin of the reference frame coincides with the
centre of mass of the section.

For simplicity, the displacement w of the cross sectional reference frame origin is considered
perpendicular to the beam axis, namely w ¨ e3 “ 0, and no torsion along the beam axis is
considered either, θ ¨ e3 “ 0. In this case, the problem is fully described by the following five
variables tw :“ w ¨ e1, θ :“ θ ¨ e2, φ, β :“ β ¨ e1, γ :“ e1 ¨ γ ¨ e1u : r0, ls Ñ R. Substitution of
equations (7.53) into the beam balance equations (7.38) yields, after redefinition of the beam
coordinate axis as x P r0, ls,

a1

ˆ

dw

dx
´ θ

˙

` a2β ` a3
dφ

dx
`
a14
2

dγ

dx
“ Q̄m, (7.54a)

a4
d2θ

dx2
´ a5

d2β

dx2
´ a15

dγ

dx
` a1

ˆ

dw

dx
´ θ

˙

` a2β ` a3
dφ

dx
`
a14
2

dγ

dx
“ 0, (7.54b)

a6

ˆ

dw

dx
´ θ

˙

´ a7β ´ a8
dφ

dx
´
a16
2

dγ

dx
“ Q̄e, (7.54c)

a9
d2θ

dx2
` a10

d2β

dx2
`
a17
2

dγ

dx
` a11

ˆ

dw

dx
´ θ

˙

´ a12β ´ a13
dφ

dx
“ 0, (7.54d)

d

dx

„

a18
2

ˆ

dw

dx
´ θ

˙

´
1

2

ˆ

a19β ` a20
dφ

dx

˙

´
a21
4

dγ

dx



`a22
dθ

dx
` a23

dβ

dx
` a24γ “ 0, (7.54e)

where coefficients ak pk “ 1 . . . 24q, expressed in terms of mechanical, electrical and geometrical
properties, are defined as

a1 :“ µA ks, a2 :“ P113A ks, a3 :“ P313A ks, a4 :“ EI,

a5 :“ P333I, a6 :“ P313A, a7 :“ ε13A, a8 :“ ε33A,

a9 :“ P333I, a10 :“ ε33I, a11 :“ P113A, a12 :“ ε11A,

a13 :“ ε13A, a14 :“ P313I, a15 :“ P133I, a16 :“ ε33I,

a17 :“ ε13I, a18 :“ P313I, a19 :“ ε13I, a20 :“ ε33I,

a21 :“ ε33J, a22 :“ P133I, a23 :“ ε13I, a24 :“ ε11I,

where A is the cross sectional area, I :“
ş

Apx1q
2dA is the second moment of area of the

section, J :“
ş

Apx1q
4dA is the fourth moment of area of the section, E is the Young modulus,

µ is the shear modulus, Pijk are piezoelectric coefficients and εij are dielectric coefficients.
ks represents a shear factor correction for the section [126] that will be taken as one unless
otherwise stated. Together with appropriate boundary conditions (7.40), the piezoelectric beam
problem is completely closed with the above set of equations (7.54). Note that we have assumed
that all material and geometric beam properties remain constant throughout the beam length.

The set of boundary conditions considered for a cantilever problem are

w “ 0, θ “ 0, φ “ 0, β “ 0, γ “ 0, at x “ 0, (7.55a)

Qm “ Q̄m, Mm “ 0, Qe “ Q̄e, M e “ 0, Oe “ 0, at x “ l, (7.55b)

where Qm :“ Qm ¨ e1, Mm :“ Mm ¨ e2, Qe :“ Qe ¨ e3, M e :“ M e ¨ e1 and Oe :“ e1 ¨O
ee1.

As it is common in piezoelectric beam literature [92, 39, 152], for the electrical part we have
postulated similar Dirichlet and Neumann boundary conditions to those of the mechanical
problem i.e. all electric variables are zero at the fixed end and the derivatives are specified at
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the free end in a coupled fashion. From (7.54a) and (7.54c) we can deduce
`

dw
dx ´ θ

˘

and dφ
dx as

ˆ

dw

dx
´ θ

˙

“
Q̄m

a1
´
a2

a1
β ´

a3

a1

dφ

dx
´

1

2

a14

a1

dγ

dx
, (7.56a)

dφ

dx
“

a6

a1b2
Q̄m ´

Q̄e

b2
´
b1
b2
β ´

b8
b2

dγ

dx
, (7.56b)

where coefficients b1, b2 and b8 are defined in A. After back substitution into (7.54b), (7.54d)
and (7.54e), we obtain

a4
d2θ

dx2
´ a5

d2β

dx2
´ a15

dγ

dx
` Q̄m “ 0, (7.57a)

a9
d2θ

dx2
` a10

d2β

dx2
` b9

dγ

dx
´ b5β ` b6Q̄

m ` b7Q̄
e “ 0, (7.57b)

d2γ

dx2
` k21γ `m1

dβ

dx
`m3

dθ

dx
“ 0, (7.57c)

where coefficients b5, b6, b7, b9, m1, m1, m3 and k1 are defined in A. The above three equations
(7.57), together with relevant boundary conditions, can be integrated to solve for θ, β and γ.
Then, by using equations in (7.56), the remaining variables w and φ can be obtained.

The solution of these equations would require four piezoelectric parameters P113, P133, P313

and P333, three dielectric parameters ε11, ε13 and ε33 and two mechanical parameters µ and E.
From a practical viewpoint, piezoelectric materials having all of the above material parameters
non-zero are rare and the solution obtained using this approach would be too lengthy to be
reported. For such closed-form solutions, the reader can refer to [249].

We identify two practically feasible scenarios for the above set of differential equations
(7.57). Firstly, the case where the electric potential distribution is assumed to vary linearly
within the cross section. Secondly, the case where the electric potential distribution is assumed
to vary quadratically within the cross section but the electric permittivity tensor ε is considered
to be diagonal and the piezoelectric component P133 “ 0. The most notable piezoelectric
materials, such as PZT-5H, PZT-5A, Quartz and many others, share these features.

7.6.1 Linear electric potential distribution within the cross section

In this case, the equations in (7.57) reduce to

a4
d2θ

dx2
´ a5

d2β

dx2
` Q̄m “ 0, (7.58a)

a9
d2θ

dx2
` a10

d2β

dx2
´ b5β ` b6Q̄

m ` b7Q̄
e “ 0, (7.58b)

with the following set of boundary conditions

θ|x“0 “ 0, β|x“0 “ 0, (7.59a)

dθ

dx

ˇ

ˇ

ˇ

ˇ

x“l

“ 0,
dβ

dx

ˇ

ˇ

ˇ

ˇ

x“l

“ 0. (7.59b)

The final closed-form solution of this problem yields
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βpxq :“
pQ̄mb3 ` Q̄

eb4q

k2
gpxq,

φpxq :“

ˆ

Q̄ma6
a1b2

´
Q̄e

b2

˙

x´
b1pQ̄

mb3 ` Q̄
eb4q

b2 k3
fpxq,

θpxq :“
Q̄mlx

a4
´
Q̄mx2

2a4
`
a5pQ̄

mb3 ` Q̄
eb4q

a4k2
gpxq,

wpxq :“

„

Q̄m

a1
`
a3pQ̄

ea1 ´ Q̄
ma6q

a21b2



x`
Q̄mLx2

2a4
´
Q̄mx3

6a4
`
`

Q̄mb3 ` Q̄
eb4

˘

hpxq,

fpxq :“
sinhpkl ´ kxq ´ sinhpklq ` kx coshpklq

coshpklq
,

gpxq :“ 1´
coshpkl ´ kxq

coshpklq
,

hpxq :“
pa1a5b2 ´ a2a4b2 ` a3a4b1q rsinhpkl ´ kxq ´ sinhpklq ` kx coshpklqs

a1a4b2k3 coshpklq
,

where the new coefficients b3, b4 and k are defined in A.

7.6.2 Quadratic electric potential distribution within the cross section

In the case of quadratic electric potential distribution, a diagonal electric permittivity tensor
and piezoelectric component P133 “ 0, which is the case for a major class of piezoceramics [331]
and, specifically, the ones used in piezoelectric beam literature [80, 2, 90, 92, 22, 307, 308, 152],
the three differential equations (7.57) take the form,

a4
d2θ

dx2
´ a5

d2β

dx2
` Q̄m “ 0, (7.60a)

a9
d2θ

dx2
` a10

d2β

dx2
´ b5β ` b6Q̄

m ` b7Q̄
e “ 0, (7.60b)

d2γ

dx2
` k2

1γ `m1
dβ

dx
“ 0, (7.60c)

with the following set of boundary conditions,

θ|x“0 “ 0, β|x“0 “ 0, γ|x“0 “ 0, (7.61a)

dθ

dx

ˇ

ˇ

ˇ

ˇ

x“l

“ 0,
dβ

dx

ˇ

ˇ

ˇ

ˇ

x“l

“ 0,
dγ

dx

ˇ

ˇ

ˇ

ˇ

x“l

“ m2, (7.61b)

where m2 is a coefficient which depends on the electromechanical loading and the electric
gradient β at x “ l, as given in A. The final closed form of this problem is defined for the
mechanical variables as
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θpxq :“
Q̄mlx

a4
´
Q̄m x2

2 a4
`
a5

`

Q̄mb3 ` Q̄
eb4

˘

a4k2

„

1´
coshpkl ´ kxq

coshpklq



,

wpxq :“
Q̄mx

a1
`
Q̄mlx2

2a4
´
Q̄mx3

6 a4
`
a5

`

Q̄mb3 ` Q̄
eb4

˘

x

a4 k2
` g1pxq ` g2pxq ` g3pxq

` g4pxq ` g5pxq ` g6pxq ` g7pxq ` g8pxq ` g9pxq ` g10pxq ` g11pxq ` g12pxq,

g1pxq :“
a5

`

Q̄mb3 ` Q̄
eb4

˘

rsinhpkl ´ kxq ´ sinhpklqs

a4 k3 coshpklq
,

g2pxq :“ ´
a2

`

Q̄mb3 ` Q̄
eb4

˘

a1

„

sinhpkl ´ kxq ` kx coshpklq ´ sinhpklq

k3 coshpklq



,

g3pxq :“ ´
a3
a1

ˆ

a6Q̄
m

a1b2
´
Q̄e

b2

˙

x,

g4pxq :“
a3b1

`

Q̄mb3 ` Q̄
eb4

˘

a1b2

„

sinhpkl ´ kxq ` kx coshpklq ´ sinhpklq

k3 coshpklq



,

g5pxq :“
a3b8
a1b2

«

m2 sinhpk1xq
`

k2 ´ k1
2
˘

coshpk1lq
`

k2 k1 ´ k1
3
˘ `

m1

`

Q̄mb3 ` Q̄
eb4

˘

sinhpkl ´ kxq

coshpklq
`

k k1
2
´ k3

˘

ff

,

g6pxq :“ ´
a3b8m1

`

Q̄mb3 ` Q̄
eb4

˘

a1b2

“

2k sinhpk1xq ´ sinhpklq
`

epkl`2k1xq ` k1 ek1 pl´xq
˘‰

2 coshpklq coshpk1lq
`

k k1
3
´ k3 k1

˘ ,

g7pxq :“
a3b8m1

`

Q̄mb3 ` Q̄
eb4

˘

a1b2

«

sinhpklq
`

ekl ` k1ek1l
˘

2 coshpklq coshpk1lq
`

k k1
3
´ k3 k1

˘

ff

,

g8pxq :“ ´
a3b8m1

`

Q̄mb3 ` Q̄
eb4

˘

a1b2

«

sinhpklq

coshpklq
`

k k1
2
´ k3

˘

ff

,

g9pxq :“ ´
a14
2 a1

«

m2 sinhpk1xq
`

k2 ´ k1
2
˘

coshpk1lq
`

k2 k1 ´ k1
3
˘ `

m1

`

Q̄mb3 ` Q̄
eb4

˘

sinhpkl ´ kxq

coshpklq
`

k k1
2
´ k3

˘

ff

,

g10pxq :“ ´
a14m1

`

Q̄mb3 ` Q̄
eb4

˘

2 a1

«

2k sinhpk1xq ´ sinhpklq
`

epkl`2k1xq ` k1 ek1pl´xq
˘

2 coshpklq coshpk1lq
`

k k1
3
´ k3 k1

˘

ff

,

g11pxq :“
a14m1

`

Q̄mb3 ` Q̄
eb4

˘

2 a1

«

sinhpklq

coshpklq
`

k k1
2
´ k3

˘

ff

,

g12pxq :“ ´
a14m1

`

Q̄mb3 ` Q̄
eb4

˘

2 a1

«

sinhpklq
`

ekl ` k1 ek1l
˘

2 coshpklq coshpk1lq
`

k k1
3
´ k3 k1

˘

ff

,

and similarly for the electrical variables as
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φpxq :“

ˆ

Q̄ma6

a1b2
´
Q̄e

b2

˙

x` f1pxq ` f2pxq ` f3pxq ` f4pxq ` f5pxq,

βpxq :“
pQ̄mb3 ` Q̄

eb4q

k2

„

1´
coshpkl ´ kxq

coshpklq



,

γpxq :“
m2 sinhpk1xq

`

k2 ´ k1
2
˘

coshpk1lq
`

k2 k1 ´ k1
3
˘ `

m1pQ̄
mb3 ` Q̄

eb4q sinhpkl ´ k xq

coshpklq
`

k k1
2 ´ k3

˘ ` f6pxq,

f1pxq :“ ´
b1
`

Q̄mb3 ` Q̄
eb4

˘

b2

„

sinhpkl ´ kxq ` kx coshpklq ´ sinhpklq

k3 coshpklq



,

f2pxq :“ ´
b8
b2

«

m2 sinhpk1xq
`

k2 ´ k1
2
˘

coshpk1lq
`

k2 k1 ´ k1
3
˘ `

m1

`

Q̄mb3 ` Q̄
eb4

˘

sinhpkl ´ kxq

coshpklq
`

k k1
2 ´ k3

˘

ff

,

f3pxq :“ ´
b8m1

`

Q̄mb3 ` Q̄
eb4

˘

b2

«

2k sinhpk1xq ´ sinhpklq
`

epkl`2k1xq ` k1ek1pl´xq
˘

2 coshpklq coshpk1lq
`

k k1
3 ´ k3 k1

˘

ff

,

f4pxq :“
b8m1

`

Q̄mb3 ` Q̄
eb4

˘

b2

«

sinhpklq

coshpklq
`

k k1
2 ´ k3

˘

ff

,

f5pxq :“ ´
b8m1

`

Q̄mb3 ` Q̄
eb4

˘

b2

«

sinhpklq
`

ekl ` k1ek1l
˘

2 coshpklq coshpk1lq
`

k k1
3 ´ k3 k1

˘

ff

,

f6pxq :“
m1

`

Q̄mb3 ` Q̄
eb4

˘ “

2k sinhpk1xq ´ sinhpklq
`

epkl`2k1xq ` k1 ek1pl´xq
˘‰

2 coshpklq coshpk1lq
`

k k1
3 ´ k3 k1

˘ ,

where the new coefficients m1 and k are defined in A.

7.7 The Finite Element Discretisation

The finite element discretisation of (7.36) follows naturally by introducing a non–overlapping
partition of l into a series of one–dimensional elements. In particular, we choose to employ
the hp-version of the finite element method as it is known to overcome the problems of locking
associated with low-order approaches [295, 47, 111]. We introduce a set of H1 conforming
interpolatory functions, Vhp Ă H1pΩq, where the subscript h refers to the mesh spacing and
p to the polynomial degree. In the hp-finite element method it is possible to construct a
discretisation where the order of the elements varies throughout the mesh (the so-called p-
adaptivity) but, in our case, we adopt the simplest configuration and fix the polynomial degree
of the bases to be the same everywhere throughout the domain. The corresponding discrete
weak variational statement is: Find puhp, ψhpq P Vuū X Vuhp ˆ Vψ

ψ̄
X Vψhp such that

δW :“ δWiner ` δWint ´ δWext “ 0, (7.62)

for all pδuhp, δψhpq P Vu0 X Vuhp ˆ Vψ0 X Vψhp where

Vuhp :“ tuhp | uhp :“ whp ` θhp ˆ pu, (7.63)

Vψhp :“

"

ψhp | ψhp :“ φhp ` p ¨ βhp `
1

2
p ¨ γhp ¨ p

*

, (7.64)

with the component functions tpwhp ¨ eiq, pθhp ¨ eiq, φhp, pβhp ¨ eαq, peα ¨ γhpeβqu P Vhp.
Discussions of suitable sets of hierarchic basis functions for Vhp, which have implementa-

tion advantages over standard Lagrangian nodal basis functions, can be found in a range of
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texts (e.g. [69, 296, 148]) and, therefore, will not be discussed further here. For details of
the numerical treatment of these elements, and our specific implementation, we refer to the
aforementioned references and [249].

7.8 Numerical examples

The numerical examples presented in this section have been carried out using FEAPB, a cross-
platform hp-finite element analysis program for piezoelectric beams [248], developed based on
the theoretical formulation outlined in this chapter and distributed as a free software under
the terms of GNU General Public License at https://github.com/romeric/FEAPB.

The piezoelectric material properties used in Examples 7.8.1 and 7.8.2 are presented below
in Voigt notation and taken from [22]. Note that for shear actuator problems, the electric
permittivity tensor is not required since the problem is purely mechanical.

C “

»

—

—

—

—

—

—

–

126 79.5 84.1 0 0 0
79.5 126 84.1 0 0 0
84.1 84.1 117 0 0 0

0 0 0 23.3 0 0
0 0 0 0 23.3 0
0 0 0 0 0 23.25

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

GPa,

ε “

»

–

1.505 0 0
0 1.505 0
0 0 1.3

fi

fl 10´8 C

Vm
,

P “

»

–

0 0 0 0 17 0
0 0 0 17 0 0

´6.5 ´6.5 23.3 0 0 0

fi

fl

C

m2
.

The material properties of AT-cut Quartz, of density ρ “ 2649 kg
m3 , used in Example 7.8.4,

are given below [331].

C “

»

—

—

—

—

—

—

–

86.74 ´8.25 27.15 ´3.66 0 0
129.77 ´7.42 5.7 0 0

102.83 9.92 0 0
38.61 0 0

68.81 2.53
sym 29.01

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ˆ 109 N

m2
,

ε “

»

–

39.21 0 0
39.82 0.86

sym 40.42

fi

flˆ 10´12 C

Vm
,

P “

»

—

—

—

—

—

—

–

0.171 0 0
´0.152 0 0
´0.0187 0 0

0.067 0 0
0 0.108 ´0.0761
0 ´0.095 0.067

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C

m2
.

In order to benchmark the hp-finite element scheme proposed, we define for a tensor (e.g.
scalar, vector or second order) field ζ : r0, ls ˆ tÑ Rn, where n is the dimension of the tensor
field, the following L2 and H1 norms

}ζ}L2 :“

„
ż

l
ζ : ζdx3

1{2

,

}ζ}H1 :“

„
ż

l

ˆ

ζ : ζ `
Bζ

Bx3
:
Bζ

Bx3

˙

dx3

1{2

,

(7.65)

https://github.com/romeric/FEAPB
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associated with the magnitude of the tensor field ζ. In our case, ζ can be any of the mechanical
and electrical unknowns, namely w, θ, φ, β and γ. In addition, the following energy norm can
be defined

}π}E :“

„
ż

l

1

2
pεm ¨Qm ` κm ¨Mm ` εe ¨Qe ` κe ¨Qe ` ςe : P e ` γe ¨Oeq dx3

1{2

, (7.66)

where π gathers all the mechanical and electrical unknowns. This enables the definition of the
following error norms }ζhp ´ ζ}L2{}ζ}L2 , }ζhp ´ ζ}H1{}ζ}H1 and }πhp ´ π}E{}π}E , which can
then be used to assess the convergence of the algorithm under h- or p-refinement.

7.8.1 The benchmark problem

To begin our numerical examples, we first benchmark the finite element implementation against
the analytical solution provided in Section 7.6 and A. The example considered for the bench-
mark problem is a two dimensional cantilever beam, of height 1mm and length 10mm, under
the action of a unit tip load Q̄m “ 1N and zero electric displacement resultant Q̄e “ 0C.
The beam is assumed to be of a single fibre polarised along the length as shown in Figure 7.4,
with material properties as given above. To quantify the error incurred in all the variables

Electrodes

Figure 7.4: Cantilever beam polarised along the length

tw, θ, φ, β, γu of the finite element implementation, we compute the L2, H1 and energy norms
of the error (as described above) for various mesh sizes and polynomial enhancements. In
Figures 7.5 and 7.6, each line represents a fixed polynomial degree p and each data point
on a given line represents a mesh size h. Unless otherwise stated, for this analysis, the ba-
sis functions of degree p “ 1, 2, 3, 4 with equally-spaced mesh sizes have been used namely
h “ 0.4, 0.2, 0.133, 0.1 which correspond to 25, 50, 75 and 100 elements, respectively.

For hp-refinement, we put emphasis on the case of quadratic electric potential distribution
within the cross section whose closed-form solution is provided in subsection 7.6.2. The solution
for a linear electric potential distribution model can be considered as a special case of the
quadratic one for which we only list the tip values of non-zero variables, tw, θ, βu and their
point-wise percentage error, see Table 7.1 and 7.2. Also note that for the quadratic case
only, to get non-zero γ and φ and show their convergence, we tune an additional piezoelectric
parameter i.e. P333 “ 20C{m2. In the following plots, slope indicates the rate of convergence.
The absolute relative L2 norm of the error in all the variables is shown in Figure 7.5.
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Table 7.1: Convergence of Numerical Scheme for Tip Values

hp-Refinement wx“L pmmq θx“L pradq βx“L pradq

h “ 5, p “ 1 0.019382 0.002871 20.090531
h “ 5, p “ 2 0.034576 0.005128 47.566588
h “ 5, p “ 3 0.034623 0.005128 35.849481

Exact 0.034623 0.005128 35.849481

Table 7.2: Point-wise % Error Incurred in Table 7.1

hp-Refinement % Error w % Error θ % Error β

h “ 5, p “ 1 44.018998 44.019046 43.958656
h “ 5, p “ 2 0.134194 4.550137e-05 32.684178
h “ 5, p “ 3 8.161727e-07 2.385000e-12 4.784048e-07

These convergence rates are in good agreement with theoretical predictions [296, 148]. In
fact, in some cases, the convergence rate is far superior, for instance, as it can be observed in
the convergence of the electric potential (Figure 7.5b) with quadratic basis function p “ 2. The
stagnation in convergence occurs when the numerical solution reaches the analytical solution
(Figure 7.5a), which normally happens at a higher value than the computer language floating-
point precision.

A similar trend is observed with the convergence of the H1 norm of the error, shown in
Figure 7.6. Again, the convergence rate is in agreement with theoretical predictions [296].

To further elaborate the overall convergence of the problem, we compute the energy norm
of the error for both linear and quadratic electric potential distributions, but this time with
a fixed mesh size and uniformly increased interpolation degree. In other words, we report the
energy norm of the error with p-refinement, as shown in Figure 7.7. In addition, by means of
the error measured in the energy norm, we also compare the convergence of the problem and
the ability to overcome locking by increasing the degree of interpolation.

This is an important advantage of hp-finite element analysis and, although well known in
the context of linear elasticity [296, 111, 142], we believe to the best of our knowledge it is
missing in the piezoelectric literature.
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Figure 7.7: Convergence of the energy norm of the error under p-refinement and with different
numerical integration techniques. (a) Linear electric potential distribution. (b) Quadratic
electric potential distribution.
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Figure 7.5: Convergence of the error measured in the L2 norm for the variables (a) w; (b) θ;
(c) φ; (d) β; (e) γ

7.8.2 Shear actuator problem

In this example, we consider a composite piezoelectric beam that has a well-established solution.
The shear actuator initially proposed by Zhang and Sun [334] has been analysed analytically
in [334, 9], numerically in [9, 22, 39] and experimentally in [15]. In our presentation, we wish to
make the distinction that our approach, unlike the majority of these models, is not restricted to
actuation-only scenarios. Indeed, the proposed beam model incorporates electrical degrees of
freedom and hence can also be applied to energy harvesting scenarios. In fact, shear actuator
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Figure 7.6: Convergence of the error measured in the H1 norm for the variables (a) w; (b) θ;
(c) φ; (d) β; (e) γ

models which consider all composite layers as Timoshenko beams, can be regarded as a special
case of the present formulation. For instance, the closed form solutions presented in [9] are
based on equations (7.38a) and (7.38b).

The presented results correspond to when the shear actuator is analysed in a two-dimensional
setting where the width of the beam is assumed to be 1mm, the length of the beam as 100mm,
thickness of piezoelectric layer as 2mm and thickness of each Aluminum layer as 8mm [334],
as shown in Figure 7.8. Piezoelectric material properties are given above. The modulus of
elasticity and Poisson’s ratio of Aluminum are 70.3 GPa and 0.345, respectively.
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Aluminum

PZT − 5H

Aluminum

E1

Figure 7.8: Geometry of the shear actuator

Despite having shown here in a cantilever setting, the shear actuator has also been analysed
for various other mechanical end boundary conditions, such as clamped-clamped and clamped-
hinged situations, for instance by Aldraihem [9]. The electric loading corresponds to an electric
field E1 of 10V {mm applied perpendicular to the polarisation direction, as shown in Figure 7.8.
In our setting, this requires prescribing all the electric degrees of freedom with a value of
β “ 10V {mm and zero for the rest of the electrical unknowns in all nodes.

The cross-sectional properties of the composite beam are calculated numerically, which
also makes the present finite element formulation amenable to multi-layer composites and non-
rectangular geometries. In the following, finite element solutions are compared with the ana-
lytical solutions provided by [9] for a Timoshenko model, for all the aforementioned boundary
conditions. The beam is discretised with 20 quadratic elements.

It should be pointed out that Zhang and Sun [334] and Benjeddou et al. [22] model the non-
electroactive layers of the shear actuator as an Euler-Bernoulli beam, which further requires
imposing compatibility constraints in the interface between the various layers. Following [9],
for a Timoshenko model, a shear factor of ks “ 2{3 or less is required to capture the results
of the Euler-Bernoulli model, as shown in Figure 7.9d. For the purpose of comparison a shear
factor of 5{6 has been used in the rest of the test cases shown in Figure 7.9.
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Figure 7.9: Transverse deflection obtained with various models (Shear factor ks “ 5{6). (a)
Clamped-free; (b) Clamped-clamped; (c) Clamped-hinged; (d) Clamped-free with shear factor
ks “ 0.62.
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7.8.3 Ambient vibration energy harvester undergoing coupled bending-torsion

In this example, we analyse a fully three-dimensional piezoelectric energy harvesting beam
undergoing coupled bending-torsion vibration. As reported in [2], coupled bending-torsion
energy harvesters can function on broader frequency ranges and are advantageous in improving
the efficiency of energy harvesting. To this effect, we analyse a fibre of AT-cut Quartz with
material properties as given above and dimensions defined by length 40mm, height 0.9mm and
width 12mm.

To start with, we first compute some selected natural frequencies of the beam. The dimen-
sions of the beam are chosen such that one of these modes (i.e. sixth mode) correspond to
twisting. To obtain the natural frequencies, we employ 50 elements of degree p “ 3. Unless
otherwise stated, the results reported here are with second order electric potential distribution
across the cross section. The natural frequencies corresponding to modes 1, 2, 3 and 6 are listed
in Table 7.3 and hardly vary with respect to those corresponding to purely mechanical beam
problem without any piezoelectric interaction. Hence,the natural frequencies can be verified
with closed-form formulas, for instance those provided in [257]. Many researchers [92, 90, 80, 2]
tend to place a point mass at the tip of the beam in order to reduce the frequency spectrum.
We have opted for using directly the frequencies as obtained from the eigenvalue analysis of
the beam problem.

Table 7.3: Natural frequencies of bending-torsion fibre pHzq
Mode (i) 1 2 3 6

Frequency (fi) 17.897759 111.999935 224.776362 1006.096205

The mode shapes corresponding to bending and torsion frequencies are shown in Figure 7.10.
Note that for the purpose of plotting, the interior degrees of freedom are condensed out and
the colours in the plot, which essentially show the absolute magnitude of mode deformation,
are magnified appropriately.

Figure 7.10: bending and torsion mode of bending-torsion fibre

Finally, a dynamic analysis is carried out, where the beam is subjected to a harmonic end
point load. The frequency of excitation of the external forcing term is chosen sequentially equal
to ωp P r0.01, 0.1, 1.0, 10.0s rad/s. While it is possible to excite the beam at different resonance
frequencies, this would lead to irreproducible results from the experimental standpoint, due to
the high value of the natural frequencies. In order to obtain a bounded solution, a damped
system is introduced where classical Rayleigh damping [131] is used. The damping matrix C
is obtained as a linear combination of the mass M and stiffness matrices K, namely C “

aM ` bK, where a “ b “ 0.01 are used for this analysis.
The damped system subjected to the external forcing term is then solved via the Newmark’s

method using 50 quadratic elements of Lagrange-Gauss-Lobbato basis functions and the time-
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step size is chosen as 1/500 s. An external forcing term defined by Qm ¨ e1 “ P0 sinpωP tq is
applied at the tip, where ωP is the natural frequency of excitation (as listed above) and P0 the
amplitude of the excitation chosen in this case as 100N. Figure 7.11 shows the time history of
the external forcing term when ωP “ 10rad{sec. Note that the external force ωP “ 0.01rad{sec
corresponds to a pulse loading. As can be observed, the external forcing term is applied for
the first 30s and then removed (see Figure 7.11). The correct consideration of the multiple
degrees of freedom of the system enables the accurate capturing of the energy of the beam
model, superseding alternative approaches based on simplified structural models.
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Figure 7.11: Harmonic vibration with frequency ωp “ 10 rad{sec

The instantaneous electrical power P e can be computed (refer to equation (7.32)) as

P e “

ż

l

ˆ

9εe ¨Qe ` 9κe ¨M e ` 9ςe : P e ` 9γe : Oe

˙

dx3. (7.67)

In the finite element context, one needs to compute the electrical power at each time step
by carrying out the normal post-processing used in stress recovery (i.e. perform numerical
integration to obtain the desired quantity at Gauss points, while looping over elements). Due
to the linear nature of the problem, the time derivative of the electrical variables (needed
to evaluate P e) can be computed directly from the Newmark’s method, without the need
to resort to an ad-hoc numerical differentiation within every time step. Recall that whilst
velocities and accelerations are part of the unknowns of the dynamic problem, the time rates
of the electrical variables are not. The harvested power for the case of the damped system is
shown in Figure 7.12, for the four different excitation frequencies listed above.

It should be noted that this power corresponds to an instantaneous power where it is
assumed that the electrodes are not attached to an external resistor. In all the cases, the
power history decreases dramatically after 30s, which is when the external forcing term is
removed.

7.8.4 Structural health assessment of a sophisticated multi-component ac-
tuation machine with multiple circular piezoelectric sensors - CAD
driven high order curvilinear finite elements

In our final example, we consider finite element simulation of linear piezoelectricity at a con-
tinuum level. This problem entails analysis of an actuation machine with multiple piezoelectric
sensor installed on its surface to monitor its functional life cycle and performance. The actu-
ation machine has an extremely complicated CAD description with multiple inter connected
assemblies. While some of the components of the machine are described using NURBS curves
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Figure 7.12: Harvested power at various frequencies: (a) ωP “ 0.01 rad{sec; (b) ωP “

0.1 rad{sec; (c) ωP “ 1 rad{sec; (d) ωP “ 10 rad{sec

and B-Spline surfaces there are also multiple planes, conic regions and surfaces of revolutions
which are described using standardised CAD specification (ISO 10303). Both isogeometric
analysis and NURBS-enhanced finite elements fall short of dealing directly with these kind of
topologies without converting the whole geometry to NURBS representation. Our developed
curvilinear finite element is capable of working directly on these topologies without converting
each individual component to NURBS descriptions and without moving away from the standard
finite element functional spaces. On the other hand, positioning of piezoelectric sensors on to
the CAD model requires a tight integration of geometrical design, curvilinear mesh generation
and the finite elements in order to identify active and passive regions and impose the neces-
sary boundary conditions which is again straightforward in our developed framework. Given
the complexity of the problem, it is certain that there are no idealised settings and no exact
or approximate analytical solution(s) for this problem and a three-dimensional computational
study needs to be carried out.

The specification of this analysis falls under the sensing and structural health monitoring
problems. The piezoelectric sensors attached on the surface of the machine are assumed to
be PZT-5H with material properties given in the earlier section. Each sensor has a thickness
of 1mm and is attached to the surface of the machine within designated cuts. The CAD
geometry and the p “ 4 curvilinear mesh used for the analysis are shown in Figure 7.14. The
overall dimensions of the machine are 133.37mm in the z direction (height), 133.5mm in the y
direction (width) and 152.46mm in the x direction (length). It is assumed that the machine is
structurally fixed at the base (Figure 7.14c) and bolted to the ground. It is also assumed that
an entry shaft to top of the machine (main hole shown in Figure 7.14b) pressurises the entire
assembly and challenges its structural endurance. The total number of degrees of freedom
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in the system resulting from the p “ 4 finite element discretisation is approximately 60M
for the given computational mesh with 112819 elements. We use the high performance data
parallel framework outlined in the next chapter to efficiently solve this problem. The problem
is analysed dynamically using the generalised alpha method wherein the compressive pressure
load of 50kPa caused by the connected shaft pressing the machine is applied monotonically
over a long period of 300 seconds and then released during the second half of the simulation.
The system is left undamped in this case. An open circuit configuration is adopted in that
every sensor is assumed to have a zero electric potential at one of its ends.
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Figure 7.13: Measured total accumulated energies at each of the 17 piezoelectric sensors showing
the (a) electrical energy, (b) strain energy, (c) vibration energy and, (d) total internal energy

Figure 7.15 shows the evolution of stress σxy in the machine as a result of continuous
compressive pressure. Notice that, 552M further tetrahedral cells have been used as a result
of further post-processing tessellation to extrapolate the results of the p “ 4 curved finite
elements in order to obtain an extremely smooth and detailed representation of the evolution
of the stresses. It can be observed that the our developed high order curvilinear finite element
framework is capable of resolving the stress around NURBS boundaries with a remarkable level
of detail.

An intuitive way to monitor the health of the machine is measure the contribution of
electrical and strain energies accumulated in the sensors during the loading and unloading
process. Figure 7.13 shows the evolution of electrical, strain and kinetic/vibrational energies
during loading and unloading process for all 17 circular sensors (note that colours and marker
styles are randomised). The energies are numerically computed over the entire region of every
sensors. Since the system does not have damping, it can be seen that oscillations during
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(a) (b)

(c) (d)

(c)

Figure 7.14: CAD model and p “ 4 curvilinear mesh of the actuation machine. The CAD
model (after rigorous clean-up) is composed of 1207 topological surfaces, 5897 intersection
curves (subfigure (a)), and 11794 topological vertices. Subfigure (e) shows the location of one
of the 17 circular piezoelectric sensor patches installed on the machine. Positioning of sensors
on to the CAD requires a tight integration of geometrical design and finite elements in order
to identify active and passive regions and impose the necessary boundary conditions which is
straightforward in our developed framework

unloading process keep intact. The major contribution in energy comes from the electrical
energy of the system, however in the context of sensing within this problem the magnitudes
add little insight into the state of the machine. The strain, vibrational, electrical and total
internal energies of the system can all be investigated to monitor which areas in the machine are
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experiencing strains. The sensors installed near the base/ground experience little deformation
or vibration and hence signal the electric polarisation around the region is weak.

7.9 Conclusions

In this chapter, complete three-dimensional linear piezoelectric formulation for continua and
beams and their hp-finite element implementation have been presented. A Timoshenko model,
used to describe the kinematics of a straight axis beam, is complemented with a quadratic
description of the electric potential across the cross section of the beam. The formulation is
suitable to deal with static, modal and dynamic actuation and harvesting scenarios. Starting
from the continuum level, a very clear description of the beam balance equations is presented
by means of the introduction of suitable mechanical (and electrical counterparts) stress and
strain resultants defined along the beam axis.

The chapter includes the closed-form solution for a two-dimensional piezoelectric cantilever
beam subjected to static end tip mechanical and electrical loads and used to benchmark the
numerical simulations through the use of suitable L2, H1 and energy error norms. In addition,
the formulation has been also compared against existing literature [334, 9, 22] yielding excellent
agreement in all cases. For shear-driven problems, a shear factor of 0.62 is suggested for
the Timoshenko based solution in order to comply with that of layer-wise Euler-Bernoulli’s
approaches. Finally, three-dimensional continuum simulations have been carried to pinpoint
the advanced computational capability and scalability of the framework for cases exact or
approximate analytical solutions do not exist.
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(a) (b)

(c)

(d)

Figure 7.15: Evolution of stress σxy (Pa) in the machine as a result of continuous compressive
pressure. 552M further tetrahedral cells have been used to process an extremely smooth and
detailed representation of the stress. Deformations are magnified by a factor of 5
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Chapter 8

Linearised Electromechanics -
Particularisation to Sensing and
Energy Harvesting Flexoelectric
Continua & Beams

8.1 Introduction

In this chapter, a family of numerical models for the phenomenological linear flexoelectric the-
ory for continua and their particularisation to the case of three-dimensional beams based on
a skew-symmetric couple stress theory is presented. In contrast to the traditional flexoelectric
models which assume coupling between electric polarisation and strain gradients, we postu-
late an electric enthalpy in terms of linear invariants of curvature and electric field. This is
achieved by introducing the axial curvature vector as a strain gradient measure. The implica-
tion of this assumption is many-fold. Firstly, for isotropic (non-piezoelectric) materials it allows
constructing flexoelectric energies without breaking material symmetry. Secondly, nonuniform
distribution of volumetric part of strains (volumetric strain gradients) do not generate elec-
tric polarisation, as confirmed by experimental evidence to be the case for some important
classes of flexoelectric materials. Thirdly, a state of plane strain generates out of plane defor-
mation through strain gradient effects. Finally, extension and shear coupling modes cannot
be characterised individually as they contribute to the generation of electric polarisation as a
whole. Four distinct variational principles are presented for both continuum and beam mod-
els namely, a displacement-potential formulation, a penalty formulation, a Lagrange-multiplier
formulation and an augmented Lagrangian formulation. The three later formulations facil-
itate incorporation of strain gradient measures in to a standard finite element scheme while
maintaining the C0 continuity. The efficacy of high order finite elements along with the compu-
tational efficiency of mixed finite elements are utilised to develop a series of low and high order
mixed finite element schemes for couple stress based flexoelectricity. Numerical results of finite
element discretisations for the three latter variational formulations are benchmarked against
available closed form solutions in regards to electromechanical coupling efficiency. A detailed
comparison of the developed couple stress based flexoelectric model with the standard strain
gradient flexoelectric models is performed for the case of Barium Titanate where a myriad of
simple analytical solutions are proposed in order to quantitatively describe the similarities and
dissimilarities in effective electromechanical coupling under these two theories. It is observed
that, if the same experimental flexoelectric constants are fitted in to both theories, the current
couple stress theory in general, reports stronger electromechanical conversion efficiency. Fi-
nally, nanocompression of a complex flexoelectric conical pyramid for which analytical solution
cannot be established is numerically studied at an unprecedented level of detail to pinpoint the
robustness and advanced computational scalability of the framework.

Much of the work in this chapter is based on the authors work on couple stress based flexo-

2
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electric formulation for continua and beams presented in [252]. The structure of the paper is as
follows. In section 8.2, the balance equations of electromechanics in a generalised micropolar
continuum is presented. In section 8.3, the skew-symmetric couple stress model as a rotationally
constrained case of the micropolar theory is discussed and the corresponding variational for-
mulations are presented in section 8.4. In section 8.5 the couple stress problem is casted under
the kinematics and electrostatics of three-dimensional flexoelectric beams and the associated
weak and strong forms derived. Finite element discretisation of the variational formulations
is presented in section 8.6. In section 8.7 a series of elementary and advanced computational
simulations to study the electromechanical efficiency and microstructural dependency under
static and dynamic settings are reported. Finally, in section 8.8 a set of conclusions are given.

8.2 Balance equations of electromechanics in micropolar con-
tinuum

Let Ω Ă R3 be a bounded contractible domain occupied by a micropolar continuum during the
time interval r0,Ts and Γ be its boundary, equipped with a unit outward normal n, as shown
in Figure 8.1. In this case, the static Faraday and Gauss laws can be summarised as follows

∇ˆE “ 0 and divD̃ ´ ρe “ 0 in Ωˆ r0,Ts, (8.1)

where ∇ˆ denotes the curl operator, E is the electric field intensity vector, D̃ is the electric
displacement vector and ρe is the volume charge density. As Ω is a contractible domain, the
electric field vector E can be reformulated as E “ ´∇ψ, where ψ is a scalar potential field.
Dirichlet and Neumann boundary conditions can then be introduced as

ψ “ ψ̄ on Γψ ˆ r0,Ts, (8.2a)

D̃ ¨ n “ ´q0 on ΓD ˆ r0,Ts. (8.2b)

where Γ “ ΓDYΓψ and ΓDXΓψ “ H. In the context of small deformations, the motion of the
continuum can be defined by a displacement field u : Ωˆr0,Ts Ñ R3, such that px, tq ÞÑ upx, tq,
where x P Ω represents a material point and t P r0,Ts the time. The conservation of linear
momentum equation is defined as

divσ̃ ` ρb “ ρ:u in Ωˆ r0,Ts, (8.3)

where ρ is the density of the continuum, σ̃ is the non-symmetric force stress tensor, b is a
body force per unit of mass and a superimposed dot (double dot) indicates partial (double)

differentiation with respect to time (e.g. 9 :“ B
Bt and: :“ B2

Bt2
). Dirichlet, Neumann and initial

conditions can be introduced as

u “ ū on Γu ˆ r0,Ts, (8.4a)

σ̃n “ t on Γσ ˆ r0,Ts, (8.4b)

u “ u0 in Ω̄ˆ 0, (8.4c)

9u “ 9u0 in Ω̄ˆ 0, (8.4d)

where Γ “ Γσ Y Γu and Γσ X Γu “ H. The vector t in (8.4b) represents the force-traction. In
the context of small rotations, the angular motion of the continuum can be defined by a field of
proper orthogonal rotations ω : Ω ˆ r0,Ts Ñ SOp3q, such that the mapping, px, tq ÞÑ ωpx, tq
is an isometric linear transformation. The conservation of angular momentum is defined as

divµ̃` ξ : σ̃T ` ρl “ ρJ :ω in Ωˆ r0,Ts, (8.5)

where µ̃ is the couple (hyperstress) stress tensor, l is the body couple, J is the rotational or
spin inertia (determined by the shape and size of micro-continuum elements, [67]) and ξ is the
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third order permutation tensor 1. Dirichlet, Neumann and initial conditions can be introduced
as

ω “ ω̄ on Γω ˆ r0,Ts, (8.6a)

µ̃n “m on Γµ ˆ r0,Ts, (8.6b)

ω “ ω0 in Ω̄ˆ 0, (8.6c)

9ω “ 9ω0 in Ω̄ˆ 0, (8.6d)

where Γ “ ΓµYΓω and ΓµXΓω “ H. The vector m in (8.6b) represents the moment-traction,
see Figure 8.1. For the full set of corrected boundary conditions in couple stress elasticity
refer to [194, 109]. The coupled electro-mechanical initial boundary value problem, defined
by equations (8.1) to (8.6), must be complemented with three closure equations related to
the electro-mechanical nature of the generalised continuum. For a conservative material, the
closure equations can be derived from the enthalpy density of the system Ψ defined in terms
of the small strain tensor ε̃, the curvature tensor χ̃ the electric field vector E as follows

σ̃pε̃, χ̃,Eq : “
BΨ̃pε, χ̃,Eq

Bε̃
, (8.7)

µ̃pε̃, χ̃,Eq : “
BΨ̃pε̃, χ̃,Eq

Bχ̃
, (8.8)

D̃pε̃, χ̃,Eq : “ ´
BΨ̃pε̃, χ̃,Eq

BE
, (8.9)

expressing the force stress tensor σ̃, the couple stress tensor µ̃ and the electric displacement
vector D̃ in terms of the small strain tensor ε̃, the curvature tensor χ̃ and the electric field E
where the compatibility equations (kinematic measures), are defined in the classical Cosserat
sense [229, 225, 32]

ε̃ :“ ∇u´ ω̂, χ̃ :“ ∇ω, (8.10)

where the following relationships exist between the axial vector and its dual skew-symmetric
tensor

ω̂ :“ ω I, ω “ axlpω̂q.

A variety of electro-mechanical constitutive models are available in the literature defined in
terms of different enthalpy expressions, such as in [44, 279, 117, 269, 111]. In the case of linear
flexoelectricity, σ̃, µ̃ and D̃ obtained this way render algebraic summations of mechanical
(strain related) (¨)m, micro-mechanical (curvature/strain gradient related) (¨)g and electrical
(¨)e components. For instance, the electric displacement vector D̃ can be expanded as

D̃ “ D̃
m
` D̃

g
` D̃

e
; D̃

m
:“ ẽ : ε̃, D̃

g
:“ f̃ : χ̃, De :“ εE, (8.11)

where ε is the symmetric second order dielectric permittivity tensor, ẽ is the third order piezo-
electric tensor and f̃ is the third order flexoelectric tensor. Note that due to the asymmetric
nature of strain and curvature tensors, there is no symmetry restriction on ẽ and f̃ , thus al-
lowing for more general electromechanical couplings, [44]. Analogously, the force stress tensor
σ̃ can be decomposed additively as

σ̃ “ σ̃m ` σ̃g ` σ̃e; σ̃m :“ C̃ : ε̃, σ̃g :“ D̃ : χ̃, σ̃e :“ ´E ¨ ẽ, (8.12)

1It is important to note that all tensor fields p̃¨q represent micropolar quantities, differentiating them with
their counterparts in couple stress theory. In general, when the grapheme p„q does not appear, such as on
electric field E, it implies that the definition of the field/quantity is the same in both theories.

Furthermore, unless specified otherwise, all tensor fields p̂¨q represent skew-symmetric tensors dual to their
corresponding axial vector p¨q.
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and the couple stress tensor χ̃ can be additively decomposed as

µ̃ “ µ̃m ` µ̃g ` µ̃e; µ̃m :“ ε̃ : D̃, µ̃g :“ B̃ : χ̃, µ̃e :“ ´E ¨ f̃ . (8.13)

where C̃ is the fourth order anisotropic elasticity tensor and B̃ and D̃ are fourth order tensors
characterising the behaviour of micro-continuum. Note that, for centrosymmetric materials,
coupling between the strain tensor ε̃ and the curvature tensor χ̃ is not possible as this breaks
the point symmetry, and invariance of the strain energy requires D̃ “ 0, [229, 168]. Finally,
the initial boundary value problem of the coupled system is defined by equations (8.1)-(8.6),
(8.11)-(8.13).

n

��
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r · �t + ⇢b = ⇢ü

⌦

r · µ̂ + ⇠ : �tT + ⇢l = ⇢J!̈

�µ

�!

r · D � ⇢e = 0

�D

� 

(a) (b) (c)

Figure 8.1: Schematic representation of the governing equations of couple stress and the de-
composition of the boundary of a couple stress continua into a) displacements and tractions,
Γ “ ΓσYΓu and ΓσXΓu “ H, b) rotations and couples/moments Γ “ ΓµYΓω and ΓµXΓω “ H
and, c) surface charge and electric flux, Γ “ ΓD Y Γψ and ΓD X Γψ “ H. Note that, while the
boundary conditions associated with the electrostatics of the system are independent in cou-
ple stress theory when the rotations are constrained and individual variations of the fields are
not allowed, it is only possible to apply two tangential components of moments on a traction
boundary Γσ, and/or two tangential components of rotations on a displacement boundary Γu

[215, 154, 228]. Note that σt represents the non-symmetric stress tensor defined in section 8.3.)

8.3 The skew-symmetric couple stress theory

The linear couple stress theory is formally a limit case of linear micropolar theory. The funda-
mental assumption is to enforce the following constraint on the rotations of the substructure

ωpx, tq “
1

2
∇ˆ upx, tq in Ωˆ r0, T s. (8.14)

Equation (8.14) is in fact the infinitesimal rotation (vorticity) vector of Cauchy elasticity. As
discussed in B.1, this limit model can be obtained from the linear isotropic Cosserat model,
provided appropriate boundary traction forces are considered as well [109, 221]. However, the
consequence of imposing this constraint in general implies the indeterminacy of the couple
stresses, as the spherical part of the curvature energy vanishes, see B.1. Furthermore, the
strain tensor becomes symmetric, that is

ε̃ “ ε, (8.15)

where ε represent the symmetric small strain tensor work conjugate to the force stress tensor
of Cauchy elasticity σ and the curvature tensor in (8.10) remains unchanged. Furthermore,
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the grapheme p„q can be dropped from all quantities. Recently, [310] has shown that only the
skew-symmetric part of the gradient of rotation is a thermodynamically valid state variable.
The definition of the curvature tensor as the skew-symmetric part of gradient of rotation has
been extensively studied in [300, 118, 117, 61, 62], giving rise to skew-symmetric couple stress
theories. Hence, the couple stress curvature χ has a dual representation

χ̂ “ ∇skewω “ ∇skew∇skewu or χ “
1

4
∇ˆ∇ˆ u, (8.16)

where
χ “ axlpχ̂q, χ̂ “ χ I,

where ∇skew denotes the skew-symmetric part of the gradient. This definition of curvature vec-
tor opens new opportunities for modelling flexoelectricity in centrosymmetric materials, since
the electric enthalpy can be defined in terms of linear invariants of the axial curvature vector
and electric field, without breaking the symmetry. This also shows that the isotropic modified
couple stress models developed by [330, 236, 189] cannot be generalised for the flexoelectric
case as any linear invariant of symmetric curvature tensor in the enthalpy breaks the symmetry.

In light of (8.15) and in order to further simplify the process of material characterisation,
the most well established couple stress models assume an additive decomposition of the internal
energy of the system into a macromechanical energy expressed in terms of the invariants of
classical strain tensor, a micromechanical energy expressed in terms of the invariants of the
curvature vector and a couple term imposing the couple stress constraint [330, 236, 109]. Ex-
tending this to the case of flexoelectricity, the total internal energy of the electromechanical
system can be written as

Ψ̆p∇symu,∇skewu,ω,Epψqq “ Ψpεpuq,∇ˆ u,ω,Epψqq
“ Ψmacpεpuq,Epψqq `Ψmicpχpωq,Epψqq `Ψconp∇ˆ u,ωq,

(8.17)

where Ψconp∇ˆu,ωq typically takes the form shown in B.1 if different variations of the fields
are considered and vanishes if the couple stress constraint is strongly enforced.

Remark : When coupled invariants of strain and curvature are neglected the constitutive term
D in (8.13) vanishes and consideration of infinitesimal strain tensor ε leads to a symmetric local
(Cauchy) stress and a symmetric constitutive tangent operator. However, a skew-symmetric
non-local stress tensor σ̂g (dual to vector σg) [see (8.12)] still emerges from the enforcement
of the couple stress constraint which is not work-conjugate to ε. In other words, σ̂g can be
treated as a geometric term. This renders a non-symmetric total force stress tensor σt that
contains both constitutive and geometric contributions. Certainly, this is also true for the
classical indeterminate couple stress theory of [215] (i.e. the presence of body couples in the
total force stress tensor); c.f. page 101 in [84]. This together with the issue of associated traction
boundary conditions (see Figure 8.1) is arguably the most critiqued part of couple stress theory
and an intensive part of recent developments by Neff and co-workers [228, 194, 109, 221, 220].
In essence, the equations of linear momentum and angular momentum can be re-written as

divσt ` ρb “ ρ:u in Ωˆ r0,Ts, (8.18)

divµ̂` ξ : σ̂g
T
` ρl “ ρJ :ω in Ωˆ r0,Ts. (8.19)

We note that, in couple stress theories the effect of micro-inertia (angular velocities) can be
neglected due to their associated moment of inertia being quadratic in characteristic length
scale, [104]. Additionally, since the body couple term ρl performs work against δω and δω can
be written in terms of δu (where δω and δu are possible boundary compatible variations of ω
and u, respectively) the body couple can be transformed to a body force and a traction force
contribution [118]. This leaves us with angular momentum equation of the form

´∇ˆ µ` ξ : σ̂g
T
“ ξ : pσ̂g

T
´∇µq “ 0 in Ωˆ r0,Ts, (8.20)
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which implies

σ̂g
T
“ ∇µ in Ωˆ r0,Ts, (8.21)

signifying that in skew-symmetric couple stress theory, σ̂g{σg is not an independent quantity
and can in fact be linked to the couple stress vector µ which itself is a constitutive stress.
As a consequence, σ̂g, and µ̂ contribute to the traction boundary condition. Subjected to
the consideration of suitable boundary conditions, the skew-symmetric couple stress theory
discussed here can be regarded as a restrictive case of the indeterminate couple stress theory
of Mindlin and Tiersten, [228]. However, all the difficulties in boundary conditions can be
circumvented if independent variations of the fields u and ω are considered [226].

8.4 Variational formulations in couple stress based electrome-
chanics of continua

In this section, four different variational formulations for couple stress based electromechanics
are described in the continuum setting namely, a displacement potential formulation, a lagrange
multiplier formulation, an augmented Lagrangian formulation and a penalty formulation.

8.4.1 The displacement-potential variational formulation

A two-field variational formulation can be established by strongly imposing the couple stress
constraint. Focusing on the electro-elastodynamics of the conservative flexoelectric system, the
internal and external forces together with the motion between times T0 “ 0 and T , can be
determined from a Hamilton’s principle, [71, 294]. To this effect, we introduce the Lagrangian
L as

Lpu, 9u, ψq “ Kp 9uq ´Πintpu, ψq ´Πextpu, ψq (8.22)

where K is the kinetic energy of the body expressed as a function of velocity 9u and Π the total
potential energy of the system, containing the work of internal and external electromechanical
forces such that

Kp 9uq “
1

2

ż

Ω
ρ 9u ¨ 9udV, (8.23a)

Πintpu, ψq “

ż

Ω
Ψpεpuq,ωpuq, ψq dV “

ż

Ω
Ψmacpεpuq,Epψqq `Ψmicpχpuq,EpψqqdV,

(8.23b)

Πextpu, ψq “

ż

Ω
ρ

ˆ

b ¨ u` l ¨ ωpuq

˙

´ ρ0ψ dV `

ż

Γ
t ¨ u`m ¨ ωpuq ´ q0ψ dA (8.23c)

Considering the action integral as the integral of the Lagrangian over the time interval t “
r0, T s, the Hamilton’s principle states that the mapping satisfying the equations of motion
and electrostatics can be obtained by making the action integral stationary with respect to all
possible mappings which are compatible with the boundary conditions. In the present case this
leads to the following Euler-Lagrange equations

BL
Bu
´

d

dt

BL
B 9u

“ 0,
BL
Bψ

“ 0. (8.24)

Denoting the virtual and incremental variations of displacements and electric potential as δu,
∆u, δψ and ∆ψ respectively leading to

δω “
1

2
∇ˆ δu, ∆ω “

1

2
∇ˆ∆u. (8.25)
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The stationary condition of the kinetic energy then becomes

d

dt

BL
B 9u

“
d

dt

BK
B 9u

“

ż

Ω
ρ:u ¨ δudV. (8.26)

The stationary conditions of the internal energy can be found by computing the directional
derivative of the energy with respect to virtual variations of displacements and electric potential
as

DΠintrδus “

ż

Ω

ˆ

BΨ

Bε
: δε` p

BΨ

Bω
Iq : δω̂ `

BΨ

Bχ
¨ δχ

˙

dV “

ż

Ω

ˆ

σ : δε` σ̂g : δω̂ ` µ ¨ δχ

˙

,

(8.27a)

DΠintrδψs “

ż

Ω

BΨ

BE
¨ δE dV “ ´

ż

Ω
D ¨ δE dV, (8.27b)

where δε, δχ and δE represent virtual variations of strain tensor, curvature vector and electric
field vector respectively. Moreover, without loss of generality, σ now represents the total
constitutive tensor which might or might not include gradient effects depending on material
symmetry; see (8.12).2 Analogouly, consistent linearisation of the external work leads to

DΠextrδus “

ż

Ω
ρ

ˆ

b ¨ δu` l ¨ δω

˙

dV `

ż

Γ

ˆ

t ¨ δu`m ¨ δω

˙

dA, (8.28a)

DΠextrδψs “ ´

ż

Ω
ρ0ψ dV ´

ż

Γ
q0ψ dA, (8.28b)

where δω is defined in (8.25). For the purpose of finite element implementation it is also
necessary to compute the relevant tangent operators through further consistent linearisation
of (8.28) which can be written as (the symmetric terms are omitted)

DΠintrδu; ∆us “

ż

Ω

ˆ

∆ε :
B2Ψ

BεBε
: δε`∆χ ¨

B2Ψ

BχBχ
¨ δχ

˙

dV

`

ż

Ω

ˆ

∆ε :
B2Ψ

BεBχ
¨ δχ`∆χ ¨

B2Ψ

BχBε
: δε

˙

dV

“

ż

Ω

ˆ

∆ε : C : δε`∆χ ¨B ¨ δχ
˙

dV

`

ż

Ω

ˆ

∆ε : D ¨ δχ`∆χ ¨DT : δε

˙

dV, (8.29a)

DΠintrδu; ∆ψs “

ż

Ω

ˆ

∆E ¨
B2Ψ

BεBE
: δε`∆E ¨

B2Ψ

BχBE
¨ δχ

˙

dV

“ ´

ż

Ω

ˆ

∆E ¨ e : δε`∆E ¨ f ¨ δχ

˙

dV, (8.29b)

DΠintrδψ,∆ψs “

ż

Ω
∆E ¨

B2Ψ

BEBE
¨ δE dV “ ´

ż

Ω
∆E ¨ ε ¨ δE dV, (8.29c)

where ∆ε, ∆χ and ∆E represent incremental variations of strain tensor, curvature vector and
electric field vector respectively. Furthermore, the coupled terms in (8.29a) vanish for isotropic
materials. Note that upon performing further integration by part on (8.27) new boundary
terms emerge that contribute to traction force and couple force [228]. In general, the total
force stress can be written as

σt “ σ ` σ̂g, where σ̂g “
1

2
p∇ˆ µq I. (8.30)

2Depending on the notation, the work-conjugacy between δχ and µ can also be written in terms of their dual
representation µ̂ij : δχ̂ij “ ξijkξijlµkδχl “ 2µkδχk,

which shows that the proper work-conjugate to δχ is in fact 2µ. For notational convenience, here it is assumed
that this factor is embedded in the definition of the axial couple stress vector µ.
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The set of equations in (8.27), (8.28) and (8.29) facilitate straightforward finite element dis-
cretisation in terms of displacements and electric potential. This formulation however, dictates
C1 continuity for displacements. This inevitably requires the use of non-standard finite element
function spaces and is not pursued here.

8.4.2 The penalty formulation

A natural way to formulate the couple stress flexoelectric problem is to treat the vorticity of
the substructure w as an independent field and impose the couple stress constraint weakly
through a penalty approximation. In this case the potential energy of the system is given by

Π́intpu,ω, ψq “

ż

Ω
Ψ́pεpuq,χpωq,EpψqqdV `

ż

Ω

κ

2
||

1

2
∇ˆ u´ ω||2 dV, (8.31)

where || ¨ || is the Frobenius norm. As shown in B.1, the elegance of this formulation comes from
the fact that κ can be treated as the Cosserat modulus and hence, the formulation adheres to
a physically meaningful treatment of couple stress flexoelectricity.

Avoiding redundant derivations of stationary conditions of kinetic and external energies
and focussing only on the internal energy, the first directional derivative of the (8.31) with
respect to the virtual varitions of displacements, vorticity and electric potential yields

DΠ́intrδus “

ż

Ω
σ : δε dV `

ż

Ω
κ

ˆ

1

2
∇ˆ u´ ω

˙

¨

ˆ

1

2
∇ˆ δu

˙

dV, (8.32a)

DΠ́intrδωs “

ż

Ω
µ ¨ δχ dV ´

ż

Ω
κ

ˆ

1

2
∇ˆ u´ ω

˙

¨ δω dV, (8.32b)

DΠ́intrδψs “ ´

ż

Ω
D ¨ δE dV, (8.32c)

For the purpose of finite element implementation it is also necessary to compute the relevant
tangent operators through further consistent linearisation of (8.32)

DΠ́intrδu; ∆us “

ż

Ω
∆ε : C : δε dV `

ż

Ω
κ

ˆ

1

2
∇ˆ∆u

˙

¨

ˆ

1

2
∇ˆ δu

˙

dV, (8.33a)

DΠ́intrδu; ∆ωs “ ´

ż

Ω
κ∆ω ¨

ˆ

1

2
∇ˆ δu

˙

dV `

ż

Ω
∆χ ¨DT : δε dV, (8.33b)

DΠ́intrδu; ∆ψs “ ´

ż

Ω
δE ¨ e : δε dV, (8.33c)

DΠ́intrδω; ∆ωs “

ż

Ω
∆χ ¨B ¨ δχ dV `

ż

Ω
κ∆ω ¨ δω dV, (8.33d)

DΠ́intrδω; ∆ψs “ ´

ż

Ω
∆E ¨ f ¨ δχ dV, (8.33e)

DΠ́intrδψ,∆ψs “ ´

ż

Ω
∆E ¨ ε ¨ δE dV, (8.33f)

where the second integrand in (8.33b) vanishes for isotropic materials. Note that, with a slight
abuse of notation the kinematic variables and their work-conjugates have not been renamed,
although strictly speaking their description under displacement-potential and penalty formula-
tions are not the same. Analogous to displacement potential formulation, the total force stress
tensor in the penalty formulation can be written as

σt “ σ ` σ̂g, where σ̂g “ κp
1

2
∇ˆ u´ ωq I, (8.34)

which shows that the penalty parameter κ is indeed the Cosserat modulus and the constraint
will be imposed if κ Ñ 8. In essence, this is an approximate enforcement, however the
advantage of this formulation certainly, lies in the fact that it does not introduce a new variable
for the enforcement of the constraint. Finite element discretisation of this formulation is
presented in section 8.6.
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8.4.3 The Lagrange multiplier formulation

The couple stress constraint can also be imposed exactly albeit in a weak sense through the
so-called Lagrange multiplier approach. In this formulation, a new variable is introduced to
impose the constraint and the internal energy of the system is given by

Π̄intpu,ω, s, ψq “

ż

Ω
Ψ́pεpuq,χpωq,EpψqqdV `

ż

Ω
s ¨

ˆ

1

2
∇ˆ u´ ω

˙

dV, (8.35)

where s is the vector of Lagrange multipliers enforcing the constraint. Focussing only on the
internal energy, the first directional derivative of the (8.39) with respect to the virtual variations
of displacements, vorticity, Lagrange multiplier and electric potential yields

DΠ̄intrδus “

ż

Ω
σ : δε dV `

ż

Ω
s ¨ p

1

2
∇ˆ δuq dV, (8.36a)

DΠ̄intrδωs “

ż

Ω
µ ¨ δχ dV ´

ż

Ω
s ¨ δω dV, (8.36b)

DΠ̄intrδss “

ż

Ω
δs ¨

ˆ

1

2
∇ˆ u´ ω

˙

dV, (8.36c)

DΠ̄intrδψs “ ´

ż

Ω
D ¨ δE dV, (8.36d)

For the purpose of finite element implementation it is also necessary to compute the relevant
tangent operators through further consistent linearisation of (8.36)

DΠ̄intrδu; ∆us “

ż

Ω
∆ε : C : δε dV, (8.37a)

DΠ̄intrδu; ∆ωs “

ż

Ω
∆χ ¨DT : δε dV, (8.37b)

DΠ̄intrδu; ∆ss “

ż

Ω
∆s ¨ p

1

2
∇ˆ δuq dV, (8.37c)

DΠ̄intrδu; ∆ψs “ ´

ż

Ω
δE ¨ e : δε dV, (8.37d)

DΠ̄intrδω; ∆ωs “

ż

Ω
∆χ ¨B ¨ δχ dV `

ż

Ω
κ∆ω ¨ δω dV, (8.37e)

DΠ̄intrδω; ∆ss “ ´

ż

Ω
∆s ¨ δω dV, (8.37f)

DΠ̄intrδω; ∆ψs “ ´

ż

Ω
∆E ¨ f ¨ δχ dV, (8.37g)

DΠ̄intrδs; ∆ss “ 0, (8.37h)

DΠ̄intrδψ,∆ψs “ ´

ż

Ω
∆E ¨ ε ¨ δE dV, (8.37i)

where (8.37b) vanishes for isotropic materials. Note that, with a slight abuse of notation,
the kinematic variables and their work-conjugates have not been renamed, although strictly
speaking their description compared to the last two variational formulations have changed.
The total force stress tensor can now be written as

σt “ σ ` σ̂g, where σ̂g “
1

2
s I, (8.38)

which shows that the Lagrange multiplier s can be interpreted as the skew-symmetric part of
total force stress tensor emanating from microstructural contribution.
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8.4.4 The augmented Lagrangian formulation

From a numerical implementation point of view, the Lagrange multiplier approach leads to
the popular saddle point problem that typically occurs in constrained energy minimisation
problems such as incompressibility. Hence, it is at times advantageous to add a penalty type
regularisation term to the internal energy of the system. This approach is termed as the
augmented Lagrangian formulation and the internal energy of the system is given by

qΠintpu,ω, s, ψq “

ż

Ω
Ψ́pεpuq,χpωq,EpψqqdV `

ż

Ω
s ¨

ˆ

1

2
∇ˆ u´ ω

˙

dV `

ż

Ω

1

2κ
s ¨ s dV.

(8.39)

Consistent linearisation of this energy is similar to the Lagrange multiplier formulation and
the only two new terms arising are

DqΠintrδss “

ż

Ω
δs ¨

ˆ

1

2
∇ˆ u´ ω

˙

dV `

ż

Ω

1

κ
s ¨ δs dV, (8.40)

DqΠintrδs; ∆ss “

ż

Ω

1

κ
∆s ¨ δs dV, (8.41)

and the total force stress tensor remains unchanged. Finite element implementation of all the
three mixed formulations presented here are discussed in section 8.6.

8.5 Couple-stress flexoelectric theory for three-dimensional beams

Having established a curvature-induced flexoelectric theory through couple stress formulation
for the continua, in this section, we turn our attention to couple stress flexoelectricity in three-
dimensional beams. Extending the work of [250] on piezoelectric beams to flexoelectricity, we
start with kinematics and electrostatics of a generic three-dimensional beam. Work-conjugates
and area resultants are then introduced to facilitate similar variational formulations for beams.
The Euler-Lagrange equations of three-dimensional beams are then derived in a compact form
to facilitate interested readers with their closed form solutions.

8.5.1 Kinematics of three-dimensional flexooelectric beams

Let us consider the motion of a beam Ω Ă R3 as shown in Figure 8.2. The beam in the
undeformed configuration has a straight axis of length l and is completely characterised with an
orthonormal reference triad te1, e2, e3u, where e3 is parallel to the beam axis and teαupα “ 1, 2q
lie in the plane which defines the cross sectional area A (with boundary BA) of the beam
Ω “ Aˆ l 3. Assuming for simplicity that this reference frame (placed at r0, 0, x3s

T ) coincides
with the global one (placed at r0, 0, 0sT ), as shown in Figure 8.2, the displacements of the beam
considering small rotations can be described as; see [250]

px, tq ÞÑ upx, tq “ wpx3, tq ` θpx3, tq ˆ ppx1, x2q, (8.42)

where ppx1, x2q :“ xαeα is the position vector of a material point within the cross section
A with respect to the origin of the triad te1, e2, e3u. Vectors w “ wiei and θ “ θiei are
collectively called the generalised beam displacements. Expression (8.42) represents a time
dependent affine mapping for any material point contained within the cross sectional area A
of the beam. Noticing that ∇u “ Bu

Bxi
b ei and Bp

Bxα
“ eα, the small strain tensor ε can be

rewritten as

ε “
1

2

„

pεm ` κm ˆ pq b e3 ` e3 b pε
m ` κm ˆ pq



, (8.43)

3Throughout the remainder of the paper, any Greek indices will be assumed to vary in the integer interval
[1,2] and Latin indices to vary in the integer interval [1,2,3].
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x2
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x3

e2

e1

e3

c2

c1

c3

~ϕ

O a2

a1

a3

Figure 8.2: Motion of Beam in R3. The initial orthonormal triad te1, e2, e3u transforms to the
orthonormal triad tc1, c2, c3u.

where

εm :“
Bw

Bx3
` e3 ˆ θ, κm :“

Bθ

Bx3
, (8.44)

are called the strain measures of the linear beam model, which characterise translational de-
formation and rotational deformation, respectively. The explicit form of the strain tensor is

ε “
1

2

»

—

–

0 0 Bw1
Bx3

´ θ2 ´
Bθ3
Bx3

0 Bw2
Bx3

` θ1 `
Bθ3
Bx3

sym
Bw3
Bx3

` x2
Bθ1
Bx3
´ x1

Bθ2
Bx3

fi

ffi

fl

. (8.45)

As it is well known in classical beam theories and can also be seen clearly from (8.45), there is
no deformation within the cross-section of the beam (eα ¨ εeβ “ 0). Following our argument in
subsection 8.4.1, and with finding the beam balance equations of flexoelectric beams in mind,
from the onset, we strongly impose the couple stress constraint (8.14), to obtain

px, tq ÞÑ ωpx, tq “
1

2
∇ˆ

ˆ

wpx3, tq ` θpx3, tq ˆ ppx1, x2q

˙

, (8.46)

where on the right hand side of (8.46) we have substituted the continuum displacements in terms
of beam’s generalised displacements using (8.42). Similar to the strain tensor, the symmetric
and skew-symmetric parts of gradient of ω can be written in their matrix form as

∇symω “
1

4

»

—

–

´ Bθ3
Bx3

0 ω1,3

´ Bθ3
Bx3

ω2,3

sym 2 Bθ3
Bx3

fi

ffi

fl

, ∇skewω “
1

4

»

–

0 0 ω1,3

0 0 ω2,3

´ω1,3 ´ω2,3 0

fi

fl , (8.47)

where

ω1,3 “
Bθ1

Bx3
´
B2w2

Bx2
3

´ x1
B2θ3

Bx2
3

, ω2,3 “
Bθ2

Bx3
`
B2w1

Bx2
3

´ x2
B2θ3

Bx2
3

.

From (8.47) we observe that the symmetric part vorticity gradient is deviatoric i.e. trp∇symωq “
0. However, the non-zero diagonal components of symmetric part of the gradient still contribute
to the uniform contraction of the cross section by an amount proportional to p´ Bθ3

Bx3
q and in-

crease the torsional rigidity of the beam by an amount proportional to p2 Bθ3
Bx3
q. From the point

of view of classical beam theories, it is essential that the strain measures should not include
cross-sectional deformation. This further justifies the use of a skew-symmetric curvature tensor
as a fundamental kinematic measure however, it should be noted that, the conformal variant of
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the couple stress theory recently reported by [109] based on the kinematic measure ∇ ε also
excludes these cross-sectional rotational modes. The axial curvature vector defined in (8.16)
can now be written in terms of the beam kinematics

χ “
1

4
e3 ˆ

ˆ

e3 ˆ pε
g ` κg ˆ pq

˙

“
1

4
Īpεg ` κg ˆ pq, (8.48)

where

εg “
B2w

Bx2
3

` κm ˆ e3, κg “
B2θ

Bx2
3

, (8.49)

are the strain gradient measures of the linear beam model, augmenting the classical strain
measures (8.44) and

Ī “ e3 b e3 ´ I. (8.50)

The symmetric part of the gradient of rotation utilised in the purely mechanical planar beam
theories developed by [236, 237], [189, 258, 283, 284] can also be represented in a compact form
including the torsional terms as

p∇symωq3 “ axlp∇skewωq ˆ e3 ` 2κm3 e3, (8.51)

where the subscript 3 in (8.51) represents the longitudinal (e3) direction.4

8.5.2 Electrical Mapping

Following our recent development in [250], similar to the beam kinematics, we approximate
electric potential ψ : Ω ˆ r0, T s Ñ R across the cross section of the beam through a Taylor
series expansion, defined as

px, tq ÞÑ ψpx, tq :“ φpx3, tq ` ppx1, x2q ¨ βpx3, tq `
1

2
ppx1, x2q ¨ γpx3, tq ppx1, x2q, (8.52)

where ψ represents a parabolic expansion across the cross sectional area A of the beam, com-
pletely defined in terms of φ the electric potential at the reference triad origin r0, 0, x3s

T , its
gradient β and its Hessian γ, namely scalar, vector and symmetric second order tensor beam
axis-varying functions. It is important to remark that the only approximation for the distri-
bution of the electric potential is established across the section of the beam (see Figure 8.3).
The variation along the beam axis remains without any approximation.

The electric field vector E can now be obtained by computing the gradient of the newly
introduced electric potential ψ as E :“ ´∇ψ yielding (refer to equation (8.52)), after some
algebraic manipulation

E “ ´εe ´ pe3 b pqκ
e ´ V : ςe ´W : γ, (8.53)

where

εe :“
Bφ

Bx3
e3 ` β, κe :“

Bβ

Bx3
, ςe :“

Bγ

Bx3
, (8.54)

with the third order tensors V and W defined by

V :“ e3 b
1

2
ppb pq , W :“ eα b

1

2
ppb eα ` eα b pq . (8.55)

Considering equation (8.53), it is interesting to notice the similarities with the definition
of the small strain tensor ε (8.43). Notice how the first two terms on the right hand side of

4Interestingly, a direct consequence of (8.50) for the case of skew-symmetric couple stress theory is that, the
couple stress resultants are first projected on to the axis of the beam prior to area integration. In classical beam
theory, this projection vanishes due to the symmetry of Cauchy stresses i.e. ei ˆ pσeiq “ 0; see [126].
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equation (8.53) stem from the linear contribution in (8.52) (as in formula (8.43)) whereas the
last two terms stem from the quadratic contribution in (8.52).

− −

− −

+

Undeformed, P = 0

− −

− −

+

Uniform strain, P = 0

− −

− −

+

Non-uniform strain, P 6= 0

(a) (b) (c)

Figure 8.3: A schematic representation of electric polarisation in a centrosymmetric lattice
beam, (a) undeformed state - no polarisation, (b) when uniformly strained, the atomic displace-
ments of the centrosymmetric lattice will follow the elastic medium approximation resulting in
no polarisation, (c) when strained non-uniformly, the atomic displacements no longer follow the
elastic medium approximation and the symmetry restriction (symmetrical movement of ions)
is broken resulting in electric polarisation opposite to the direction of applied strain, [338, 72].

The new initial boundary value problem, adapted to a three-dimensional beam problem, is
then defined by equations (8.1,8.3,8.5) and (8.42,8.52), which combine the governing equations
of both elastodynamics and electrostatics, initial and boundary conditions, the coupling electro-
mechanical equations for σ, χ and D, the beam kinematics assumption u and the electric
potential spatial distribution ψ.

8.5.3 Displacement-potential variational formulation for flexoelectric beams

In order to establish the variational formulation of the problem at a beam level, we consider
virtual variations of displacements and electric potential δu and δψ, satisfying appropriate
boundary conditions. Analogous to continuum formulation and following [250], we can rewrite
the variational form (virtual work) of the initial boundary value problem at beam level as

δW pu, ψ; δu, δψq :“ δWiner ` δW
m
int ` δW

g
int ` δW

e
int ´ δW

m
ext ´ δW

g
ext ´ δW

e
ext “ 0, (8.56)

whereW represents the total work including strain-induced, curvature-induced and polarisation-
induced internal and their corresponding external work, such that

δWiner :“

ż

Ω
ρ:u ¨ δu dΩ, (8.57a)

δWm
int :“

ż

Ω
σ : δε dΩ`

ż

Ω
σ̂g : δω̂ dΩ, (8.57b)

δW g
int :“

ż

Ω
µ ¨ δχ dΩ, (8.57c)

δWm
ext :“

ż

Ω
ρb ¨ δu dΩ`

ż

Γσ
t ¨ δu dΓ, (8.57d)

δW g
ext :“

1

2

„
ż

Ω
ρb ¨ p∇ˆ δuq dΩ`

ż

Γµ
m ¨ p∇ˆ δuq dΓ



, (8.57e)

δW e
int :“ ´

ż

Ω
D ¨ δE dΩ, (8.57f)

δW e
ext :“

ż

Ω
ρeδψ dΩ`

ż

ΓD
q0δψ dΓ, (8.57g)
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represent the different contributions (e.g. inertial, internal, external, mechanical, electrical) to
the total virtual work. Substituting the expressions for δu (8.42) and δψ (8.52) into equation
(8.43), (8.48) and (8.53) results in

δε “
1

2

„

pδεm ` δκm ˆ pq b e3 ` e3 b pδε
m ` δκm ˆ pq



, (8.58a)

δχ “
1

4
Īpδεg ` δκg ˆ pq, (8.58b)

δE “ ´δεe ´ pe3 b pqδκ
e ´ V : δςe ´W : δγ, (8.58c)

where

δεm :“
Bδw

Bx3
` e3 ˆ δθ, δκm :“

Bδθ

Bx3
, (8.59a)

δεg :“
B2δw

Bx2
3

` δκm ˆ e3, δκg :“
B2δθ

Bx2
3

, (8.59b)

δεe :“
Bδφ

Bx3
e3 ` δβ, δκe :“

Bδβ

Bx3
, δςe :“

Bδγ

Bx3
, (8.59c)

represent the virtual mechanical and electrical beam strains. Substituting the expressions for u
and δu (8.42) into (8.57a) yields (after integration over the cross sectional area A) the inertial
virtual work

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (8.60)

where

AD :“

ż

A
ρI dA, SD :“

ż

A
ρp̂ dA, ID :“

ż

A
ρp̂p̂T dA, (8.61)

represent the mass AD, first area moment SD and second area moment ID tensors of the cross
sectional area A. Notice that p̂ represents the skew symmetric tensor associated with the axial
vector p. When considering a reference frame whose origin coincides with the centre of mass
of the cross sectional area A, then SD “ 0. Moreover, if the reference frame is aligned along
the so-called principal directions, the second area moment tensor ID becomes diagonal.

Analogously, substituting the expression for δε (8.58a) into (8.57b) yields (after integration
over the cross sectional area A) the internal mechanical virtual work

δWm
int “

ż

l
rδεm ¨Qm ` δκm ¨Mms dx3, (8.62)

with

Qm :“

ż

A
σe3 dA, Mm :“

ż

A
pˆ pσe3q dA. (8.63)

In the above equation (8.62), Qm represents the internal shear/axial force whereas Mm

represents the internal bending/torsion moment.
Substituting the expression for δu (8.42) into (8.57d) yields (after integration over the cross

sectional area A) the standard mechanical external virtual work

δWm
ext “ rδw ¨Q

m ` δθ ¨Mms
l
0 `

ż

l
rδw ¨ qm ` δθ ¨mms dx3, (8.64)

where

qm :“

ż

A
ρb dA`

ż

BA
tdΓ, mm :“

ż

A
ppˆ ρbq dA`

ż

BA
ppˆ tq dΓ. (8.65)

In above equations (8.64) and (8.65), qm and mm represent a possible external distributed
force and moment, respectively, acting along the beam axis. The first term in squared brackets
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on the right hand side of equation (8.64) represents mechanical actions (force and moment)
applied at both ends of the beam, namely x3 “ 0 and x3 “ l.

For the strain gradient (curvature) quantities, substituting the expression for δχ (8.58b)
into (8.57c) yields the micro-mechanical internal virtual work

δW g
int “

ż

l
rδεg ¨Qg ` δκg ¨M gsdx3, (8.66)

with

Qg :“

ż

A

1

2
ĪµdA, M g :“

ż

A
pˆ

ˆ

1

2
Īµ

˙

dA. (8.67)

where Qg and M g can be interpreted as size-dependent shear force and bending/torsion mo-
ment emanating from the micro-structure. Comparing (8.63) and (8.67), it is evident that
unlike the standard force stress resultants (based on σe3), couple-stress resultants are inte-
grated in the plane pe3be3´I “ Īq which is the direct consequence of couple stress constraint
2ω “ ∇ˆ u and the axial curvature vector (8.48).

Substituting the expression for δu (8.42) into (8.57e) yields (after integration over the cross
sectional area A) the micro-mechanical external virtual work

δW g
ext “ rδw ¨Q

g ` δθ ¨M gs
l
0 `

ż

l
rδw ¨ qg ` δθ ¨mgs dx3, (8.68)

where

qg :“

ż

A

ρ

2
∇ˆ l dA`

ż

BA

1

2
∇ˆm dΓ,

mg :“

ż

A

ˆ

pˆ p
ρ

2
∇ˆ lq

˙

dA`

ż

BA

1

2

ˆ

pˆ p∇ˆmq
˙

dΓ. (8.69)

In the above equations (8.68) and (8.69), qg and mg can be interpreted as the micro-
mechanical external distributed force and moment, respectively, acting along the beam axis.
We can merge the contribution of external forces of δWm

ext (8.68) with δW g
ext (8.64), as these

are prescribed quantities carrying the same units, whose effects cannot be distinguished indi-
vidually. Hence, in what follows, with slight abuse of notation, we assume

qm “ qm ` qg, mm “mm `mg.

From the electrical point of view, substituting the expression for δE (8.58c) into (8.57f)
yields (after integration over the cross sectional area A) the internal electrical virtual work

δW e
int “

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : Oe ` δγ : P esdx3, (8.70)

where

Qe :“

ż

A
D dA, M e :“

ż

A
pD ¨ e3qp dA, (8.71a)

P e :“

ż

A
D ¨WdA, Oe :“

ż

A
D ¨ VdA. (8.71b)

In the above equations (8.70) and (8.71a), it is interesting to observe the similarities between
Qe and M e and their mechanical counterparts (8.63), namely Qm and Mm, respectively. In
addition, due to the quadratic nature of the electric potential distribution, two extra second
order tensors arise, that is P e and Oe expressed in terms of the third order tensors W and V
already defined in (8.55).

Finally, substituting the expression for δψ (8.52) into (8.57g) yields (after integration over
the cross sectional area A) the electrical external virtual work as

δW e
ext “ rδφ pQ

e ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oes dx3, (8.72)
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where

qe :“

ż

A
ρe dA`

ż

BA
q0 dΓ, (8.73a)

me :“

ż

A
ρep dA`

ż

BA
q0p dΓ, (8.73b)

oe :“

ż

A

ρe

2
ppb pq dA`

ż

BA

q0

2
ppb pq dΓ. (8.73c)

Again, it is interesting to note the similarities between the above expressions qe, me (8.73)
and those of qm, mm (8.65). In equation (8.72), qe, me and oe represent possible distributed
electrical effects per unit of length. Moreover, pQe ¨e3q, M

e and Oe represent electrical actions
applied at both ends of the beam, namely x3 “ 0 and x3 “ L.

For completeness, the final virtual work expression characterising the behaviour of the
piezoelectric beam can be written as

δW :“ δWiner ` δWint ´ δWext “ 0, (8.74)

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (8.75a)

δWint “

ż

l
rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gsdx3

`

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oesdx3, (8.75b)

δWext “ rδw ¨Q
m ` δθ ¨Mms

l
0 `

ż

l
rδw ¨ qm ` δθ ¨mmsdx3

`

„

δw ¨
BQg

Bx3
` δθ ¨

BM g

Bx3

l

0

`

ż

l

„

δw ¨
Bqg

Bx3
` δθ ¨

Bmg

Bx3



dx3

` rδφpQe ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oesdx3. (8.75c)

8.5.4 Internal area resultants for displacement-potential formulation

From the mechanical standpoint, having introduced the additive decomposition of the total
Cauchy stress tensor σ in equation (8.12), we now proceed to find the traction vector acting
in a cross sectional area A of the beam defined by the outward unit normal e3, namely σe3.
For the mechanical contribution σm, (8.43) yields

σme3 “ Ξpεm ` p̂Tκmq, rΞsij “ rCsikjlre3skre3sl. (8.76)

For the nonlocal contribution of the force stress tensor σ̂g, (8.48) yields

σ̂ge3 “ Υ1pε
m ` p̂Tκmq, Υ1 “

1

2
σ̂gÎ, (8.77)

where Î is the skew-symmetric tensor dual to e3 given by

Î “

»

–

0 ´1 0
1 0 0
0 0 0

fi

fl .

For anisotropic materials the nonlocal contribution of the force stress tensor σ̂g also includes
constitutive terms

σ̂ge3 “ Υ2pε
g ` p̂Tκgq, rΥ2sij “

1

4
rDsiklre3skrĪslj . (8.78)
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Analogously, for the electrical contribution σe, (8.53) yields

σee3 “ Θ pε
e ` pe3 b pqκ

e ` V : ςe `W : γq , rΘsij “ resjikre3sk. (8.79)

The first internal area resultant Qm, also known as the axial/shear force, can now be computed
from equations (8.63), (8.76-8.79) as

Qm “ Amεm ` Smκm `Amgεg ` Smg1 κg `Ae
1ε
e ` Se1κ

e ` Se2 : γ ` Ie1 : ςe, (8.80)

where

Am :“

ż

A
Ξ dA`

ż

A
Υ1 dA, Sm :“

ż

A
Ξp̂T dA`

ż

A
Υ1p̂

T dA, Amg :“

ż

A
Υ2 dA,

Smg1 :“

ż

A
Υ2p̂

T dA, Ae
1 :“

ż

A
Θ dA, Se1 :“

ż

A
Θpe3 b pqdA,

Ie1 :“

ż

A
ΘV dA, Se2 :“

ż

A
ΘW dA,

The first two terms on the right hand side of (8.80) stem from strain contributions, the third
and fourth terms stem from curvature contribution and the remainder stem from electrical
contribution. The second internal area resultant Mm, also known as bending/torsion moment,
can also be computed from equations (8.63), (8.76) and (8.79) as

Mm “ pSmqT εm ` Imκm ` Smg2 εg ` Imgκg ` Se3ε
e ` Ie2κ

e ` Ie3 : γ `Ge
1 : ςe, (8.82)

where

Im :“

ż

A
p̂Ξp̂T dA`

ż

A
p̂Υ1p̂

T dA, Smg2 :“

ż

A
p̂Υ2 dA, Img :“

ż

A
p̂Υ2p̂

T dA,

Se3 :“

ż

A
p̂Θ dA, Ie2 :“

ż

A
p̂Θpe3 b pqdA, Ge

1 :“

ż

A
p̂ΘV dA,

Ie3 :“

ż

A
p̂ΘW dA.

As mentioned before, couple-stress resultants are integrated in the cross-sectional plane Ī. For
mechanical contribution µm, (8.43) yields

1

2
Īµm “ ΥT pεm ` p̂Tκmq, (8.84)

For micro-mechanical contributions µg, (8.48) yields

1

2
Īµg “ %pεg ` p̂Tκgq, r%sij “

1

16
rĪsikrBsklrĪslj . (8.85)

Analogously, for electrical contributions µe, (8.53) yields

1

2
Īµe “ ℵ pεe ` pe3 b pqκ

e ` V : ςe `W : γq , ℵ “ 1

4
ĪfT . (8.86)

The couple stress area resultants Qg and M g, can now be computed from equations (8.67),
(8.84-8.79) as

Qg “ pAmgqT εm ` pSmg2 qTκm `Agεg ` Sgκg `Ageεe ` Sge1 κ
e ` Sge2 : γ ` Ige1 : ςe, (8.87)

where

Ag :“

ż

A
% dA, Sg :“

ż

A
%p̂T dA, Age

1 :“

ż

A
ℵdA,
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Sge1 :“

ż

A
ℵpe3 b pq dA, Ige1 :“

ż

A
ℵV dA, Sge2 :“

ż

A
ℵW dA,

and analogously for M g

M g “ pSmg1 q
T
εm`pImgqTκm`pSgqT εg`Imgκg`Sge3 ε

e`Ige2 κ
e`Ige3 : γ`Gge

1 : ςe, (8.89)

where

Ig :“

ż

A
p̂%p̂T dA, Sge3 :“

ż

A
p̂ℵdA, Ige2 :“

ż

A
p̂ℵpe3 b pq dA,

Gge
1 :“

ż

A
p̂ℵV dA, Ige3 :“

ż

A
p̂ℵW dA.

From the electrical standpoint, having introduced the additive decomposition of the electric
displacement D in equation (8.11), we can obtain after combining equations (8.11), (8.43),
(8.48) and (8.53)

Dm “ ΘT pεm ` p̂Tκmq, (8.91)

Dg “ ℵT pεg ` p̂Tκgq, (8.92)

De “ ´εpεe ` pe3 b pqκ
e ` V : ςe `W : γq. (8.93)

The third internal area resultant Qe can now be computed from equations (8.71a), (8.91) and
(8.93) as

Qe “ pAe
1q
T εm ` pSe3q

T κm ` pAgeq
T εg ` pSge3 q

T
κg ´Ae

2ε
e ´Se4κ

e ´Se5 : γ ´ Ie4 : ςe, (8.94)

where

Ae
2 :“

ż

A
ε dA, Se4 :“

ż

A
εpe3 b pqdA,

Ie4 :“

ż

A
εV dA, Se5 :“

ż

A
εW dA.

Analogously, the fourth M e, fifth P e and sixth Oe internal area resultants can be computed
from equations (8.71a-8.71b), (8.91) and (8.93) as

M e “ pSe1q
T εm ` pIe2q

T κm ` pSge1 q
T
εg ` pIge2 q

T
κg

´ pSe4q
T εe ´ Ie5κ

e ´ Ie6 : γ ´Ge
2 : ςe,

P e “ pSe2q
T εm ` pIe3q

T κm ` pSge2 q
T
εg ` pIge3 q

T
κg

´ pSe5q
T εe ´ pIe6q

T κe ´ Ie7 : γ ´Ge
3 : ςe,

Oe “ pIe1q
T εm ` pGe

1q
T κm ` pIge1 q

T
εg ` pGge

1 q
T
κg

´ pIe4q
T εe ´ pGe

2q
T κe ´ pGe

3q
T : γ ´ Je : ςe,

where

Ie5 :“

ż

A
ppb e3qεpe3 ˆ pq dA, Je :“

ż

A
V˚T εV dA, Ie6 :“

ż

A
ppb e3qεW dA,

Ge
2 :“

ż

A
ppb e3qεV dA, Ge

3 :“

ż

A
W˚T εV dA, Ie7 :“

ż

A
W˚T εW dA.

Finally, we can summarise all of the above relationships between internal area resultants and
mechanical/electrical strains in the following table matrix format5

5Notice that the entries in columns one to four correspond to second order tensors whereas the entries in
columns five and six correspond to third order tensors. Also note that for a third order tensor rAsijk, we have

defined a transpose operator A˚T

“ rAskij
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(8.97)

This resulting Hessian operator is symmetric indefinite since it emanates from the enthalpy
density of the system. In case of dealing with a homogeneous material across the section of the
beam, namely constant mechanical and electrical properties within the area section A, if the
origin of the reference triad te1, e2, e3u is chosen as the centre of mass of the section, then the
tensors Sm, Sek pk “ 1 . . . 5q and Ge

k pk “ 1 . . . 3q vanish (e.g. their integrand is of odd order in
the position vector p). Finally, the initial boundary value problem representing the behaviour
of a flexoelectric three-dimensional beam is defined by equations (8.110), (8.111), (8.112) and
(8.97).

8.5.5 The penalty formulation for flexoelectric beams

So far in the development of flexoelectric beam theory, we have assumed a strong enforcement
of the couple stress constraint in order to be able to find the area resultants and balance
equations governing the physics of flexoelectric beams. However, similar to the continuum
formulation, the couple stress constraint can be imposed weakly through a penalty formulation.
This essentially implies that the vorticity vector must be treated as an independent field and
must have a description compatible with the rest of beam kinematic and electrostatic measures.
In essence, ω can be described through the mapping

px, tq ÞÑ ωpx, tq “ ωcpx3, tq ` ωppx3, tq ˆ ppx1, x2q, (8.98)

where wc and wp characterise the vorticity of the beam along the axis and across the cross
section of the beam, respectively. The curvature vector can now be written as

χ “
1

2
e3 ˆ

ˆ

εg ` κg ˆ p

˙

“
1

2
Î

ˆ

εg ` κg ˆ p

˙

, (8.99)

where

εg “
Bωc
Bx3

, κg “
Bωp
Bx3

ˆ p, (8.100)

If we assume a slight abuse of notation in order not to rename the variables, interestingly,
the variational formulation for the penalty approach in the beam setting remains the same
as the displacement-potential formulation presented in (8.75). The changes that will have to
be reflected are minor and in the area resultants emanating from (8.32) taking into account
the total stress tensor (8.34). In principle, this also means substituting the new value of χ
which entails exchanging the term 1

4 Ī with 1
2 Î. Furthermore, the contribution of geometric

stiffness in Am and Sm in (8.80) and in Im in (8.82) disappear, as these contribution now
explicitly perform work against δwc and δwp, respectively (the third term in square brackets
in (8.102b)). Under this settings we can write the variational form as
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δW :“ δWiner ` δWint ´ δWext “ 0, (8.101)

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (8.102a)

δWint “

ż

l
rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gs ` rδωc ¨ Q̄

m
` δωp ¨ M̄

m
sdx3

`

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oesdx3, (8.102b)

δWext “ rδw ¨Q
m ` δθ ¨Mms

l
0 `

ż

l
rδw ¨ qm ` δθ ¨mmsdx3

` rδωc ¨Q
g ` δωp ¨M

gs
l
0 `

ż

l
rδωc ¨ q

g ` δωp ¨m
gsdx3

` rδφpQe ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oesdx3. (8.102c)

where

Q̄
m

:“

ż

A
σ̂ge3 dA, M̄

m
:“

ż

A
pˆ pσ̂ge3q dA. (8.103)

8.5.6 The Lagrange multiplier and augmented Lagrangian formulations for
flexoelectric beams

In case of beams, the variational form of the Lagrange multiplier and augmented Lagrangian
formulations remain sufficiently similar to that of a penalty formulation. However, the La-
grange multiplier itself is treated as an independent quantity and should be described to have
a description compatible to the vorticity vector. This implies that the Lagrange multiplier
must the vorticity along the axis as well as across the cross-section of the beam. In other words
the Lagrange multiplier s can be prescribed through the following mapping

px, tq ÞÑ spx, tq “ scpx3, tq ` sppx3, tq ˆ ppx1, x2q, (8.104)

where sc and sp characterise the variation of Lagrange multiplier along the axis and across
the cross section of the beam, respectively. The variational form of the problem now takes the
form

δW :“ δWiner ` δWint ´ δWext “ 0, (8.105)

δWiner “

ż

l

”

δw ¨
´

AD :w ` SD:θ
¯

` δθ ¨
´

STD :w ` ID:θ
¯ı

dx3, (8.106a)

δWint “

ż

l
rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gs

` rδωc ¨ Q̄
g
` δωp ¨ M̄

g
s ` rδsc ¨Q

s ` δsp ¨M
ssdx3

`

ż

l
rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oesdx3, (8.106b)

δWext “ rδw ¨Q
m ` δθ ¨Mms

l
0 `

ż

l
rδw ¨ qm ` δθ ¨mmsdx3

` rδωc ¨Q
g ` δωp ¨M

gs
l
0 `

ż

l
rδωc ¨ q

g ` δωp ¨m
gsdx3

` rδsc ¨Q
s ` δsp ¨M

ss
l
0 `

ż

l
rδsc ¨ q

s ` δsp ¨m
ssdx3

` rδφpQe ¨ e3q ` δβ ¨M
e ` δγ : Oes

l
0 `

ż

l
rδφ qe ` δβ ¨me ` δγ : oesdx3. (8.106c)
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where

Q̄
m

:“ ´

ż

A
σ̂ge3 dA, M̄

m
:“ ´

ż

A
pˆ pσ̂ge3q dA, (8.107)

and for Lagrange multiplier approach we have

Qs :“

ż

A
p∇skewu´ ω̂qe3 dA, M s :“

ż

A
pˆ pp∇skewu´ ω̂qe3q dA, (8.108a)

qs :“

ż

A
p∇skewu´ ω̂qndA, ms :“

ż

A
pˆ pp∇skewu´ ω̂qnq dA. (8.108b)

whereas for augmented Lagrangian we obtain

Qs :“

ż

A
rp∇skewu´ ω̂q `

1

κ
s Ise3 dA, M s :“

ż

A
pˆ prp∇skewu´ ω̂q `

1

κ
s Ise3qdA,

(8.109a)

qs :“

ż

A
rp∇skewu´ ω̂q `

1

κ
s IsndA, ms :“

ż

A
pˆ prp∇skewu´ ω̂q `

1

κ
s IsnqdA.

(8.109b)

8.5.7 Governing equations of three-dimensional flexoelectric beams

As it is well known in standard beam theory, further manipulation of the displacement-potential
variational form (8.74)-(8.75) can lead to the so-called beam balance equations [126], which are
written as

ˆ

B2Qg

Bx2
3

˙

`
BQm

Bx3
` qm “ AD :w ` SD:θ, in l ˆ r0, T s, (8.110a)

ˆ

B2M g

Bx2
3

´ e3 ˆ
BQg

Bx3

˙

`
BMm

Bx3

´Qm ˆ e3 `m
m “ STD :w ` ID:θ, in l ˆ r0, T s, (8.110b)

BpQe ¨ e3q

Bx3
` qe “ 0, in l ˆ r0, T s, (8.110c)

BM e

Bx3
` ĪQe `me “ 0, in l ˆ r0, T s, (8.110d)

BOe

Bx3
´ P e ` oe “ 0, in l ˆ r0, T s, (8.110e)

The above set of equations represent a set of balance equations in terms of internal area re-
sultants Qg, M g, Qm, Mm, Qe, M e, P e and Oe. If we drop the terms in the bracket, the
piezoelectric beam model of [250] is recovered. Initial conditions in (8.4), boundary conditions
(8.2-8.4-8.6), strains measures (8.43-8.44), strain gradient measures (8.48-8.49) and the elec-
trical counterparts (8.53-8.54) complement the above system of partial differential equations
(8.110) to form the initial boundary value problem of the three-dimensional flexoelectric beam.
Specifically, compatible initial conditions can be defined in terms of axis varying functions
w0, 9w0,θ0, 9θ0 : r0, ls Ñ R3 as

upx1, x2, x3, tq “ w0px3q ` θ0px3q ˆ ppx1, x2q in Ωˆ 0, (8.111a)

9upx1, x2, x3, tq “ 9w0px3q ` 9θ0px3q ˆ ppx1, x2q in Ωˆ 0, (8.111b)

Dirichlet (and corresponding Neumann) boundary conditions can be defined at either end of
the beam x3 “ 0 or x3 “ l by

w “ w̄, θ “ θ̄, φ “ φ̄, β “ β̄, γ “ γ̄, (8.112a)

Qm “ Q̄
m
, Mm “ M̄

m
, Qe ¨ e3 “ Q̄e, M e “ M̄

e
, Oe “ Ō

e
, (8.112b)
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Qg “ Q̄
g
, M g “ M̄

g
. (8.112c)

If we consider a purely mechanical couple stress beam model, equations (8.110) and (8.112) can
be reduced to those of [189](Eqs. 21-22) and [236](Eqs. 22-23) for planar beams, by dropping

the torsional term B2Mg

Bx2
3

from (8.110b). Thus, the present beam model (8.110) is a fourth

order differential equation in both w and θ ¨ e3. It should be emphasised however, that the
kinematics and constitutive relations of the present beam model are different. Due to the effect
of couple stress quantities, namely moment-tractions and body couples having been merged
with force-tractions and body forces, complicated boundary conditions (especially the body
couple) of [189, 258, 283] do not appear in our formulation.

8.6 The finite element discretisation

The purpose of this section is to present a family of mixed finite element discretisation schemes
to the couple stress flexoelectric theory of continua and beams. The point of departure is
the respective variational formulations presented in the previous two sections in particular,
the penalty formulation for continuum (8.32), the penalty formulation for beams (8.102), the
Lagrange multiplier for continuum (8.36), the Lagrange multiplier for beams (8.106), the aug-
mented Lagrangian formulation for continuum (8.40) and the augmented Lagrangian formu-
lation for beams (8.106). The finite element discretisation follows naturally by introducing a
non-overlapping partition of the domain Ω into a series of one-dimensional (for beams) or two
and/or three-dimensional (for continuum) elements, as shown in Figure 8.5 and Figure 8.4, re-
spectively. Owing to the nature of the aforementioned variational formulations, C0 continuity
can be retained for all variables by choosing the standard p-version of the finite element method
[295, 47] for discretisation. For the penalty formulation this entails employing piece-wise con-
tinuous Pn interpolation functions for displacements u while piece-wise discontinuous PDn´1

interpolation functions for rotations ω (where n ě 2 P N represents any arbitrary polynomial
degree and D represents the discontinuous nature of the interpolation functions), subjected
to the satisfaction of the inf-sup condition [34, 43]. Similarly, for Lagrange multiplier and
augmented Lagrangian formulations piece-wise continuous Pn interpolation functions for dis-
placements u and electric potential ψ and piece-wise discontinuous PDn´1 interpolation functions
for the rotations ω and the Lagrange multiplier s can be employed. These arrangements are
shown in Figure 8.4 for triangles, quadrilaterals, tetrahedra and hexahedra, where the standard
terminology in finite element is used (i.e. P representing the polynomial degree of interpolation
bases for triangles and tetrahedral elements and Q denoting the polynomial degree of inter-
polation bases for quadrilateral and hexahedral elements). Similar discretisation methodology
can be followed in the case of beams. While tw,θ, ψ,β,γu can be discretised using piece-wise
continuous Pn interpolation functions, tωc,ωp, sc, spu can be discretised using piece-wise dis-
continuous PDn´1 interpolation functions, subjected to the satisfaction of the inf-sup condition.
These arrangements are shown in Figure 8.5.

To keep the presentation succinct, the details of finite element implementations are not dis-
cussed here. Finite element implementations of couple stress models for purely mechanical con-
tinuum elements are discussed in [42, 99] for penalty formulation and in [70, 167] for Lagrange
multiplier formulation. The previous work of the authors also describe computational imple-
mentation of a series of mixed and high order finite element disretisations based on an enhanced
set of variables in electromechanics for continuum and beam elements [233, 253, 235, 250]. It
is worth noting that, due to the discontinuous nature of couple stress related variables, their
corresponding contributions can be locally condensed out using static condensation leading to
an extremely efficient implementation of couple stress flexoelectricity that can be easily incor-
porated in to an existing piezoelectric finite element software [251]. Furthermore, since at least
a quadratic interpolation is used for displacements, the geometry of flexoelectric structures can
be represented accurately using the recently developed isoparametric curvilinear finite element
technology presented in [254, 253].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

u, φ ω, s [only ω for penalty]

Figure 8.4: A non-exhaustive list of the developed mixed finite elements for triangules: (a) P2-
P2-P1D-P1D/P2-P2-P1D, (b) P3-P3-P2D-P2D/P3-P3-P2D, (c) P4-P4-P3D-P3D/P4-P4-P3D;
quadrilaterals: (d) Q2-Q1D-Q1D/Q2-Q1D, (e) Q3-Q3-Q2D-Q2D/Q3-Q3-Q2D, (f) Q4-Q4-Q3D-
Q3D/Q4-Q4-Q3D; tetrahedra: (g) P2-P2-P1D-P1D/P2-P2-P1D, (h) P3-P3-P2D-P2D/P3-P3-
P2D, (i) P4-P4-P3D-P3D/P4-P4-P3D and hexahedra: (j) Q2-Q2-Q1D-Q1D/Q2-Q2-Q1D, (k)
Q3-Q3-Q2D-Q2D/Q3-Q3-Q2D, (l) Q4-Q4-Q3D-Q3D/Q4-Q4-Q3D. The developed framework
encompasses Pn-Pn-PDn´1-PDn´1, Pn-Pn-PDn´1, Qn-Qn-QD

n´1-QD
n´1, Qn-Qn-QD

n´1 for any inter-
polation degree n.
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(a) (b) (c)

w, θ, φ, β, γ ωc, ωp, sc, sp [only ωc and ωp for penalty]

Figure 8.5: A non-exhaustive list of the developed mixed finite elements for one-dimensional
beam elements: (a) P2-P2-P2-P2-P2-P1D-P1D-P1D-P1D/P2-P2-P2-P2-P2-P1D-P1D, (b) P3-
P3-P3-P3-P3-P2D-P2D-P2D-P2D/P3-P3-P3-P3-P3-P2D-P2D, (c) P4-P4-P4-P4-P4-P3D-P3D-
P3D-P3D/P4-P4-P4-P4-P4-P3D-P3D. The developed framework encompasses Pn-Pn-Pn-Pn-
Pn-PDn´1-PDn´1-PDn´1-PDn´1, Pn-Pn-Pn-Pn-Pn-PDn´1-PDn´1 for any interpolation degree n.

8.7 Numerical experiments

8.7.1 A detailed comparison of couple stress based and strain gradient
based flexoelectric models: vanishing volumetric strain gradients, the
presence of reverse coupling modes and material characterisation for
BaTio3

The objective of this first study is to quantitively compare the present couple stress based flexo-
electric model with the standard strain gradient based flexoelectric models in terms of their ef-
fectiveness in predicting size-dependent electric polarisation produced from non-uniform strain
distribution. The study primarily focusses on BaTio3 whose piezoelectric and flexoelectric
material properties are known from [24] and [201], respectively as

Elastic constants Dielectric constants Piezoelectric constants Flexoelectric constants

C11 “ 275 GPa ε11 = 12.5 nC/Vm e31 = -2.7 C/m2 f̄11 = 0.15 nC/m
C12 “ 179 GPa ε33 = 14.4 nC/Vm e33 = 3.65 C/m2 f̄12 = 100 nC/m
C13 “ 152 GPa e15 = 21.3 C/m2 f̄44 = -1.9 nC/m
C33 “ 165 GPa
C44 “ 54 GPa

Table 8.1: Material constants for BaTio3

where these constitutive tensors can be spherically parametrised to form the so-called indicatory
surfaces of BaTio3, as shown in Figure 8.6. Indicatory surface is a convenient way to visualise
the major axes of material symmetry as can be clearly seen in the case of piezoelectric tensor
in Figure 8.6c. As an essential part of the comparison, this parametrisation is also used later
to compare the flexoelectric tensors of couple stress based and standard strain gradient based
models.

For the purpose of clarity, let us consider only the flexoelectric coupling mechanisms under
both (couple stress and standard strain gradient) theories, in a two dimensional setting. The
point of departure, is the flexoelectric enthalpy of the system which under standard strain
gradient theories is given in terms of the gradient of strains χ̄ “ ∇sym∇symu and the electric
field E as

ΨsgpE, χ̄q “ ´E ¨ f̄
... χ̄ “ ´Eifijklχ̄jkl, (8.113)

where f̄ is the fourth order flexoelectric tensor with one symmetry i.e. f̄ijkl “ f̄ikjl and in
the general three-dimensional case can be characterised with 54 material constants, as shown
in Figure 8.7a (for the case of BaTio3). Under a two-dimensional setting, only 12 material
constants are required to fully characterise the flexoelectric tensor. The strain gradient tensor
χ̄ and the flexoelectric tensor under Voigt notations can be written as [3, 222]

χ̄ “ ∇sym∇symu “ r
B2ux
Bx2

,
B2uy
ByBx

,
B2ux
ByBx

`
B2uy
Bx2

,
B2ux
BxBy

,
B2uy
By2

,
B2ux
By2

`
B2uy
BxBy

sT , (8.114)

f̄ “

„

f̄11 f̄12 0 0 0 f̄44

0 0 f̄44 f̄12 f̄11 0



, (8.115)
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(a) (b)

x

y

z

(c)

Figure 8.6: Indicatory surfaces of BaTio3 constitutive tensors namely, a) the elasticity tensor
C, b) the dielectric tensor ε and, c) the piezoelectric tensor e

where (8.114) is the so-called mean or engineering strain gradients, wherein the multiplica-
tion factor (1

4) is omitted for simplicity. This in general implies that the produced electric
displacement must take the form

Dsg “ ´
BΨsg

BE
“

«

f̄11
B2ux
Bx2 ` f̄12

B2uy
ByBx ` f̄44p

B2ux
By2 `

B2uy
BxBy q

f̄11
B2uy
By2 ` f̄12

B2ux
BxBy ` f̄44p

B2ux
ByBx `

B2uy
Bx2 q

ff

. (8.116)

On the other hand, in the case of couple stress based flexoelectric model, as presented earlier
the flexoelectric enthalpy can be written as

ΨcspE,χq “ ´E ¨ f ¨ χ “ ´Eifijχj , (8.117)

where f is the second order flexoelectric tensor with no general symmetries. It is characterised
by 9 constants in the three-dimensional case and 4 constants in the two-dimensional case. The
explicit forms of χ and f are given as

χ “ ∇ˆ∇ˆ u “ r B
2uy
ByBx

´
B2ux
By2

,
B2ux
BxBy

´
B2uy
Bx2

sT , (8.118)

f “

„

f11 f12

f21 f22



, (8.119)

where χ is the mean or engineering curvature vector presented earlier, wherein the multiplica-
tion factor (1

4) is omitted for simplicity. Note that no correspondence is established between
the tensors f and f̄ yet. This in general implies that the produced electric displacement must
take the form

Dcs “ ´
BΨcs

BE
“

«

f11p
B2uy
ByBx ´

B2ux
By2 q ` f12p

B2ux
BxBy ´

B2uy
Bx2 q

f21p
B2uy
ByBx ´

B2ux
By2 q ` f22p

B2ux
BxBy ´

B2uy
Bx2 q

ff

. (8.120)



8.7. NUMERICAL EXPERIMENTS 27

Comparing Dsg in (8.116) and Dcs in (8.120), one can observe that, in the case of couple stress
flexoelectric theory, the variation of volumetric strains (volumetric strain gradients namely the

components B2ux
Bx2 and

B2uy
By2 ) do not generate electric polarisation, as they are fundamentally

non-existent. This is true for all variants of couple stress theories (i.e. classical, modified,
conformal and skew-symmetric couple stress theories) as the spherical part of strain always
vanishes. In other words, the f̄11 coupling mode cannot be characterised under this theory.
In the case of BaTio3, we observe that f̄11 parameter corresponds to the weakest coupling
mode which can be up to three orders of magnitude smaller than the flexural mode and can
be neglected even in the case of standard strain gradient flexoelectricity. Moreover, it can be
noticed that, if present, the f12 and f21 give rise to a completely reversed coupling mode in
comparison to strain gradient theory. Further comparison of (8.116) and (8.120) for BaTio3

constants shown in Table 8.1, reveals that the flexoelectric coupling modes is in fact dominant
in f̄12 and one can consequently write

Dsg «

«

f̄12
B2uy
ByBx

f̄12
B2ux
BxBy

ff

. (8.121)

If we were to establish a correspondence between f and f̄ , then the most plausible relationship
would be to assume f11 “ f22 “ f̄12 and f12 “ f21 “ 0 in which case we can write

f « f̄12I “

„

f̄12 0
0 f̄12



, Dcs «

«

f̄12p
B2uy
ByBx ´

B2ux
By2 q

f̄12p
B2ux
BxBy ´

B2uy
Bx2 q

ff

. (8.122)

Equation (8.122) establishes the closest possible algebraic relationships between flexoelectric
constants of couple stress based and strain gradient based flexoelectric theories, without the
need for a nonlinear optimisation process to characterise the constants of one theory with
respect to the other. The need for this optimisation can also be negated by noting the sig-
nificant discrepancies present between atomistic simulations and experimental observations in
determining flexoelectric constants [193, 201, 338], as result of which most authors assume the
flexural constant f̄12 in the wide range of 1nC/m-100µC/m. Under this setting, the indicatory
surfaces of flexoelectric tensors f̄ and f can be represented as shown in Figure 8.7 where the

x

y

z

(a) (b)

Figure 8.7: Indicatory surface of BaTio3 flexoelectric constitutive tensor under, a) standard
strain gradient based flexoelectric theory (i.e. f̄), b) couple stress based flexoelectric theory
(i.e. f)

axes of symmetry for both tensors can be clearly seen. Figure 8.7, once again confirms that
characterising the flexoelectric constants of f with respect to f̄ is in general impractical owing
to the fact that the tensors belong to two different vector spaces.

In what follows, we consider simplified cases of flexoelectric coupling of nano-specimen
under different coupling modes with various boundary conditions and present simple analytical
solutions in order to quantify the electromechanical coupling efficiency of couple stress based
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and standard strain gradient based flexoelectric theories. The analytical solutions are designed
such that the specimen will experience a non-uniform strain distribution, assumed to enough
to break the inversion symmetry of BaTio3 to produce electric polarisation. While inspired by
simple analytical solutions of beams these studies are performed at a continuum level.

Case 1. Simply supported nanobeam under uniformly distributed load

As a first case, let us consider a nanobeam shown in Figure 8.8. Under the action of uniformly
distributed load the beam undergoes bending and as a result, a non-uniform distribution of
strains across the cross section of the beam is observed. A simple analytical solution for

q

l

(a) (b)

Figure 8.8: Original and deformed shape of nanobeam

the bending of the nanobeam shown in Figure 8.8b can be simply computed using the beam
kinematics presented in (8.44), as

ux “ ´αpl
3 ´ 6lx2 ` 4x3qy, (8.123a)

uy “ βpl3x´ 2lx3 ` x4q ` γxpl ´ xq, (8.123b)

where the parameters α “ 1.25ˆ1020, β “ 1.25ˆ1020 and γ “ 1330 are chosen for convenience.
This in fact corresponds to a load of 100µN/m. l denotes the length of the beam which is chosen
to be 10nm and the thickness of the beam is retained as t “ 1nm. The material constants of
BaTio3 shown in Table 8.1 are chosen for the study. The electric displacement vectors Dsg

and Dcs can now be computed using equations (8.116) and (8.120), respectively.

Figure 8.9 compares the generated electric displacement of the couple stress model computed
using (8.122) with that of the standard strain gradient model computed using (8.116) (i.e. the
fully coupled electric displacement vector), along the length of the beam (i.e. for all x such
that y coincides with the neutral axis). The figures also compares the electric displacements
generated with the standard strain gradient model ignoring the f̄11 parameter which is not
present in the couple stress model. Notice that when f̄11 parameter is discarded both couple
stress and strain gradient models generate the same (zero) electric displacement component
Dx, in this case. The electric displacement Dx is zero in the latter two cases, due to the fact
the corresponding second derivatives vanish. This generated electric displacement is extremely
small owing the fact that f̄11 is significantly weaker in BaTio3. On the other hand, extremely
high electric displacement Dy is generated. Under this coupling mode, it can be observed that
the couple stress model generates approximately twice the amount of electric displacement as
compared to the strain gradient model and the contribution of f̄11 and f̄44 parameters while
present are small enough, that they can be neglected. However, the profile of generated electric
displacement along the beam is in general similar for both models.
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(a) (b)

(c) (d)

Figure 8.9: Comparison of couple stress based and strain gradient based flexoelectric models
for the case of (8.123), when material constants are fitted according to (8.122)

Cantilever nanobeam undergoing bending and complex cross sectional thinning

Let us next consider a nanobeam undergoing complex cross sectional thinning and bending, as
shown in Figure 8.10. The analytical formula describing this morphology is given by

ux “ ´αp3l
2x´ 3lx2 ` x3qy, (8.124a)

uy “ βp3l2x2 ´ 4lx3 ` x4q ` γxp2l ´ xq, (8.124b)

where the parameter α “ 5.21ˆ 1018 is now chosen. Under this setting, the beam experiences
nonuniform distribution of strains across the cross section and along the length and as a result
the flexoelectric coupling mechanism is more complex now. Note that the form of loading q must
be coordinate dependent and not generally uniform, in order to produce the aforementioned
analytical formula.

Figure 8.11 compares the generated electric displacement of the couple stress model with
that of the standard strain gradient model with and without consideration of the f̄11 coupling
modes. A similar conclusion can be drawn in this case in that, when f̄11 parameter is discarded
both couple stress and strain gradient models generate the same (zero) electric displacement
component Dx, which is negligible regardless. However an extremely high electric displacement
Dy is generated with the couple stress model, which in this case is up to two orders higher than
that of strain gradient model. This is due to the strong presence of second derivatives (curvature
effect) in the couple stress model, which gives rise to extremely high bending coupling mode.
However, the profile of generated electric displacement is in general similar for both models.
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q

l

(a) (b)

Figure 8.10: Original and deformed shape of nanobeam

Cantilever nanobeam undergoing extension and thinning

The third and final case considers an even more complex deformation scenario under extension
to ensure that there are no vanishing component in the strain gradient tensor/curvature vector.
This study also considers the extension coupling mechanism in flexoelectricity. To this effect a
nanobeam undergoing complex cross sectional thinning and extension is considered, as shown
in Figure 8.12. The analytical formula describing this morphology is given by

ux “ αx2py ´
l

20
q2, (8.125a)

uy “ β
?
x` 2lpy ´

l

20
q3, (8.125b)

where the parameters α “ 5ˆ1021 and β “ 1.5ˆ1019 are chosen. Under this setting, the beam
experiences nonuniform distribution of strains across the cross section and along the length
giving rise to electric polarisation.

Figure 8.13 compares the generated electric displacement of the couple stress model with
that of the standard strain gradient model with and without consideration of the f̄11 constant.
As expected in this case the electric displacement component Dx is more pronounced compared
to Dy, unlike the previous cases. The couple stress model generates up to an order of magnitude
higher electric polarisation under this coupling mode and the profile of electric displacement
is also very different from that of strain gradient model. The polarisation in the vertical y
direction remains weak and f̄11 parameter is discarded both couple stress and strain gradient
models generate the same electric displacement component Dy. In general, although non-
intuitive, it can be observed that in the case of extension the parameter f̄11 plays no significant
role.

From the analysis of three flexoelectric coupling cases in this section it can be concluded
that, for both couple stress and strain gradient theories the bending/shear coupling mode is
typically activated by the action of transverse electric field and the extension coupling mode is
activated by the action of electric field aligned in parallel to the axis of extension. Under both
these coupling modes the driving parameter is the flexoelectric constant f̄12. This in contrast
to piezoelectricity where different modes of coupling are typically driven by different material
constants. If the same flexoelectric constant is chosen to simulate strain gradient and couple
stress theory, the couple stress model will in general produce a higher electric polarisation that
in some cases could be up to two orders of magnitude higher. It must be believed that for most
problems of practical relevance analysed under such settings the couple stress flexoelectric
model in general will produce a higher electric polarisation. It is also worth noting that,
simplified analytical solutions of strain gradient flexoelectricity overestimate the flexoelectric
response in comparison to fully three-dimensional computational simulation as noted by [4, 3].
In the later sections we will see if this is the case for couple stress based flexoelectric models.
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(a) (b)

(c) (d)

Figure 8.11: Comparison of couple stress based and strain gradient based flexoelectric models
for the case of (8.124), when material constants are fitted according to (8.122)

8.7.2 Benchmark example: Convergence studies and further quantification
of curvature-induced electromechanical coupling efficiency

In this section, the electromechanical coupling efficiency of the couple stress flexoelectric for-
mulation is investigated using all the developed finite element techniques. The study albeit
simple in nature, tests both the convergence properties of the finite element schemes and the
quantification of flexoelectric based electric polarisation using the skew-symmetric couple stress
theory. The problem involves mechanically loading a cantilever beam and monitoring the gen-
erated electric polarisation using the electromechanical coupling efficiency as a measure, as
shown in Figure 8.14. This problem is analysed under strain gradient elasticity by [222] and
an analytical solution for the Electromechanical Coupling Efficiency (ECF) is given in [195] as

keffa “
$

1`$

d

ε

E

ˆ

e2 ` 12p
f

h
q2

˙

, (8.126)

Figure 8.12: Original and deformed shape of nanobeam
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(a) (b)

(c) (d)

Figure 8.13: Comparison of couple stress based and strain gradient based flexoelectric models
for the case of (8.125), when material constants are fitted according to (8.122)

where $ is the electrical susceptibility of the material (where $ “ 1408 for the case of BaTio3),
E the Young’s modulus and ε, e and f the dielectric, piezoelectric and flexoelectric coupling
coefficients of the material, respectively. L and h represent the length and the height of the
beam, respectively; see also Figure 8.14. In the context of finite elements, the electromechanical
conversion efficiency can be computed as the norm of the ratio of electrical energy to mechanical
energy i.e.

1

keffn
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Wmech

Welect

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

However, given that the analytical solution for this problem was derived from the strain
gradient model, for convergence studies, we choose to work with a reference solution obtained
from an extremely fine discretisation. For the purpose of convergence studies, once again
BaTio3 is chosen with material properties listed in Table 8.1 by neglecting the piezoelectric
effects i.e. setting e31 “ e33 “ e15 “ e “ 0. Only f̄12 effect is considered i.e. f “ f̄12. The
length of the beam is kept at 0.8µm and the aspect ratio of the beam is varied from 10 to 50,
while a constant load of F “ 100µN is applied on the free end of the beam.

First a series of convergence studies are performed by using the quadratic mixed finite
elements i.e. P2-P2-P1D-P1D/P2-P2-P1D and Q2-Q2-Q1D-Q1D/Q2-Q2-Q1D elements in a
two-dimensional setting by successively refining the meshes, i.e. by performing the so-called
h-refinement. To this end, two set of meshes are chosen namely a triangular mesh and a quadri-
lateral mesh, as shown in Figure 8.15 and the ECF is computed using the mixed finite elements
and compared to the reference solution. The convergence properties of the mixed finite ele-
ments for the three variational formulations namely the penalty formulation, the Lagrange
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Figure 8.14: Cantilever beam chosen for convergence study of the developed finite element
discretisation techniques

Figure 8.15: Triangular and quadrilateral meshes (only aspect ratio 10 shown here) chosen
for convergence study of the developed finite element discretisation techniques. Both meshes
possess the same number of nodes

multiplier formulation and the augmented Lagrangian formulation is subsequently studied, by
choosing the penalty parameter to coincide with the Cosserat modulus κ “ µl2s “ 5ˆ10´7GPa,
where ls “ 1nm is the length scale parameter. The chosen value of ls is well within the range
of the thickness chosen for epitaxial ferroelectric thin films.

Figure 8.16 shows the h-convergence results of the different finite element discretisation
techniques for penalty, Lagrange multiplier and augmented Lagrangian formulations for tri-
angular and quadrilateral meshes, when the quadratic interpolation is used for displacements
i.e. P2-P2-P1D-P1D/P2-P2-P1D and Q2-Q2-Q1D-Q1D/Q2-Q2-Q1D discretisations. It can be
observed that the expected rate of convergence for electromechanical energy is achieved for all
formulations with both triangular and quadrilateral elements [296]. Expectedly, the Lagrange
multiplier approach performs the best, while the error incurred using the penalty approach is
the highest. The augmented Lagrangian approach converges at the same rate, but the error
incurred lies in between the penalty and the Lagrange multiplier approach. As the aspect ratio
of the beam increases the incurred error typically increases. The performance of triangular and
quadrilateral elements in general similar due the fact that both meshes have the same number
of nodes and the triangular mesh is generated by a symmetric tessellation of the quadrilateral
mesh. It should be noted that, since the couple stress theory imposes a constraint on the
rotation part of the displacement gradients, bending locking becomes an apparent issue. The
use of high order mixed finite elements in general resolves such bending problems [253].

Having confirmed the convergence of the quadratic mixed finite element for the two-
dimensional case for triangular and quadrilateral meshes, the same problem is then analysed
by fixing the refinement level (h) and successively increasing the order of finite element inter-
polation functions i.e. by performing the so-called p-refinement. In this context, we refer to
p or q as the highest polynomial degree used for any variable (i.e. displacements and electric
potential). This allows us to study the performance of higher order mixed finite elements shown
in Figure 8.4. To this end, two three-dimensional meshes are considered namely a tetrahedral
mesh and hexahedral mesh, as shown in Figure 8.17.

Figure 8.18 shows the p-convergence results of the different finite element discretisation
techniques for penalty, Lagrange multiplier and augmented Lagrangian formulations for trian-
gular and quadrilateral meshes for aspect ratio 10. Once again, the expected rate of convergence
for electromechanical energy is achieved for all formulations with both tetrahedral and hexa-
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Figure 8.16: Convergence of error in Electromechanical Coupling Efficiency (ECF) for different
finite element discretisation techniques on triangular elements, a) aspect ratio 10, b) aspect
ratio 25, c) aspect ratio 50, and quadrilateral elements, d) aspect ratio 10, e) aspect ratio 25,
f) aspect ratio 50

hedral elements [296]. The Lagrange multiplier approach performs the best, followed by the
augmented Lagrangian approach and the penalty, respectively. The performance of tetrahedral
and hexahedral elements in general similar due the fact that both meshes have the same num-
ber of nodes and the tetrahedral mesh is generated by further tessellation of the hexahedral
mesh. Note that this study confirms the rate of convergence for different choices of polynomial
functional spaces for mixed finite elements up to p “ q “ 6, confirming their suitability for
discretising the three aforementioned couple stress variational formulation.

8.7.3 Nanocompression of a flexoelectric conical pyramid

In this section, the nanocompression of a complex flexoelectric conical pyramid is chosen for
finite element analysis. The objective is to examine the capability of the developed finite
element framework in accurately predicting the flexoelectric response when the geometrical
representation of the problem is complex and when an analytical solution cannot be obtained.

Figure 8.17: Tetrahedral and hexahedral meshes (only aspect ratio 10 shown here) chosen
for convergence study of the developed finite element discretisation techniques. Both meshes
possess the same number of nodes
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(a) (b)

Figure 8.18: Convergence of error in Electromechanical Coupling Efficiency (ECF) for different
finite element discretisation techniques on tetrahedral and hexahedral elements for aspect ratio
10

The analysis of flexoelectric pyramidal structures have been carried by many other authors in
the past as the differential thickness along the height of the pyramid produces a significant
flexoelectric response [4, 3, 108, 70]. Furthermore, flexoelectric material constants are also
typically experimentally characterised through either nanoindentation or bending experiments,
using similar geometries. [4] has analysed the problem of nanocompression of the flexoelectric
pyramid in depth showing that simplified solutions can in general overestimate the flexoelectric
response and relying on computational methodologies can help provide better insight in the
design of such flexoelectric transducers.

To this end, a rather more complex flexoelectric conical pyramid is chosen for our study.
The additional complexity of the problem emanates from the fact that the edges and facets of
the pyramid are not straight sided but are rather described through NURBS functions. The
geometry and the three-dimensional curved p “ 4 tetrahedral mesh of the flexoelectric structure
is shown in Figure 8.19. To represent the geometry of the problem accurately, we employ the
high order curvilinear finite elements recently developed by [253] which uses a posteriori mesh
morphing technique presented in [254] to represent the CAD boundaries of the flexoelectric
structure accurately (notice the curved elements representing the circle in the top conical
frustum) without requiring a change in the mixed finite element functional spaces presented in
section 8.6. The mixed interpolation nature of the flexoelectric variables and the use of high
performance data parallel tensor contraction framework for coupled electromechanical problems
developed by the authors [251], make the developed finite element techniques a viable candidate
for solving extremely large scale problems on complicated geometries.

Once again, we choose the Barium Titanate as the flexoelectric material of choice by ne-
glecting the piezoelectric effect and only considering f̄12 flexoelectric constant. A compressive
load of 3mPa is applied as pressure on the circle in top conical frustum and the base of the plate-
like support is mechanically fixed. The system has an open circuit configuration in that, only
zero electric potential is applied at the base of the plate-like support. The problem consists of
approximately 3.4M degrees of freedom excluding the condensed variables and approximately
another 2.8M degrees of freedom are condensed out during each run of the analysis. The
Lagrange multiplier formulation is used for this analysis and the simulation is performed dy-
namically using the Newmark’s beta method with the density of the Barium Titanate given as
ρ “ 6.02 g/cm3. The total load is applied over a period of 30 seconds at a rate of 0.1mPa/sec.

Figure 8.21 summarises various representative results of the analysis. First, a mesh refine-
ment study has been performed to ensure that the results of the analysis are accurate. As
can be observed the electromechanical coupling efficiency asymptotically approaches towards a
reference solution with mesh refinement, confirming the stable approximation property of the
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Figure 8.19: Geometry and quartic (p “ 4) order curved mesh of the flexoelectric conical
pyramid. The conical pyramid is being held by a plate-like support of size 100ˆ 100µm2 and
the total height of the pyramid is 130µm. The thickness of pyramid is 150nm throughout the
structure. The circle in top conical frustum represents the region where the compressive load
is applied



8.7. NUMERICAL EXPERIMENTS 37

Figure 8.20: Various representative results of the analysis on conical pyramid, a) convergence
of the solution with mesh refinement, b) satisfaction of couple stress constraint, c) evolution
of strain energy with and without consideration of flexoelectricity characterising evolution of
normalised effective stiffness, d) evolution of electrical energy and, e) evolution of effective
electromechanical coupling coefficient, f) evolution of normalised effective stiffness
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(a) (b) (c)

Figure 8.21: The final deformed conical pyramid configuration showing, a) electric potential ψ,
b) strain component εxy and b) strain component εyz. 355M cells have been used to process a
detailed resolution of the results. Deformations (not magnitudes) are magnified by a factor of
10 for aesthetics and clarity

developed finite element scheme. All the analyses are performed using the second finest mesh
corresponding to Figure 8.21a, where the number of elements in the computational mesh is
kept fixed at 63794. Keeping the mesh size fixed a p refinement is then carried out from p “ 2
to p “ 5 respectively as shown in Figure 8.21b. It can be observed that under p-refinement the
convergence is much quicker and at p “ 3 the reference solution is already obtained. As men-
tioned before, further analysis of the flexoelectric pyramid are however performed with keeping
the polynomial refinement fixed at p “ 4. Figure 8.21c shows the satisfaction of the couple
stress constraint throughout the dynamic simulation time. As can be observed the constraint
is numerically satisfied for the whole duration of the simulation. Finally, Figure 8.21d shows
the effective electromechanical coupling efficiency (ECF) throughout the simulation time. Due
to the linear nature of the problem, a constant ECF is obtained for the whole duration of
simulation.

A common way to characterise size-dependent effect in flexoelectric theory is to measure
the normalised effective piezoelectric constant. For complex problems such as the current one
the approximate analytical solution for this constant reported in [195] cannot be used and the
more generic formula given below should be used

ē “

ş

ΩEc ¨ εEc
ş

ΩEe ¨ εEe
, (8.127)

where Ec represents the electric field when both piezoelectricity and flexoelectricity are present
and Ee represents the electric field when flexoelectricity is ignored. It is also established phe-
nomenon that flexoelectricity modifies the inherent mechanical properties specially the bending
modulus of the material [279, 163]. The normalised effective stiffness of the system can be com-
puted similarly as

Ȳ “

ş

Ω εc : C : εc
ş

Ω εm : C : εm
, (8.128)

where εc represents the small strain tensor when flexoelectricity is present and εm represents
the small strain tensor when flexoelectricity is ignored. Figure 8.21e shows the evolution of
strain energy of the system with and without consideration of flexoelectricity characterising
normalised effective stiffness of the system. We notice a rather constant normalised effective
stiffness in the range of 2.2˘0.2 for the conical pyramid throughout the dynamic simulation
due to the linear nature of the problem. Interestingly, the standard strain gradient models
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also produce a similar normalised effective stiffness [4]. Similarly, Figure 8.21f shows the
evolution of electrical energy with and without consideration of flexoelectricity characterising
the normalised effective piezoelectric constant of the system. Note that all the piezoelectric
material constants listed in Table 8.1 are now activated and deformation of the system is much
more complex now as all coupling modes are active. A modest 4-6% increase in electrical
energy is observed when flexoelectricity is activated. This is in contrast with respect to the
results presented in [4, 3, 222, 108] wherein the flexoelectric constant is assumed to be more
than an order of magnitude higher than its actual value used here.

spin formation around the sink

(a) (b)

(c)

Figure 8.22: The final deformed conical pyramid configuration showing, a,b) axial vorticity
vector component ωy and, c) axial curvature vector component χy. The curvature forms a
spin around the deformed sink. 355M cells have been used to process a detailed resolution of
the results. Deformations (not magnitudes) are magnified by a factor of 10 for aesthetics and
clarity

Figure 8.21 shows the final deformed configuration of the conical pyramid for p “ 4 tetrahe-
dral elements with an extremely detailed resolution wherein the results are extrapolated over
355M cells using high order finite element interpolation functions. It can be observed that
both electric potential (primary variable) and strain components (derived variables) are well
resolved at this level of detail. The deformation initially starts at the circular region in the top
frustum of the pyramid. As the compressive pressure is increased the frustum is pushed inwards
and the pyramid experiences necking right around the frustum. With further compression, a
completely dipped and grooved region starts to form around the frustum while the region im-
mediately around the circle where the load is applied starts to bulge outwards. As shown in
Figure 8.22 the base of the pyramid is severely pushed towards the plate support. Figure 8.22
further shows strain gradient measures, namely the vorticity vector and the curvature vector
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component. Interestingly, it can be observed in Figure 8.22c that the curvature evolves as a
spin around the generated sink and starts to disperse near the grooved region. This is because
the certain of the sink (y-axis) corresponds to the axis of rotation.

From the analyses performed in this section it can be concluded that, advanced computa-
tional tools help resolve the problem of flexoelectricity to an unprecedented detail beyond the
realm of approximate closed form solutions. Certainly, the inclusion of anisotropy, necking and
vortex formation is too complex to be handled otherwise. The implementation underpinning
of the current framework based on an extremely efficient and highly parallelised framework of
[251] ensures efficiency and reliability of the developed finite element results. Given that the
normalised effective piezoelectric constant shows only a 4-6% increase due to flexoelectricity
for this problem, we can assume that the computational model given its accuracy has modest
estimations in comparison to analytical solutions (if available), an issue also present in standard
strain gradient models [4]. However, as mentioned before, the major discrepancy in results of
normalised effective piezoelectric constants between the current study and those of [4, 3] is due
to an order of magnitude higher flexoelectric constant chosen by the latter authors.

8.8 Conclusion

In this manuscript, a family of numerical models for the phenomenological linear flexoelectric
theory for continua and their particularisation to the case of three-dimensional beams based on
a skew-symmetric couple stress theory is presented. In contrast to the traditional flexoelectric
models based on standard strain gradient wherein coupling between electric polarisation and
strain gradients is assumed, we postulate an electric enthalpy in terms of linear invariants of
curvature and electric field. This is achieved by introducing the axial curvature vector as a
strain gradient measure. We have shown that the implication of this assumption is many-fold.
Firstly, for isotropic (non-piezoelectric) materials it allows constructing flexoelectric energies
without breaking material symmetry. Secondly, nonuniform distribution of volumetric part
of strains (volumetric strain gradients) do not generate electric polarisation, as confirmed by
experimental evidence to be the case for some important classes of flexoelectric materials. In
this regard, the current flexoelectric model can be considered as a more restrictive case of strain
gradient theories. Thirdly, a state of plane strain generates out of plane deformation through
strain gradient effects. Finally, extension and shear coupling modes cannot be characterised
individually as they contribute to the generation of electric polarisation as a whole.

For the case of three-dimensional beams, we have shown that the skew-symmetric couple
stress model in general, generate stresses spanned over the cross section rather than aligned
with the longitudinal axis of the beam and as a result special care must be taken to integrate
them over the cross section.

Four distinct variational principles are presented for both continuum and beam models
namely, a displacement-potential formulation, a penalty formulation, a Lagrange-multiplier
formulation and an augmented Lagrangian formulation. The three later formulations facilitate
incorporation of strain gradient measures in to a standard finite element scheme while main-
taining the C0 continuity. To this end, the efficacy of high order finite elements along with the
computational efficiency of mixed finite elements have been utilised to develop a series of low
and high order mixed finite element schemes for couple stress based flexoelectricity. Numerical
results of finite element discretisations for the three latter variational formulations are first
benchmarked against available closed form solutions in regards where good agreements was
found between the reference and numerical results. Furthermore, a detailed comparison of the
developed couple stress based flexoelectric model with the standard strain gradient flexoelectric
models has been performed for the case of Barium Titanate where a myriad of simple analytical
solutions have been proposed in order to quantitatively describe the similarities and dissimi-
larities in effective electromechanical coupling under these two theories. It is observed that, if
the same experimental flexoelectric constants are fitted in to both theories, the current couple
stress theory in general, reports stronger electromechanical conversion efficiency. This is mainly
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due to the fact that, most flexoelectric problems involve bending and flexural deformation and,
as a result, the axial curvature vector responsible for generating electric polarisation is much
more pronounced in these cases. Finally, nanocompression of a complex flexoelectric conical
pyramid for which analytical solution cannot be established has been numerically studied at
an unprecedented level of detail to pinpoint the robustness and computational scalability of
the framework. Under this experiment, the structure experiences necking and the curvature
effect forms a vortex around the generated sink in the frustum. The geometry and the nature
of the deformation certainly implies that studying flexoelectricity in these structures is not
feasible without resorting to computational tools. In our setting, the problem is resolved using
high order curvilinear finite elements by relying on a highly parallelised framework previously
developed by the authors. We observe a modest normalised effective piezoelectric coefficient for
this study while the normalised effective stiffness of the system reported by the couple stress
model is similar to the ones reported by standard strain gradient models.
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Chapter 9

Numerical Implementation of
Coupled Electromechanics through
a Data Parallel Tensor Contraction
Framework

9.1 Introduction

This chapter presents aspects of implementation of a new high performance tensor contraction
framework for the numerical analysis of polyconvex elasticity and convex multi-variable electro-
elasticity problems on streaming architectures. In addition to explicit SIMD instructions and
smart expression templates, the framework introduces domain specific constructs for the tensor
cross product and its associated algebra. The two key ingredients of the presented expression
template engine are as follows. First, the capability to mathematically transform complex
chains of operations to simpler equivalent expressions, while potentially avoiding routes with
higher levels of computational complexity and, second, to perform a compile time depth-first
or breadth-first search to find the optimal contraction indices of a large tensor network in
order to minimise the number of floating point operations. For optimisations of tensor contrac-
tion such as loop transformation, loop fusion and data locality optimisations, the framework
relies heavily on compile time technologies rather than source-to-source translation or JIT tech-
niques. Every aspect of the framework is examined through relevant performance benchmarks,
including the impact of data parallelism on the performance of isomorphic and nonisomorphic
tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks,
the compilation cost and memory footprint of the framework and the performance of tensor
cross product kernels. The framework is then applied to finite element analysis of coupled
electromechanical problems to assess the speed-ups achieved in kernel-based numerical inte-
gration of complex electroelastic energy functionals. In this context, domain-aware expression
templates combined with SIMD instructions are shown to provide a significant speed-up over
the classical low-level style programming techniques.

It should be noted that much of the work in this chapter is based on the authors work
on tensor contraction presented in [251]. The chapter is organised as follows. In section 9.2,
the interface design of the framework is discussed, by starting from the explicit SIMD vector
types, the tensor class, the smart expression template engine and finally a convenient interface
for tensor contraction operations using indicial notation. This is followed by a discussion on
data alignment and compile time loop transformation optimisations in subsection 9.2.6. In sec-
tion 9.3, a series of numerical examples are provided. These include fundamental performance
benchmarks for data parallel isomorphic and nonisomorphic tensor products of tensor pairs in
single and double precisions, the memory vs FLOP tradeoff in evaluation of large tensor net-
works, and their eventual compilation costs. Finally, finite element examples pertaining to the
numerical integration of complex constitutive models are presented in section 9.4 illustrating

2
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the importance of data parallelism and domain aware expression templates.

9.2 Interface design principle for tensorial operations

In the next subsections, the multiple stages of designing a tensor contraction framework using
modern C++ features are presented, with the point of departure being the explicit SIMD vector
types. It is assumed that the reader is familiar with the fundamental concepts of generic and
generative programming in the context of scientific computing [49, 10, 58, 134, 133, 116]. For
computational terminologies used in the chapter, the reader can refer to D.1 and for the actual
implementation details, to Fastor’s official repository, https://github.com/romeric/Fastor.

9.2.1 Data parallelism through SIMD vector types

To facilitate vector based instruction scheduling for tensorial operations, the first step is to
implement explicit SIMD vector types. In the current setting, using C++ polymorphism, a set
of SIMD vector types are implemented which encompass vector-enabled X86 CPU architectures
from SSE to SSE4.2 and AVX to AVX2. While this is an in-built extension to the current
framework, further CPU architectures such as AVX-512, MIC, Neon, AltiVec and potentially
GPU support can be included by relying on the Vc library [162]. The API for the in-built
extensions are kept close to that of Vc, so that in the eventual case of changing backends, a
simple change of namespace should suffice. Nevertheless, in the current iteration, the framework
is capable of performing vector operations on SSE2-SSE4.2/AVX-AVX2 architectures. For a
full implementation of SIMD vector types and further ABI considerations, the reader can refer
to [162, 94, 161].

9.2.2 The abstract tensor class

The point of departure for the implementation of a tensor framework is a base or an abstract
tensor type. Utilising the Curiously Recurring Template Pattern (CRTP) idiom [313, 116], a
straightforward implementation of the AbstractTensor is shown in Listing 9.1.

Listing 9.1: A canonical implementation of abstract tensor type

template <class Derived , FASTOR_INDEX Rank >

class AbstractTensor {

public:

static constexpr FASTOR_INDEX Dimension = Rank;

AbstractTensor () = default;

FASTOR_INLINE const Derived& self() const {

return *static_cast <const Derived*>(this);

}

};

In this context, the AbstractTensor facilitates static binding of all derived classes to the
base class, avoiding the late binding mechanism [314, 58, 209, 10], which is a key step for a
successful implementation of the expression templates (notice the presence of member function
self) [133, 134]. Additionally, note that the seemingly unnecessary template parameter, the
rank of the tensor is also passed for instantiation of the AbstractTensor.

9.2.3 The tensor class

The implementation of the tensor class then follows a rather classical approach. A canonical
implementation of the tensor class, removing the bounds checking and further trivial details
is shown in Listing 9.2, where the key ingredients of the class can be summarised as follows.
First, a set of data members are defined, namely the order or spatial dimension of the tensor
(Dimension), the total size of the tensor to be allocated in the memory (Size) and the stride
necessary for vector instructions (Stride).1

1Note that in Listing 9.2, it is assumed that data is appropriately aligned by the vector (register) size, the
size of the tensor is a multiple of the vector stride and that no padding is necessary.

https://github.com/romeric/Fastor
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Listing 9.2: A canonical implementation of the tensor class

template <typename T, FASTOR_INDEX ... Rest >

class Tensor: public AbstractTensor <Tensor <T,Rest...>,sizeof ...( Rest)> {

private:

typedef T scalar_type;

T FASTOR_ALIGN _data[product <Rest ...>:: value ];

public:

static constexpr FASTOR_INDEX Dimension = sizeof ...( Rest);

static constexpr FASTOR_INDEX Size = product <Rest ...>:: value;

static constexpr FASTOR_INDEX Stride = stride_finder <T>:: value;

template <typename Derived , FASTOR_INDEX Rank >

FASTOR_INLINE Tensor <T,Rest ...>& operator =( const AbstractTensor <Derived ,Rank >& expr)

{

const Derived &src = expr.self();

for (FASTOR_INDEX i = 0; i < Size; i+= Stride) {

src.template evaluate <T>(i).store(& _data[i]);

}

return *this;

}

FASTOR_INLINE SIMDVector <T> evaluate(FASTOR_INDEX i) const {

SIMDVector <T> out;

out.load(&_data[i]);

return out;

}

template <FASTOR_INDEX I, FASTOR_INDEX J, FASTOR_INDEX K>

FASTOR_INLINE Tensor(const UnaryTraceOp <BinaryMatMulOp <Tensor <T,I,J>,

UnaryTransposeOp <Tensor <T,K,J>>>> &a) {

_doublecontract <T,I,K>(a.expr.lhs.data(),a.expr.rhs.expr.data());

}

}

In this context, the first member function (the copy assignment operator) is responsible for
static binding of any complex expression that performs element-wise operations on the tensors,
to the tensor class. Note that in contrast to the classical expression templates, in the current
implementation shown in Listing 9.2, the expression is evaluated for one SIMD vector, instead
of one scalar at a time, as can be seen in the implementation of the member function evaluate.
It is also necessary for all the expressions (such as UnaryOps and BinaryOps) to provide an
evaluate member function. Listing 9.2 represents a simple example of blending expression
templates and SIMD instructions (also refer to [134], for a similar implementation) for a truly
multi-dimensional tensor algebra framework.

9.2.4 Smart expression templates: Operation minimisation through mathe-
matical transformation

Once the tensor class is defined, what remains is the implementation of a high level interface
for tensor algebraic operations. However, efficient execution of these operations does not only
depend on how each individual operation/subroutine is implemented, but also on the pat-
tern these operations are evaluated (in situations when they operate jointly on tensors). The
fundamental idea of expression templates is to treat complex chain of operations as a single
expression and the decision to when (how soon or late) this expression should be evaluated
is called the evaluation policy, which typically depends on the nature and complexity of the
operators involved in the expression [116]. For instance, in Listing 9.2 the evaluation of an
expression is bound to the assignment operator (operator=). The evaluation policy can be
also overwritten at any given time by invoking the evaluate function explicitly.

As a common practice in implementing expression templates, all element-wise and level 1
BLAS expressions inherit from the AbstractTensor to facilitate delayed evaluation of chained
operations, as can be seen in the copy assignment operator in Listing 9.2.

Fastor implements operator chaining for beyond level 1 BLAS routines through template
specialisation(s) of the copy and move constructors. The idea behind chaining certain operators
of level 2/3 BLAS type routines is essentially to be able to mathematically transform them
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to simpler expressions before evaluating them. This leads to the interesting notion of smart
expression templates that facilitate exploitation of complexity reducing algorithms through
mathematical equivalence and that can be viewed as more of domain specific semantics, built
on top of a generic tensor algebra library.

For instance, the last member function (copy constructor) in Listing 9.2, provides an exam-
ple of smart expression template in Fastor, where the tensor expression trpABT q is dispatched
to A : B “ AijBij . This indeed reduces the computational complexity of the problem from
Opn3q for matrix matrix multiplication, Opn2q for transpose and Opnq for trace, to Opn2q for
double contraction. Furthermore, vector implementation of double contraction is trivial. In
the context of tensor algebra, such operations frequently occur and Fastor implements copy
and move constructors for a series of such type of operations. Once again, note that expres-
sions such as BinaryMatMulOp, UnaryTransposeOp and UnaryTraceOp are evaluated immedi-
ately if they act individually on a tensor. A canonical implementation of a smart expression
(UnaryTransposeOp) is shown in Listing 9.3 (notice the second overload of the member function
evaluate).

Listing 9.3: A canonical implementation of transpose operator

template <typename Expr >

struct UnaryTransposeOp {

UnaryTransposeOp(const Expr& expr) : expr(expr) {}

template <typename U>

FASTOR_INLINE U evaluate(FASTOR_INDEX i, FASTOR_INDEX j) const {

return expr(j,i);

}

const Expr &expr;

};

template <typename Expr >

FASTOR_INLINE UnaryTransposeOp <Expr > transpose(const Expr &expr) {

return UnaryTransposeOp <Expr >(expr);

}

9.2.5 Smart expression templates: Operation minimisation through compile
time depth-first constructive approach

While exploiting low-flop algorithms through mathematical transformation may be sufficient
for named operators (such as UnaryTraceOp, UnaryDetOp etc), when the tensorial operations
are expressed in indicial notation (i.e. when no named operators are present), a generalisation
of the approach presented in subsection 9.2.4, is to perform a graph optimisation technique
to find the optimal contraction indices of the tensor network. This leads to the more generic
operation minimisation technique implemented in Fastor, the so-called depth-first constructive
approach, defined in D.1.

For the purpose of illustrating specific features and a possible function signature for tensor
contraction through indicial notation, a prototypical implementation of the (einsum) function,
between three arbitrary order tensors is presented in Listing 9.4, without the use of expression
templates.2

Listing 9.4: Overloaded implementation of Einstein summation for three tensor singletons of
arbitrary order

template <typename Index_I , typename Index_J , typename Index_K ,

template <typename ,FASTOR_INDEX ...Rest0 > class Tensor0 ,

template <typename ,FASTOR_INDEX ...Rest1 > class Tensor1 ,

template <typename ,FASTOR_INDEX ...Rest2 > class Tensor2 ,

typename T, FASTOR_INDEX ...Rest0 , FASTOR_INDEX ...Rest1 , FASTOR_INDEX ... Rest2 ,

2In the presence of expression templates, overloading the einsum function to account for more (or less) than
three tensors is not necessary, as a single tensor expression can take care of all possible overloads. For instance,
the ContractionType in Listing 9.4 could as well be an expression instead of the resulting tensor and then its
evaluation could be bound to a copy assignment operator similar to the one presented in Listing 9.2.
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typename std::enable_if <sizeof ...( Rest0)== Index_I :: NoIndices &&

sizeof ...( Rest1)== Index_J :: NoIndices &&

sizeof ...( Rest2)== Index_K ::NoIndices ,bool >:: type=0 >

FASTOR_INLINE typename ContractionType <Index_I ,Index_J ,Index_K ,Tensor <T,Rest0...>,Tensor

<T,Rest1...>,Tensor <T,Rest2 ...>>::type einsum(const Tensor0 <T,Rest0 ...> &a, const

Tensor1 <T,Rest1...> &b, const Tensor2 <T,Rest2 ...> &c) {

// perform compile time depth -first search

// if necessary call the by -pair (two tensor) overload

// if not , set up the contraction loop nest (Cartesian product)

// perform loop transformation and SIMD vectorisation

// perform isomorphic / noisomorphic tensor product

}

Notice how the static nature of the tensors facilitates resolving the indices of the einsum

function at compile time. With an optimising compiler this leads to no extra register allocation
for the indices. This is in contrast with most of the existing tensor algebra frameworks that
allocate tensors dynamically. In Listing 9.4, Index is simply a template structure (struct)
of integral constants with one compile time (constexpr) data member, the NoIndices which
accounts for the number of template parameters passed to it. Furthermore, note that the return
type of einsum is computed at compile time through the ContractionType meta-function and
the right amount of stack memory is allocated beforehand, which is also in contrast with the
C/Fortran static arrays. A few representative examples of how the tensor objects are called
and the above einsum function can be applied, are presented in Listing 9.5.

Listing 9.5: An example of Tensor instantiation and contraction of AijkBijlmCklmnpq

enum {I,J,K,L,M,N,P,Q};

Tensor <double ,2,3,4> A; Tensor <double ,2,3,5,6> B; Tensor <double ,4,5,6,8,4,3> C;

// fill/populate A,B and C explicitly

A.random (); B.range (2); C.fill (42.42);

// perform tensor contraction

auto d = einsum <Index <I,J,K>,Index <I,J,L,M>,Index <K,L,M,N,P,Q>>(A,B,C);

// d is deduced as Tensor <double ,8,4,3> and 96* sizeof(double)=768B is statically

allocated .

9.2.6 Data alignment and compile time construction of contraction loop
nests

From a computational point of view, vector or data parallel implementation of tensor contrac-
tion requires careful attention to memory alignment. In a generic tensor contraction procedure,
since arbitrary indices are allowed to contract, computations along strides leading to non-
contiguous and unaligned memory access patterns and cache misses become the fundamental
bottleneck. To solve this issue, some libraries designed for large dynamically allocated arrays,
allow computations on general strides [312], while there are alternative frameworks that work
with strict alignment and further data padding for the purpose of vectorisation [133]. Due to
the strong focus of this framework on data parallelism and further due to stack allocation, the
tensors are always aligned in the memory by the largest SIMD vector size that the processor
is capable of i.e. 16B alignment for SSE and 32B alignment for AVX and so on, as shown in
Listing 9.2 (i.e. FASTOR ALIGN). However, strided data access is intrinsic to the nature of tensor
contraction [287, 81], and as will be discussed shortly, Fastor employs cost-effective broadcast-
ing vectorisation in such cases. With this decision on data alignment, Fastor classifies tensor
operations into three categories, namely isomorphic tensor products (outer products), noni-
somorphic tensor products (tensor contraction), and tensor permutation, as defined in D.1.

Once the decision on memory alignment is fixed, a variable number of nested for loops
need to be set up depending on the contraction indices of the tensors appearing in the network.
Since the Tensor objects presented in Listing 9.2 are static, Fastor uses this information to set
up the contraction loop nest at compile time by generating the Cartesian product of iteration
spaces of tensors. This can be typically achieved using recursive template instantiation. To
illustrate this, consider the isomorphic tensor product of singleton rDsijk “ rasirBsjk, where a
is a first order tensor of size 2 and B is a second order tensor of 2ˆ3. The loop transformation
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procedure for this singleton is shown in Figure 9.1. Figure 9.1 is a simple example of loop

[a]i[B]jk → Tensor<double,2> a; Tensor<double,3,2> B

i j k
0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1
1 0 0
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1

i j k
0 0 0
0 1 0
0 2 0
1 0 0
1 1 0
1 2 0

Dijk ai Bjk

0 0 0
2 0 2
4 0 4
6 1 0
8 1 2
10 1 4

Perform SSE vectorisation
using V = SIMDVector<double,SSE>;

V vec = V(a.data()+idx a)*V(B.data()+idx B);

vec.store(out.data()+idx out);

Generate Cartesian product of iteration spaces

Unroll the innermost loop by 2

Generate flattened indices for tensors

Figure 9.1: Loop transformation optimisation for the contraction loop nest of singleton rDsijk “
rasirBsjk

transformation through compile time code generation. Note that, this approach is a general-
isation of an efficient matrix-matrix multiplication implementation using SIMD vector types
proposed as a language extension to the C++ standard committee [161]. Once performed,
this type of loop transformation can facilitate other compile time optimisation opportunities,
such as distinguishing loop-invariant code, subsequent hoisting and more importantly studying
the vectorisability nature of the nest. In the context of vectorisability, a Cartesian product
(contraction loop nest) can be classified as fully vectorisable, partially vectorisable or broadcast-
vectorisable (refer to D.1 for definitions). While partial vectorisability implies that the final
remainder operations that do not fit in the vectorised loop nest during tensor contraction pro-
cedures should be treated in a scalar fashion, broadcast-vectorisable means employing multiple
cost-effective broadcast vector instructions, for computing tensor contraction on strides. This
definition of vectorisability allows for an implementation strategy that enables explicit vec-
torisation in floating point as well as in memory load and store operations. To elaborate this
vectorisation procedure, a schematic representation of a broadcast-vectorisable tensor pair is
shown in Figure 9.2 for the nonisomorphic tensor product rCsim “ rAsijklrBsmjkl.

× =

3

4

6

5

4

4

6

5

3

4

[A]ijkl = Tensor<double,3,4,6,5> [B]mjkl = Tensor<double,4,4,6,5> [C]im = Tensor<double,3,4>

Contracting dimensions

Loop span for fastest changing index = 4 ⇒ 4× sizeof(double) = 32B, (AVX broadcast-vectorisable)
→ Unroll the Cartesian product by 4, perform AVX vectorisation

S
trid

e
len

gth
=

4
*
6
*
5

=
1
2
0

Figure 9.2: AVX vectorisation of the nonisomorphic tensor product of singleton rCsim “

rAsijklrBsmjkl on strides (cells represent tensor’s dimensions not the register width).

Notice that, in Figure 9.2 m is the fastest changing index of the nest ijklm, and the memory
access for tensor B requires broadcasting intrinsics [178] of the tensor into AVX registers (as
opposed to aligned loading) by an offset=120, while the floating point and memory I/O
operations on tensors A and C remain fully AVX vectorisable.

Finally, having performed loop transformation (Figure 9.1) and SIMD vectorisation (Fig-
ure 9.2), the third optimisation step is to perform loop fusion. Loop fusion is a direct conse-
quence of operator chaining applied on tensor networks. At its current iteration, Fastor tries to
obey the ISO C standard on strict aliasing rules. This implies that, if a network comprising of
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many singletons is to be evaluated, the contraction of each singleton is evaluated individually
into temporaries and the loop fusion is then applied at the top level, in order to avoid chaining
of singletons of different complexity and hence memory aliasing. To elaborate this, consider the
evaluation of the tensor network rGsjkl “ rAsijkrBsil`ρtrpIqrcskrDsjl`

a

rEsjkl, where ρ is a
constant coefficient, I is the second order identity tensor in R3ˆ3 and c, D and tA, B, E, Gu
are first, second and third order tensors of arbitrary size, respectively. The loop fusion proce-
dure applied on this network is shown in Figure 9.3. In Figure 9.3, ρ being a constant and

[G]jkl = [A]ijk[B]il + ρtr(I)[c]k[D]jl +
√

[E]jkl

Evaluate singleton Evaluate singleton

[G]jkl = [T 0]jkl + ρtr(I)[T 1]jkl +
√
[E]jkl

Fuse loopsSmart Expression + Hoist

Generate CP & indices: idx T0, idx T1, idx E, idx G

using V = SIMDVector<T,ABI>;

V vec r(3.*rho), vec G;

for (auto i=0; i<CP::Span; i+=V::Stride) {
vec G = V(T0+idx T0)+vec r*V(T1+idx T1)+V(E+idx E).sqrt();

vec G.store(G+idx G);

}

Figure 9.3: Loop fusion for the evaluation of the network rGsjkl “ rAsijkrBsil `
ρtrpIqrcskrDsjl `

a

rEsjkl

trpIq a Fastor smart expression, are hoisted out of the loop during the evaluation of singleton
rT 1sjkl “ rcskrDsjl. After evaluation of all singletons, the Cartesian product (CP) is computed
and a single vectorised loop is set up to compute G. The cost of creating these temporaries is
evaluated in subsection 9.3.2 in the context of compile time operation minimisation. The future
endeavour for extending Fastor is to explore batched evaluations of intermediate singletons in
a multi-threaded environment as also recently presented in the context of GPGPU in [1].

It is worth mentioning that, generating the Cartesian product of the iteration space and
the indices of the tensor network metaprogrammatically can lead to dramatic increase in com-
pilation time. Depending on the level of optimisation required, each individual step described
above can be performed either at compile time or run time, by issuing the -DCONTRACT OPT to
the compiler. These optimisation steps and further compilation aspects of tensor contraction
in Fastor are studied in more detail in subsection 9.3.3.

9.3 Benchmark examples

In this section, a series of fundamental benchmarks are presented to highlight further aspects
of the tensor contraction framework. In particular, the benchmarks presented in the next few
subsections examine the following aspects of the framework:

1. Impact of SIMD vectorisation on the performance of tensor contraction of arbitrary order
tensors

2. Impact of operation minimisation on tensor contraction and the associated memory vs
FLOPs tradeoff for various cache hierarchies

3. Compilation aspects of the framework and the impact of aggressive loop transformation

All the numerical examples are run on Intel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz pro-
cessor running Ubuntu 16.04. The processor has three cache levels namely, an 8 way associative
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private 32KB L1 data cache (and 32KB L1 instruction cache), an 8 way associative private 256KB
L2 cache and a 20 way associative shared 20MB L3 cache, in addition to a 32GB DDR3 (1866
MHz) RAM. Furthermore, it supports SSE to SSE 4.2 and AVX, but not AVX2 or FMA in-
structions. The following three compilers are used for the benchmarks namely, GCC 6.2.0,
Clang 3.9.0 and ICC 17.0.1. If the compiler and Fastor’s optimisation level are not specified,
GCC and -DCONTRACT OPT should be assumed, respectively. All the reported CPU run-times
are measured by taking the average of one million calls, unless the benchmark took a consid-
erably long time finish, in which case the number of calls where lowered by a factor of 10.
Furthermore, in the SIMD tensor contraction benchmark presented in the next subsection, the
performance was measured by turning off the turbo mode (although similar performance traits
were observed under the turbo mode). The raw data, pre-built binaries and Python scripts for
visualisation, for all the numerical examples presented in the chapter are accessible through
https://github.com/romeric/LogfilesFastor.

9.3.1 Impact of SIMD vectorisation on the performance of tensor contrac-
tion of arbitrary order tensors

As a starting point, it is important to verify that the tensor contraction framework achieves
predicted speed-ups from explicit SIMD vectorisation and that no significant overhead is intro-
duced by the underlying layers of abstractions. To this end, the present benchmark attempts to
analyse the speed-ups achieved in FLOP and memory I/O over the scalar code (in the sense of
[162], it is a combination of arithmetic and memory I/O benchmark, but rather in the context
of tensor contraction). Here, scalar code refers to a variant of the implementation where no
explicit vectorisation has been performed and the compiler auto-vectoriser is purposely turned
off. This is important in order to assess if the framework achieves the theoretical maximum of
SSE/AVX FLOPs and (read/write) bytes per cycle.

In the present benchmark, the interest is in the run-time performance of SIMD vectorised
tensor contraction of tensor pairs, hence, operation minimisation is not performed. Further-
more, both vector and scalar variants are based on the same contraction loop nest and are
both compiled with “-O3 -mavx” options. Furthermore, for the purpose of benchmarking, it
was necessary to ensure that the scalar code was not vectorised by passing -fno-tree-vectorize

to GCC, -fno-vectorize to Clang and -no-vec to ICC and carefully examining the generated
assembly codes. The internal level of optimisation utilised for these benchmarks correspond to
the default option -DCONTRACT OPT=0. This optimisation level is indeed equivalent to writing
the contraction loop nest explicitly as multiple nested for loops and relying on the compiler
for further optimisations. This is indeed also important in order to completely isolate and
measure the performance of SIMD vectorisation. Fastor’s further internal optimisation levels
are studied in subsection 9.3.3.

Figure 9.4 presents the speed-ups gained from SIMD vectorisation over the scalar code, for
isomorphic tensor products of arbitrary order tensors. These include outer products of the
following pairs rAsijrBskl, rAsijkrBslmn, rAsijklrBsmnpq, rAsijklmrBsnpqrs, rAsijklmnrBspqrstu
and rAsijklmnpqrBsrstuvwxy, where the size of tensors A and B are kept identical. Furthermore,
to assess the performance of SIMD vectorisation, the last dimension of the tensors are chosen
to be a multiple of SSE (4 for single precision and 2 for double precision) and/or AVX (8 for
single precision and 4 for double precision) registers. It should be emphasised that, Figure 9.4
benchmarks are relative to the scalar code and essentially show the speed-up in load and store
(bytes transferred per cycle) as well as floating point operations (only multiplication in case
of outer product). While for arithmetic operations optimal speed-ups can be achieved, the
memory I/O strongly depend on the size of the tensor. In the benchmarks presented in this
section, the smallest tensor size resulting from the outer product is 288B = 0.0087890625ˆL1
cache and the largest tensor size is 1MB = 4ˆL2 cache.

Next, the performance of nonisomorphic tensor contraction of pairs of arbitrary order ten-
sors are analysed against the scalar code, with the analysis parameters and the compiler options
remaining the same as before. However, in contrast to the case of outer product of tensors,

https://github.com/romeric/LogfilesFastor
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Figure 9.4: Speed-ups achieved by SIMD vectorisation in performing outer product of ten-
sors of single precision (SP) and double precision (DP) floating point over the scalar version
with tensors of order (a) 2 (rAsijrBskl), (b) 3 (rAsijkrBslmn), (c) 4 (rAsijklrBsmnop), (d) 5
(rAsijklmrBsnopqr), (e) 6 (rAsijklmnrBsopqrst) and, (f) 8 (rAsijklmnorBspqrstuvwxy). Since the
order and dimension of the tensors in outer product are kept the same, a 4 ˆ 4 for instance,
essentially implies rAs4ˆ4 b rBs4ˆ4.

the number of loops to be set up/merged depend on the number of contracting indices (see
Figure 9.2) and the floating point operations performed are multiplication followed by addition.
Figure 9.5 shows the speed-up achieved in tensor contraction of pairs of tensors using SIMD
vector types over the scalar code. For this benchmark all tensors fit in to L1 cache.

As can be observed, in both isomorphic (outer product) and nonisomorphic tensor product
benchmarks, optimal speed-ups are achieved with SSE (4X for SP and 2X for DP) as well
as AVX (8X for SP and 4X for DP) vectorisation over the scalar variant. Certainly, for
the isomorphic tensor products where tensors do not fit in L1 cache Figure 9.4(e,f), a more
noticeable degradation in speed-up is observed. The variations in speed-up with different tensor
sizes can be explained by carefully studying the assembly code generated by the compilers. In
that, since tensor objects in Fastor are static, an optimising compiler may generate different
intrinsics for different tensor sizes, which may be optimal for some but not the other. As a
particular example, consider the case of AVX vectorisable double precision tensor products in
Figure 9.4 and Figure 9.5, for whom the three compilers used for this benchmark generate the
following different intrinsics for the innermost loop:

1. GCC 6.2.0 generates one additional move (movslq), one add (addq) and one shift and
rotate instruction (salq) and emits aligned load and store instructions for all tensors.

2. Clang 3.9.0 generates the most compact code with no additional instructions, but
changes the aligned load instruction for tensor A to a broadcast (vbroadcastsd), and
emits aligned store instructions.

3. ICC 17.0.1 generates two additional move (movslq) and two shift and rotate instructions
(shlq), changes the aligned load instruction for tensor A to a broadcast (vbroadcastsd)
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Figure 9.5: Speed-ups achieved by SIMD vectorisation in performing tensor contraction on
pairs of tensors of single precision (SP) and double precision (DP) floating point over the scalar
version with (a) single index contraction (rAsijklmrBsnjop) using SSE, (b) single index contrac-
tion (rAsijklmrBsnjop) using AVX, (c) two index contraction (rAsijklrBsijm) using SSE, (d)
two index contraction (rAsijklrBsijm) using AVX, (e) three index contraction (rAsijklrBsijkm)
using SSE, (f) three index contraction (rAsijklrBsijkm) using AVX, (g) 8 index contraction
(rAsijklmnopqrBsijklmnopr) using SSE and, (h) 8 index contraction (rAsijklmnopqrBsijklmnopr)
using AVX. x-labels represent the actual dimensions of the tensors.

and emits an unaligned store instruction (vmovupd) for the output tensor. This explains
the slight drop in speed-up observed with ICC in certain cases.

It is important to clarify this aspect through inspecting the generated intrinsics, since the
vectorisation approach followed by Fastor is through explicit SIMD vector types, which at
times, is known to be sensitive to compiler’s mis-compilation [162, 116].

9.3.2 The depth-first search approach and memory vs FLOPs tradeoff

As defined in D.1, the depth-first search is an operation minimisation technique for tensor
contraction over complex networks that performs by-pair tensor contraction in the network.
This essentially leads to the creation of multiple intermediate temporaries and hence can be
perceived as a performance bottleneck. An alternative methodology to this is to evaluate the
whole tensor network at once, without performing a depth-first algorithm. On the other hand,
if the tensors are statically allocated (like in Fastor) and the temporaries created by the depth-
first search fit in CPU cache, the operation minimisation may instead prove to be more cache
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optimal, by virtue of increasing the spatial locality. In this section, a fundamental benchmark
is manufactured that compares the run-time performance of the by-pair (termed here as FLOP
optimal) tensor contraction algorithm against the single expression evaluation (termed here
as memory-saving) algorithm. Note that, these benchmarks do not include the performance
of the depth-first search approach in finding the optimal sequence of tensor contraction. As
the depth-first search algorithm itself is performed metaprogrammatically, no run-time code
is generated for it. The compilation time and further performance aspects of the depth-first
search are studied in subsection 9.3.3.

To be able to compare the performance of the two aforementioned approaches, a three
tensor singleton (rDskmn “ rAsijkrBsijlrCsmnl) is chosen first. The cost of contracting this
network through a single evaluation is 3ξiξjξkξlξmξn, where ξa denotes the iteration space of
index a and the 3 stands for 2 multiplications and one addition. A fixed sequence for by-pair
tensor contraction is then chosen, namely rT skl “ rAsijkrBsijl ñ rDskmn “ rT sklrCsmnl,
where T represents the temporary. The total cost of the contraction over the network is now
2pξiξjξkξl ` ξkξlξmξnq, where 2 stands for one multiplication and one addition.

Note that depending on the iteration space of tensors the above sequence may not always
correspond to the most optimal one. Nonetheless, an attempt is made to keep the above
sequence optimal either by manually choosing the sizes of tensors A, B, C or through the
compiler flag -DFASTOR KEEP DP FIXED. The sizes of the tensors are then successively increased
in such a way that the memory requirement for the intermediate temporary D ranges from
fitting into L1 cache to four times the size of L3 cache. Certainly, as the dimensions increase,
the number of floating point operations also increase. The assessment is then based on how
much reduction in FLOP count is necessary to outweigh the cost of allocation of the temporary
i.e. for a temporary fitting into a given cache, what should be the approximate reduced FLOP

count, where
reduced FLOP count “ costMemOpt ´ costFLOPOpt

“ 3pξiξjξkξlξmξnq ´ 2pξiξjξkξl ` ξkξlξmξnq.

Figure 9.6 shows the speed-up of FLOP optimal contraction over the memory-saving con-
traction scheme, while keeping the temporary size to fit into a fixed cache and successively
increasing the iteration space in order to increase the reduced FLOP count. Hence, every bar
in Figure 9.6, compares the two schemes for a fixed data size and fixed reduced FLOP count.
While the contraction loop nest certainly differs, it is made sure that both algorithms are
equally vectorised (in particular, using AVX intrinsics), in order to fully isolate the aspect of
SIMD vectorisation from operation minimisation. Hence, depending on the vectorisation, the
reduction in FLOP count should be divided by the vector size (which is not done here for the
purpose of clarity).

As can be observed in Figure 9.6, for tensor networks fitting L1 cache, even a reduction of
100-1000 FLOPs through the depth-first scheme can be beneficial. For L2 cache a saving of
103 or more in FLOPs is needed to actually outweigh the single expression evaluation scheme.
Similarly, for L3 cache, a reduction of 106 and for tensor networks not fitting in any cache,
a reduction of p107q in floating point operations is required for the by-pair tensor contraction
scheme to be beneficial. Certainly, as the saving in FLOP increases for a given cache size,
orders of magnitude performance can be gained over the memory-saving approach.

The same benchmark is then repeated with a different tensor network, namely the four
tensor singleton rEslo “ rAsijkrBsijlrCsmnkrDsmno, where the performance of contracting this
network through a single expression evaluation (with cost 4ξiξjξkξlξmξnξo) is compared with the
by-pair approach for the sequence rT 0skl “ rAsijkrBsijl; rT 1sko “ rCsmnkrDsmno ñ rEslo “
rT 0sklrT 1sko requiring the creation of two temporaries now (with a total cost of 2pξiξjξkξl `
ξmξnξkξo ` ξkξlξ0q), hence

reduced FLOP count “ costMemOpt ´ costFLOPOpt

“ 4pξiξjξkξlξmξnξoq ´ 2pξiξjξkξl ` ξmξnξkξo ` ξkξlξ0q.

Figure 9.7 shows the speed-up of FLOP optimal contraction over memory-saving contraction
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Figure 9.6: Speed-up achieved for contraction of three tensor singletons (rAsijkrBijlrCsmnl)
using by-pair contraction over single expression evaluation for tensor sizes that fit a) L1

cache (size of temporary created 16KB=0.5ˆL1 cache), b) L2 cache (size of temporary cre-
ated 128KB=0.5ˆL2 cache), c) L3 cache (size of temporary created 10MB=0.5ˆL3 cache) and,
d) main memory (size of temporary created 80MB=4ˆL3 cache). x-labels indicate the number
of FLOPs saved/reduced by utilising by-pair (FLOP optimal) contraction and numbers on top
of bars show the corresponding speed-up.
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Figure 9.7: Speed-up achieved for contraction of four tensor singletons
(rAsijkrBsijlrCsmnkrDsmno) using by-pair contraction over single expression evaluation
for tensor sizes that fit a) L1 cache (size of temporary created 16KB=0.5ˆL1 cache), b) L2

cache (size of temporary created 128KB=0.5ˆL2 cache), c) L3 cache (size of temporary created
10MB=0.5ˆL3 cache) and, d) main memory (size of temporary created 80MB=4ˆL3 cache).
x-labels indicate the number of FLOPs saved/reduced by utilising by-pair (FLOP optimal)
contraction and numbers on top of bars show the corresponding speed-up.

scheme, while keeping the sizes of the temporaries to fit into fixed cache and successively
increasing the iteration space in order to increase the reduced FLOP count.

Certainly, the performance is now affected by the creation of two temporaries. For tensor
networks fitting L1 cache a reduction of 104 in FLOPs, for tensor networks fitting L2 cache a
reduction of 106 in FLOPs, for tensor networks fitting L3 cache a reduction of 107 in FLOPs and
for tensor networks not fitting in any cache a reduction of ą 108 in FLOP count is required for
the by-pair tensor contraction scheme to outperform the single expression evaluation scheme.

One can correlate these numbers to the latency of data fetch (from different caches) of the
architecture. For the L1 cache of the tested Intel Xeon processor, the ratio of bytes read/written
(4 cycle latency) to floating point operation (5 cycles mul + 3 cycles add) per each iteration
of contraction loop nest is going to be small enough (refer to [178] for various cache latencies).
Hence, for tensors fitting in L1 cache, even minimal savings in FLOPs can be beneficial.

Note that, due to the design of the current tensor contraction framework, all temporaries are
allocated on the stack. Different (and perhaps more in favour of the memory-saving approach)
performance traits should be expected for dynamic and heap allocated tensors. Since the
reduction in FLOP count is correlated to the size of tensors, it may not always be apparent
to choose one scheme over the other, and that leads to the idea of a heuristic cost model
[180, 188]. It is worth mentioning that, these benchmarks essentially relate the correlation of
fixed memory allocations to the sequence (evaluation pattern) of operation minimisation. In
cases where the sequence is not fixed, the operation minimisation may prove to be even more
beneficial [6].
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9.3.3 Compilation aspects of operation minimisation and further compile
time tensor contraction optimisations

As described in subsection 9.2.6, generating the Cartesian product of iteration space and fur-
ther the indices of tensors metaprogrammatically can lead to an increase in compilation time.
In this subsection, compilation aspects of Fastor are studied under two settings. First, the dif-
ferent optimisation levels available in Fastor for tensor contraction (supplied as compiler flag
-DCONTRACT OPT) are studied. These optimisation levels essentially relate to the construction
of contraction loop nests (i.e. the Cartesian products) and loop transformation optimisations
described in subsection 9.2.6 which are in fact not related to operation minimisation. Second,
the compilation aspects of operation minimisation is studied and compared to the compila-
tion aspects of single expression evaluation scheme. The latter study is indeed related to the
benchmarks described in previous subsection on runtime performance of the two schemes.

As Fastor can compute the Cartesian product of contraction loop nest either at compile
time or at runtime, this leads to the following three optimisation levels

1. -DCONTRACT OPT=0 [default]: The Cartesian product is computed at runtime. This is
equivalent to explicitly writing the contraction loop nest and relying on the compiler to
optimise it.

2. -DCONTRACT OPT=1: The Cartesian product is computed at compile time and stored in
variadic template containers, but the indices of tensors are computed at runtime. In that,
the cost of indexing and memory access is still present at run time.

3. -DCONTRACT OPT=2: The Cartesian product and the indices of tensors are computed at
compile time and stored in variadic template containers. This is an extreme level of
optimisation which completely eliminates dynamic memory I/O (at least in theory) and
mandates that only floating point arithmetics should be performed at run time.

Note that, irrespective of the optimisation levels described above, Fastor will always have
enough information to perform loop unrolling and vectorisation, as the information regarding
the iteration space of tensors and the microprocessor family are available at compile time.

To study the various aspects of the above optimisation levels, a singleton comprising of
one 7th order tensor A and one 8th order tensor B is considered. The singleton is then con-
tracted such that the nonisomorphic vector space is successively increased. These correspond
to 7 index contraction rAsijklmnorBsijklmnop, 6 index contraction rAsijklmnorBsijklmnpr, 5 index
contraction rAsijklmnorBsijklmprs, 4 index contraction rAsijklmnorBsijklprst, 3 index contraction
rAsijklmnorBsijkprstu, 2 index contraction rAsijklmnorBsijprstuv and finally one index contrac-
tion rAsijklmnorBsiprstuvw, respectively. The dimensions of the tensors are chosen such that
each of the aforementioned multi-index contractions correspond to a Cartesian product with
dimensions 28ˆ8, 29ˆ9, 210ˆ10, 211ˆ11, 212ˆ12, 213ˆ13 and 214ˆ14, respectively. In fact,
these dimensions range from small to large, in order to assess the compilation times for all kinds
of feasible applications. Four aspects of these optimisation levels are then studied namely, the
compilation time, memory footprint, generated binary size and the eventual execution time of
each. All the benchmarks are run with double precision AVX vectorisable nests with compiler
flags as “-O3 -mavx”. Although various compiler flags could be used to optimise for generated
binary sizes and sanitise memory footprint, they would lead to extensive parametric studies,
which is not the purpose here. The goal here is, to study Fastor’s internal optimisation schemes
with realistic compiler flags (also in order to be consistent with the other benchmarks). The
only two additional flags used are -Wstack-usage for GCC and -fconstexpr-steps=16000000

for Clang.

From Figure 9.8 (shown as raw data), the first observation is that -DCONTRACT OPT=0 has
the compilation time and memory footprint of a typical application in C++, with all the
compilers. The second observation is that for -DCONTRACT OPT=2, GCC compilation time and
memory usage (8.2GB memory footprint) increases exponentially for 5 index contraction (i.e.
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(a) (b)

(c) (d)

Figure 9.8: Compilation aspects of different optimisation levels for multi-index tensor con-
traction of singletons (Lower is better). a) compilation time (wall time), b) memory foot-
print, c) size of binaries generated, and d) eventual execution time (wall time). Con-
traction indices correspond to: (7 index)Ñ AsijklmnorBsijklmnop (span 28 ˆ 8), (6 index)
Ñ rAsijklmnorBsijklmnpr (span 29ˆ9), (5 index) Ñ rAsijklmnorBsijklmprs (span 210ˆ10), (4 in-
dex) Ñ rAsijklmnorBsijklprst (span 211ˆ11), (3 index) Ñ rAsijklmnorBsijkprstu (span 212ˆ12),
(2 index) Ñ rAsijklmnorBsijprstuv (span 213 ˆ 13)and (1 index) Ñ rAsijklmnorBsiprstuvw (span
214 ˆ 14), respectively. Note that data for GCC 6.2.0 for 4 index contraction and lower is not
available for optimisation level -DOPT=2, due to stall and excessive memory footprint. -DOPT

is used as a shorter alias for -DCONTRACT OPT.

for the span 210 ˆ 10) and eventually consumes all the available memory and stalls for 4 index
contraction (i.e. for the span 211ˆ11). Further build profiling reveals that unlike ICC and Clang,
GCC stores up all large variadic templates and static arrays on the stack in order to perform
global optimisation for fixed indices, but does not optimise the memory I/O. A deeper insight
can be gained through a comparison of different optimisation levels presented in Table 9.1 and
Table 9.2. As can be observed, the memory usage and compile time increases quadratically
for Clang starting from 4 index contraction, under the two latter optimisation levels. ICC
shows the least memory footprint (up to «2GB) for both higher optimisation levels and GCC
and Clang show the shortest compilation time for -DCONTRACT OPT=1 and -DCONTRACT OPT=2,
respectively. The size of generated binaries are all comparable for all compiler for a fixed
optimisation level. Clang generates a slightly more compact code compared to the other two
compilers for -DCONTRACT OPT=0 and ICC generates the most compact code for the other two
optimisation levels.

These results impact the run time accordingly. GCC compiled codes, show no significant im-
provement in run time since the stack size is increased but memory I/O is still present. However,
at the cost of high memory usage and compilation time, ICC and Clang completely optimise
away the run time memory I/O and generate codes with -DCONTRACT OPT=2 which is more than
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80X faster than that of -DCONTRACT OPT=0 and nearly up to 5X faster than -DCONTRACT OPT=1

(see Figure 9.8d). Note that, these performance gains come on top of the benchmarks presented
in subsection 9.3.1 for vectorisation (as here all the generated codes are AVX vectorised). How-
ever, as can be seen from the raw data in Figure 9.8, for -DCONTRACT OPT=0, GCC emits fully
aligned memory load and store instructions which perform slightly faster than their counter-
parts from the other compilers (as also explained in subsection 9.3.1).

It should be mentioned that -DCONTRACT OPT=1,2 correspond to optimisation levels that
neither a compiler would be willing to perform nor are they available in any vendor specific
libraries, such as BLAS. In fact, their implementation, require building a compile time virtual
engine to perform numerical analysis on template parameters (analogous to a numerical analysis
software that performs computations on arrays at runtime). Certainly, the complexity involved
in developing a metaprogramming engine of such sort is tremendous and the benchmarks in
Figure 9.8 reflect that. For instance, at -DCONTRACT OPT=2, Fastor performs sorting, con-
catenation, reshaping and many more operation of Oppn log pnqq on std::integer sequences
(C++14) with potentially n ą 1000. This shows that the metaprogramming engine in Fastor
extends much beyond expression templates and operator chaining.

The motivation behind implementing these optimisations, is due to the domain specific
nature of Fastor to primarily optimise tensor contractions in finite element computations where
extremely large tensors rarely occur, and for which the compilation time could remain in seconds
and the memory footprint would be in the range of a few 100 megabytes at most. Note that,
a more in-depth analysis of template instantiation and compile time profiling is beyond the
scope of this study. For such diagnostic studies (carried out using the LLVM based Templight
[247, 238]), the interested reader can refer to https://github.com/romeric/LogfilesFastor

for more details.

Ó \Ñ Compilation
Time

Memory
Usage

Binary
Size

Execution
Time

GCC Clang ICC GCC Clang ICC GCC Clang ICC GCC Clang ICC
7
Index

1.127 1.112 1.189 1.084 1.116 1.103 0.274 0.353 0.315 0.7 0.669 7.388

6
Index

1.253 1.34 1.395 1.18 1.29 1.241 0.347 0.511 0.383 1.038 17.352 12.565

5
Index

1.564 1.745 2.016 1.384 1.751 1.539 0.495 0.746 0.516 1.239 22.809 17.058

4
Index

2.082 2.64 3.423 1.836 3.064 2.195 0.813 1.253 0.832 1.004 27.694 16.102

3
Index

3.34 4.214 7.033 2.686 7.261 3.638 1.542 2.428 1.501 1.012 28.171 15.837

2
Index

6.212 10.086 13.435 4.748 21.449 6.767 3.111 4.88 2.905 0.938 30.133 17.053

1
Index

12.78 23.506 44.008 9.296 72.99 13.52 6.935 11.006 6.277 0.778 22.376 15.942

Table 9.1: Compilation aspects & run time performance of -DCONTRRACT OPT=1 normalised
with respect to -DCONTRRACT OPT=0

Ó \Ñ Compilation Time Memory Usage Binary Size Execution Time
GCC Clang ICC GCC Clang ICC GCC Clang ICC GCC Clang ICC

7
Index

1.639 0.995 1.243 3.688 1.122 1.117 0.249 0.353 0.293 0.763 0.765 11.984

6
Index

3.247 1.444 1.487 12.618 1.304 1.269 0.322 0.432 0.338 1.458 25.055 25.361

5
Index

10.583 1.981 2.363 50.688 1.778 1.593 0.396 0.589 0.427 2.329 44.861 46.86

4
Index

- 3.236 4.61 - 3.13 2.307 - 0.9 0.607 - 66.444 67.764

3
Index

- 5.316 10.439 - 7.378 3.847 - 1.528 0.986 - 82.122 80.098

2
Index

- 12.54 22.455 - 21.7 7.185 - 2.811 1.721 - 73.247 73.02

1
Index

- 28.31 83.96 - 73.481 14.369 - 5.589 3.277 - 65.373 62.965

Table 9.2: Compilation aspects & run time performance of -DCONTRRACT OPT=2 normalised
with respect to -DCONTRRACT OPT=0

Next, the compilation aspect of operation minimisation is studied. For this benchmark,
the cost of compilation over the single expression evaluation scheme (when depth-first search is

https://github.com/romeric/LogfilesFastor
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not perfomed) is studied. However, unlike the benchmarks conducted in subsection 9.3.2, the
interest here is not in the runtime performance of the operation minimisation, hence, studying
cache heirarchies and creation of intermediate temporaries are not pursued. Instead the two
compilation aspect namely, compilation time and compiler’s memory footprint is studied as a
function of the Cartesian product (iteration space of nests) and reported in Table 9.3-Table 9.5
as the number of FLOPS saved/reduced, since these two parameters (iteration span and number
of FLOPS saved) are correlated. All the benchmarks are run by resorting back to the default
optimisation level i.e. -DCONTRACT OPT=0, as operation minimisation is an orthogonal matter to
loop transformation optimisations. Analogous to the benchmarks presented in subsection 9.3.2,
a three tensor singleton rAsijkrBsijlrCsmnl, a four tensor singleton rAsijkrBsijlrCsmnlrDsno
and a five tensor singleton rAsijkrBsijlrCsmnlrDsnorEsp are chosen and their sizes are succes-
sively increased. Table 9.3, Table 9.4 and Table 9.5 show the compilation time and memory

Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
44544 1.307 1.307 1.325 1.07 1.07 1.076
89088 1.331 1.255 1.32 1.063 1.249 1.075
178176 1.288 1.712 1.289 1.062 1.726 1.077
356352 1.29 1.331 1.385 1.074 1.063 1.078
712704 1.34 1.252 1.283 1.062 1.242 1.078
1425408 1.295 1.705 1.323 1.07 1.729 1.078
2850816 1.294 1.288 1.364 1.067 1.062 1.079

Table 9.3: Compilation cost of operation minimisation normalised with respect to single
expression evaluation for 3 tensor singleton

usage operation minimisation scheme over the single expression scheme for each of the afore-
mentioned singleton. As can be observed from the results, the compilation time is not related
to the sizes of the tensors but rather to the number of tensors (or operators) appearing in the
whole tensor network. This is a fairly certain issue as the depth-first search is recursive in na-
ture3. In that, the compilation time and memory footprint of four and five tensor singletons are
around 30% and 80-100% more than those of single expression evaluations. However, in terms
of raw timings, the highest compilation time for operation minimisation has been 2.25 seconds
(with ICC) which corresponds to a FLOP reduction of 41566208. The conclusion drawn from
these results is that, a compile time depth-first search is fundamentally low-cost if the number
of tensors in the network are small. At the cost increasing the compile time by merely a few
seconds million to billions of runtime operations can be saved.

Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
256512 1.255 1.281 1.78 1.27 1.271 1.294
513024 1.26 1.758 1.584 1.261 1.731 1.292
1026048 1.256 1.282 1.359 1.26 1.054 1.296
2052096 1.31 1.318 1.459 1.262 1.259 1.295
4104192 1.268 1.716 1.512 1.258 1.731 1.295
8208384 1.263 1.314 1.427 1.265 1.047 1.296
16416768 1.281 1.244 1.438 1.268 1.249 1.299

Table 9.4: Compilation cost of operation minimisation normalised with respect to single
expression evaluation for 4 tensor singleton

9.4 Applications & Real-world experimentation: Kernel-based
numerical integration of nonlinear materials

In this section, numerical examples pertaining to the application of the current tensor contrac-
tion library in an embedded finite element framework are presented, specifically, in numerical

3The cost of depth-first search through Fastor’s meta-engine is at most n!, where n is the number of tensors
appearing in the network.
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Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
649472 1.745 1.778 2.293 1.758 1.759 1.822
1298944 1.727 1.32 2.288 1.753 1.052 1.823
2597888 1.724 1.263 2.188 1.745 1.242 1.827
5195776 1.716 1.747 2.311 1.763 1.749 1.829
10391552 1.778 1.277 2.205 1.756 1.046 1.828
20783104 1.724 1.256 2.274 1.752 1.246 1.827
41566208 1.745 1.712 2.314 1.756 1.738 1.828

Table 9.5: Compilation cost of operation minimisation normalised with respect to single
expression evaluation for 5 tensor singleton

integration of work-conjugates and Hessian of some polyconvex hyperelastic and multi-variable
convex electroelastic energy functionals presented in chapter 2 and chapter 4. The objective of
these examples are to examine the speed-ups gained in numerical integration (or the so-called
local assembly) of complex energy functionals using the framework’s data parallelism, smart
expression templates and additional domain specific features (benchmarked in the previous sec-
tions). In order to gain insights into each of the aformationed optimisation steps, the Fastor’s
implementation is benchmarked against three different individual implementations, namely

1. Explicitly-vectorised Implementation [Variant 1 ]: This implementation benefits
from Fastor’s explicit vectorisation but uses classical operator overloading. Compari-
son against this implementation will measure solely the benefit of operator chaining of
expression templates for finite element local assembly procedures.

2. Auto-vectorised Implementation [Variant 2 ]: This implementation does not benefit
from Fastor’s explicit vectorisation and this is left to the compiler’s auto-vectoriser. The
implementation also uses classical operator overloading. Comparison against this imple-
mentation will measure the impact of explicit SIMD vectorisation and operator chaining
for finite element local assembly procedures.

3. Classical Implementation [Variant 3 ]: This implementation does not benefit from Fas-
tor’s explicit vectorisation and operator chaining. Furthermore, unlike variants 2 and 3,
this implementation uses a classical implementation of the tensor cross product. Compar-
ison against this implementation will measure the impact of explicit SIMD vectorisation,
operator chaining and optimised tensor cross product kernels for finite element local
assembly procedures. Note that this implementation only holds for three-dimensional
problems, as the tensor cross product is a three-dimensional operator.

Note that while the backend implementations for each implementation differs, they are all
similar in terms of API, functions’ signatures, data structures used and the local assembly
contraction loop nest (in fact, all implementations are fundamentally based on Listing 9.6).
Furthermore, all variants are compiled with identical compiler flags. An attempt is made
to keep the other implementations as close to a realistic implementation as possible, in that
the calls to functions such as determinant, inverse, transpose and cofactor used within the
quadrature loop nest (as shown in Listing 9.6) are kept the same for all the implementations
i.e. they are all call optimised in-built routines. This is true for most implementations, where
such calls are dispatched to either vendor BLAS or optimised in-built subroutines. The only
exception is that for the third variant of the implementation, the cross function in Listing 9.6
uses a classical implementation as its implementation is not available in say, BLAS. It is worth
mentioning that, in the current tensor contraction framework, the optimised implementation of
the tensor cross products involves complete manual loop unrolling, explicit AVX vectorisation,
zero elimination and restructuring of the data for super-scalar execution. The technique of
eliminating zeros from the computation is a rather common practice in generating domain
specific kernels [230, 326].

To this effect, three energy functionals are chosen, one purely mechanical (the Mooney-
Rivlin model described in subsection 2.4.3) and two electro-mechanical, one ideal dielectric
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described in subsection 4.2.5 and the other a regularised convex multi-variable model described
in (6.8). The assessment is then to perform finite element analyses based on displacement-
based formulation for mechanical problems and displacement-potential based formulation for
electromechanical problems with high order triangles and tetrahedral elements and monitor
the speed-ups achieved for local assembly. The quadrature loop nest is set up in the most
classical fashion, in that it includes iteration over the quadrature points and test and trial
spaces [180, 11, 181, 230, 188]. However, the last two loops (over test and trial spaces) are
removed in favour of the abstraction provided by Fastor’s Tensor class.

Consequently, in line with the theme of this framework, explicit tensorial operations in-
volving computation of the following quantities are carried out within every quadrature point:
a) the Jacobian of the isoparametric mapping (∇Xξ) (as described in [30] b) the material
gradient of the displacements (∇0u), c) the variables in the extended kinematic set V, d) the
set of work-conjugates and subsequently the first Piola-Kirchhoff stress tensor and the electric
field vector and finally e) the Hessian of the internal energy.

It should be clear that, the utmost efficiency of the approach taken here for local assembly
is not the objective of these benchmarks. The benchmarks rather showcase the usage of the
framework in explicit finite element programming through seemingly hidden domain aware
expressions, which plays a key role in kernel-based numerical integration shown in Listing 9.6.

Listing 9.6: The structure of the quadrature loop nest

for (auto g=0; g<ngauss; ++g) {

// Compute Jacobian of isoparametric mapping

auto ParentGradientX = matmul(GradBases ,LagrangeElemCoords);

// Compute material gradient

auto MaterialGradient = matmul(inverse(ParentGradientX),GradBases);

// Compute the deformation gradient tensor

auto F = matmul(MaterialGradient ,EulerElemCoords);

// Compute the cofactor of deformation gradient tensor

auto H = cofactor(F);

// Compute the Jacobian of deformation gradient tensor

auto J = determinant(F);

// Compute work - conjugates

// Sigma_F , Sigma_H , Sigma_J , Sigma_D0 and Sigma_d

// Compute the first Piola -Kirchhoff stress tensor

auto P = Sigma_F + cross(Sigma_H ,F) + Sigma_J*H;

// Compute the electric field/ displacement

// E0 , D0

// Compute the Hessian components

// WFF , WFH , WFJ , WFD0 , WFd , WHH , WHJ ,... Wdd

// Compute the Hessian of the energy W

// H_W ...

}

In the current setting, kernel-based computation is a consequence of expression templates
combined with the C++11 auto keyword, in that, specific quantities within a quadrature
loop nest can be lumped as a single expression and a single kernel can be launched for it.
To illustrate this, consider the evaluation of the deformation gradient tensor F in Listing 9.6.
Computing this quantity requires computation of ParentGradientX and MaterialGradient

first. However, note that the automatic type deduction via auto does not force these quantities
to bind to an object and as a result their computation is postponed and their automatic type is
chained and carried over to the next line. Now, by the time the computation of F is requested,
three matmul and one inverse functions are chained together, see Listing 9.6. A canonical and
rather schematic representation of how the type of F is detected in Fastor can be represented
as in Listing 9.7.

Listing 9.7: A single expression for computing the deformation gradient tensor

BinaryMatMulOp <BinaryMatMulOp <UnaryInvOp <BinaryMatMulOp <GradBases ,LagrangeElemCoords > >,

GradBases >,EulerElemCoords >

The evaluation policy in Fastor, detects that an efficient implementation for this chained ex-
pression is available that does not require as many memory load and store operations. Hence,
it statically dispatches the expression for F to a bespoke kernel. In particular, the evaluation
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of this kernel involves SIMD optimised matrix multiplications for on-cache tensors. It is worth
mentioning that, chaining multiple operations of level 3 BLAS as shown in Listing 9.7, is a
fundamentally rare feature for generic tensor algebra libraries. Fastor leverages from this by
virtue of being domain specific. Similarly, for computing the first Piola-Kirchhoff stress tensor,
Fastor detects the following expression, shown in Listing 9.8.

Listing 9.8: A single expression for computing the Piola-Kirchhoff stress tensor

BinaryAddOp <Sigma_F ,BinaryAddOp <BinaryCrossOp <Sigma_H ,F>, BinaryMulOp <Sigma_J ,H>>>

Evaluation of this expression requires a single transparent loop within the quadrature loop nest,
which also gives rise to a myriad of other optimisation possibilities other than vectorisation, as
shown in Figure 9.3. The same concept is applied for the computation of other variables such
as electric field and the Hessian.4

Based on our initial set up explained at the start of the section, synthetic finite element
examples are manufactured based on two meshes, one triangular mesh and one tetrahedral
mesh, respectively, as shown in Figure 9.10. Moreover, careful attention is paid to the assem-
bly code generated by the compilers. However, for the purpose of brevity, only the results
form the Intel compiler with “-O3 -xHost”, are presented here. All the benchmarks in this
section are carried out with double precision floating point. For high order elements, nodal
Lagrange basis functions with optimal nodal placements [254, 323] are chosen, to guarantee
the stability and p-convergence property of the basis functions. These correspond to Fekete
point nodal distribution for triangles and Warburton nodes for tetrahedra. Furthermore, the
optimal quadrature scheme for triangles and tetrahedra presented in [323] is employed.

Table 9.6 and Table 9.7 show the speed-ups achieved using Fastor over the other implemen-
tations for the triangular mesh and the tetrahedral mesh, respectively. As can be observed

p
Mooney-Rivlin Model Electroelastic Model 1 Electroelastic Model 2

Explicit SIMD Auto-Vectoriser Explicit SIMD Auto-Vectoriser Explicit SIMD Auto-Vectoriser
p “ 1 1.32 1.598 1.734 1.135 2.168 1.661
p “ 2 1.226 1.758 1.645 1.336 1.982 1.77
p “ 3 1.177 1.924 1.497 1.528 1.856 1.912
p “ 4 1.132 2.064 1.485 1.747 1.723 1.972
p “ 5 1.145 2.095 1.366 1.667 1.595 1.928
p “ 6 1.089 2.085 1.334 1.93 1.517 2.202

Table 9.6: Speed-ups achieved in numerical integration using Fastor over other implementations
for the 2D triangular mesh

p
Mooney-Rivlin Model Electroelastic Model 1 Electroelastic Model 2

Explicit
SIMD

Auto-
Vectoriser

Classic Explicit
SIMD

Auto-
Vectoriser

Classic Explicit
SIMD

Auto-
Vectoriser

Classic

p “ 1 1.462 2.226 5.514 1.928 2.51 4.63 1.591 2.054 3.004
p “ 2 1.964 3.52 6.711 1.957 3.358 5.181 1.7 1.978 3.208
p “ 3 1.183 3.321 6.277 1.582 3.341 5.815 1.643 2.813 4.294
p “ 4 1.506 4.89 7.557 1.401 3.674 5.367 1.505 3.021 4.26
p “ 5 1.604 6.114 8.313 1.362 4.063 5.397 1.485 3.474 4.44
p “ 6 2.009 5.96 7.382 1.247 4.171 5.034 1.267 3.214 3.971

Table 9.7: Speed-ups achieved in numerical integration using Fastor over other implementations
for the 3D tetrahedral mesh

from Table 9.6 (corresponding to the two-dimensional case with triangular mesh), for Mooney-
Rivlin model, where the constitutive law is simpler and the number of operators to chain within
the quadrature nest is small, most of the performance comes from SIMD vectorisation. How-
ever, for the two electroelastic models, where the constitutive law is significantly complex and
the number of operators to chain are large, up to 85% of the performance of Fastor comes from
operator chaining; see Figure 9.9(a,b,c) for a visual representation.

4In fact, as a part of the smart expression template engine for a domain specific tensor contraction framework,
it is possible to decesively change the evaluation policies of the expressions (as described in subsection 9.2.4)
such that specific quantities of interest can be computed as a single kernel. This facilitates locality of reference
which has a significant importance in SIMD and GPU computing.
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A counter-intuitive finding from Figure 9.9 is that, at high polynomial degrees, the effect
of explicit vectorisation is more pronounced than operator chaining. However, by studying
the quadrature nest shown in Listing 9.6, one can observe that most of the tensors within the
nest are small (of size d ˆ d where the d “ 2, 3 is the spatial dimension of the problem). In
the absence of operator chaining and at low polynomial degrees, Fastor attempts to generate
vectorised code for every operator individually by strictly aligning the operands pointers at 16B
or 32B boundaries, depending on the vectorisation level. This is too strict of a requirement,
that eventually forces the compiler to insert further paddings in order to avoid cache spills.
This destroys the data locality and hence impacts the run time. However, as seen in Table 9.6,
if the decision of vectorisation is left to the auto-vectoriser, the compiler tries to be much more
conservative about vectorisation. Alternatively if the operators are chained and then vectorised
as a single expression, the combined benefit of both paradigms (vectorisation and operator-
chaining) can be harnessed. The conclusion drawn from this observation is that, operator
chaining is essential for maintaining data locality in the quadrature nest.

At high polynomial degrees, most of the simulation time is consumed in computing the
deformation gradient tensor F, which mainly involves the three matmul functions in Listing 9.6.
Despite being a Fastor smart expression (as explained earlier), the cost of matrix-matrix mul-
tiplications is certainly going to dominate the computation time as the sizes of GradBases,
LagrangeElemCoords and EulerElemCoords are much bigger compared to the rest of the vari-
ables within the quadrature loop. Operator chaining effect, while present is going to be a
fraction of the cost of matmuls between larger tensors. Accelerating the local matrix-matrix
multiplication kernels within the quadrature loop is also studied in [326].
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Figure 9.9: Contribution percentile of different optimisations for numerical integration using
Fastor; (a), (b), (c) for triangular mesh and (d), (e), (f) for tetrahedral mesh.

For the three-dimensinoal problems (tetrahedral mesh), similar performance traits can
be observed as shown in Table 9.7 and Figure 9.9(d,e,f). However, here the effect of zero-
elimination using the bespoke tensor cross product kernels comes into play. Note that, straight-
forward implementation of the tensor cross product is d6 in computational complexity and d4

in memory access, implying that it is dimension dependent and independent of the polynomial
degree. As a result, a rather constant speed-up is observed using the optimised tensor cross
product kernels. It is worth mentioning that, while a different approach to performing nu-
merical integration could be employed, the aforementioned results can be used as indicative
numbers, of what is possible by relying on explicit tensor manipulations.
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Figure 9.10: Meshes used for finite element benchmarks, a) A curved mechanical component
[254] and b) Artificial hand used for simulating electrostriction [233].

9.4.1 Kernel-based data parallel code generation for electromechanics on
curvilinear meshes

Having studied the h and p convergence properties of the computational framework and its
performance with respect to mixed variational principles in earlier chapters, the objective of
this example is to present some implementation details of the framework. The present high
order curvilinear finite element framework is tied and closely developed on top of Fastor library
[251]. Fastor (https://github.com/romeric/Fastor) is an open source (MIT licensed) C++
based generic tensor contraction library that can perform heavy numerical computations such
as mathematical/algorithmic transformations and graph optimisations at compile time using
a powerful in-built expression template engine. The transformed algorithms are then used by
Fastor to generate data parallel (SIMD-vectorised) code for modern CPU and potentially GPU
architectures. Recently, it has been shown in [251] that Fastor is able to generate carefully
crafted data parallel code (SSE-SSE4.2, AVX-AVX2-AVX512, FMA) for the local assembly of
low and high order finite elements for a series of convex multi-variable electro-elastic models,
exhibiting manyfold performance improvement over hand-written C code. As described earlier,
since convex multi-variable electro-elasticity models require Legendre transformation through a
Newton-Raphson scheme per quadrature point to find the appropriate constitutive tensors, local
assembly of the finite elements become a critical hotspot for performance optimisations (see
[254, 251] for performance benchmarks). In fact, if the solver time is discarded, for complicated
material models it can be shown that, 80% of the computational time is spent in local assembly
(numerical integration) of the finite element matrices.

To this effect, a problem is manufactured where the performance of the current framework
(using Fastor) is studied and compared to the equivalent hand-optimised C code. This problem
pertains only performance studies of numerical integration of work-conjugates (4.31), Hessian
(4.36) and the subsequent quadrature point Newton-Raphson required for the Legendre trans-
form (4.61), during local assembly (also see Algorithm 1). A set of similar benchmark problems
has been presented in the author’s previous work on Fastor [251], where explicit code snippets
for the aforementioned set of operations are presented. The interested reader is advised to
consult Poya et. al. [251] and Fastor’s repository, for a series of such performance studies, as
for the purpose of brevity, complete implementation details of the problem are not presented
here.

This performance study considers both curved hexahedral and tetrahedral meshes. The
geometry considered for the problem is that of an electromechanical component shown in
Figure 9.11 together with curved meshes. For the purpose of benchmark, refined meshes are
chosen such that distortion qualities are all almost unity.

Note that the tetrahedral and hexahedral meshes do not have the same number of nodes.
The relevant information regarding the meshes is listed in Table 9.8. The geometry essen-
tially consists of two plates connected through an extruded arc/fillet (in the z direction). No

https://github.com/romeric/Fastor
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Figure 9.11: a) CAD geometry, b) curved tetrahedral mesh and, c) curved hexahedral mesh
for electromechanical component with 1m thickness, 20m height (y-axis), 100m width (x-axis)
and 500m length (z-axis)

boundary conditions have been applied on the arc part of the geometry. The electromechanical
component is mechanically fixed at one longitudinal end and two different electric voltages are
applied across the thickness of the top and bottom plates, namely 4.5ˆ 107V for the top plate
and 8.1 ˆ 107V for the bottom plate. The problem exhibits massive snap-back behaviour as
the different applied voltages make the component bend initially but after the point of elec-
tromechanical instability the difference in displacements in both plates causes the component
to deform in the opposite direction.

Mesh (N. Elements) p{q “ 2 p{q “ 3 p{q “ 4 p{q “ 5 p{q “ 6 p{q “ 7 p{q “ 8
Tetrahedral (43200) 367196 1223568 2689668 5082200 8366140 12921312 18777812
Hexahedral (7200) 351276 1048144 2322900 4348344 7297276 11342496 16656804

Table 9.8: Degrees of freedom associated with each polynomial degree for tetrahedral and
curvilinear meshes

To study the performance of numerical integration, the stabilised convex multi-variable
model (6.8) is chosen with material properties listed in Table 6.1. The problem is then anal-
ysed under the aforementioned boundary conditions and the performance of numerical inte-
gration of work-conjugates ΣV (4.31), Hessian and constitutive tensors of the internal energy
C, Q, θ (4.37) and the quadrature point Newton-Raphson required for the Legendre trans-
form (4.61) to obtain the constitutive tensors of Helmholtz energy CΦ, QΦ, θΦ are monitored
under three different compilation flags. These correspond to the same code compiled with -O3

-march=native but with auto-vectorisation turned off (i.e. -fno-tree-vectorize for gcc,
-fno-vectorize for LLVM’s clang and -no-vec for Intel’s ICC), same code compiled with
-O3 -march=native where the compiler is permitted to auto-vectorise the code and Fastor
transformed code compiled with -O3 -march=native. All performance measurements have
been recorded on a single core of Intel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz with AVX in-
struction sets, 20MB private L1-cache and 32GB memory, running Ubuntu 16.04 and GCC-7,
LLVM’s Clang 4.0 and ICC 17.0.3 are used to compile all the codes. To keep the comparison
fair, careful attention is paid to the compilers generated assembly code.

Figure 9.12 shows the relative speed of the code (with and without auto-vectorisation)
in comparison to Fastor’s generated code with all the three aforementioned compilers. Since
with every polynomial enrichment the quadrature order has to be increased accordingly, as a
result the computational cost of numerical integration increases almost cubically for all the
cases (for three-dimensional problems). Nevertheless, Fastor’s data parallelism falling into
the category of latency hiding techniques, hides much of this computational complexity. For
both hexahedra and tetrahedra, Fastor’s SIMD vectorised code shows consistently nearly 2X
speed-up over compilers auto-vectorised code on an AVX capable processor and 3-3.5X speed
up over non-vectorised (but well-optimised) code. It can also be seen from the figures, that
unlike Fastor, auto-vectorisation is compiler specific and in some cases the code may not benefit
from it, specifically with Intel’s ICC in this case, Figure 9.12(e,f). On the other hand, Fastor
is extremely less sensitive to the compiler (and optimisations) used. This is potentially the
ultimate speed-up achievable for non-trivial codes using data parallelism on AVX architectures
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over non-vectorised codes (ideal speed-up is 4X for double precision). For complex algorithms,
such as numerical integration of convex multi-variable electro-elastic models, compile time
code transformation and graph search optimisation are necessary to be able to achieve this
performance. One again, these aspects of Fastor library are presented and benchmarked in
detail in [251].
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Figure 9.12: Speed-up achieved by compile time algorithmic transformation and data par-
allelism for numerical integration of work-conjugates and Hessian of convex multi-variable
electro-elastic model (6.8) with high order curved tetrahedral and hexahedral meshes with
compilers a,b) GCC, c,d) LLVM’s Clang and, e,f) Intel’s ICC

Finally, Figure 9.13 shows the evolution of voltage induced hydrostatic pressure phyd at
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different loading stages, for q “ 3 hexahedral mesh. Notice the massive snap-back behaviour
of system and butterfly shape it occupies at the final deformed configuration.

(a) (b)

(c) (d)

(e) (f)

Figure 9.13: Evolution of voltage induced hydrostatic pressure phyd in electromechanical com-
ponent with accumulated load factor Λ being a) Λ “ 0.416 b) Λ “ 0.806, c) Λ “ 0.889, d)
Λ “ 0.944, e) Λ “ 0.972 and, f) Λ “ 1.0. Note that in the figures shown, the electromechanical
component is mirrored along the z-axis

9.5 Conclusions

A domain specific data parallel tensor contraction framework for numerical analysis of coupled
and multi-physics applications is presented. The framework encompasses tensor contraction of
isomorphic and nonisomorphic tensor networks by relying on explicit vectorisation using SIMD
vector types. Furthermore, the in-built smart expression template engine performs compile
time operation minimisation technique using mathematical transformation for named chained
operators and depth-first or breadth-first constructive approach for un-named operators on
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tensor networks. The framework utilises heavy compile technologies to perform aggressive
loop optimisation, which in certain cases can completely eliminate the run time memory I/O.
Benchmark examples presented show optimal SIMD speed-ups for contraction of arbitrary
order tensors on a recent Intel processor using three different compilers. Finally, finite element
examples involving kernel-based numerical integration of complex convex multi-variable energy
functional are carried out in two and three dimensions, where all the features of the current
tensor contraction framework are utilised, in particular, the effect of operator chaining and
launching vectorised kernels, is shown to be paramount. In this context, numerical examples
presented, confirm significant speed-ups over the classical approaches.
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Chapter 10

Concluding Remarks & Future
Outlook

10.1 Concluding Remarks

The work presented in this thesis, deals with three fundamental issues pertaining to the com-
putational modelling of coupled electromechanical system. Firstly, the problem of accurate
geometrical representation is considered. Recent advances in isogeometric BSplies and TSpline
analysis, NURBS-enhanced methods and subdivision surfaces make it possible to embed finite
element technology into a CAD description and glue computer aided design and finite element
analysis tightly. However, in this process the bigger portion of the numerical analysis based
on standard finite element is left out of consideration. Development of these technologies in
the recent past have happened in parallel to the high order finite element methods instead and
their seems to have been little effort in combining legacy finite elements with an adequately
accurate geometrical design. In this thesis, an approach to accurately represent the geometry
in standard finite elements is presented. To this end, the problem of generating curvilinear
meshes which are required for high order finite element analysis is undertaken. As a matter of
consequence, a curvilinear high order mesh generator for high order finite elements is developed
using a metric controlled polyconvex mechanics analogy and using the finite element itself. The
use of polyconvex elasticity to deform meshes with planar faces to curve faces seems to provide
good quality high order volume meshes due to the fact that the fundamental distortion mea-
sures of deformation are already encoded in the definition of polyconvex elastic material model.
The convergence properties of the finite element scheme on these meshes is shown to be depen-
dent on these fundamental metrics, namely the edge distortion metric, face distortion metric
and volume distortion metric. A series of h and p convergence studies have been carried out for
Poisson type problems, elasticity problems and electroelasticity problems on these meshes us-
ing different continuum mechanics analogies, different polyconvex and non-polyconvex material
models with isotropic, anisotropic and boundary layer meshes. The scalability of the platform
is shown through the generation of high order curved computational meshes with millions of
nodes.

Putting the technique into practice, the second part of the thesis deals with the development
of a curvilinear finite element technique for four classes of coupling in electromechanics. The
first class is the large deformation large electric field electromechanics, typically suitable for
modelling massive deformations observed in Electro-Active Polymers (EAPs) and in particular
Dielectric Elastomers (DEs). The recently developed convex multi-variable electro-elasticity
is employed to model the large deformation characteristics of DEs and through exhaustive
numerical simulations, massive deformations, instabilities in the form wrinkling, snap-through
and pull-in instabilities are shown to be captured extremely well using the curvilinear high
order displacement potential technique for convex multi-variable electro-elasticity.

The second class of electromechanics discussed is linearised electrostriction with nonlinear
electrostatic response. The point of departure for modelling linearised electrostriction once

2
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again lies in the convex multi-variable energies which are consistently linearised and particu-
larised for the case of small strains. A staggered scheme is developed to solve the nonlinear
equations of electrostatics which is then coupled incrementally (non-iteratively) with the equa-
tions of elasticity providing significantly superior performance to the fully monolithic approach.
Through numerical examples it is shown that the method is capable of capturing excessively
large displacements as long as the strains remain small. Once again the curvilinear high order
finite element scheme is utilised for this staggered approach.

The third class of electromechanics discussed is the most well established linear piezoelec-
tricity. Due to the physical applications of this class in simplified settings and structurally
reduced models a new variational and computational framework is introduced for the analy-
sis of three dimensional linear piezoelectric beams using hp-finite elements is presented. The
framework is suitable for static, modal and dynamic scenarios; it is not restricted to either
actuation or energy harvesting applications and, moreover, it can cope with any anisotropy or
electric polarisation orientation. Derived from first principles, namely the fundamental equa-
tions of continuum piezoelectricity, a new set of beam balance equations is presented based on
a Taylor series expansion for the displacement and electric potential across the cross section
of the beam. The coupled nature of the piezoelectric phenomenon at a beam level arises via
a series of mechanical (and electrical counterparts) stress and strain cross sectional area resul-
tants. To benchmark the numerical algorithm, and in order to aid prospective researchers, a
new closed-form solution is presented for the case of cantilever type systems subjected to end
tip mechanical/electrical loads. Finally, some numerical aspects of the hp-discretisation are
investigated including the exponential convergence of the hp-refinements and the consideration
of linear or quadratic electric potential expansions across the cross section of the beam.

Immediately following the linear piezoelectricity is the fourth class of electromechanics dis-
cussed on size dependent linear piezoelectricity or better known as flexoelectricity. Once again,
an effort is made to develop a family of numerical models for the phenomenological linear flex-
oelectric theory for continua and their particularisation to the case of three-dimensional beams
based on a skew-symmetric couple stress theory. In contrast to the traditional flexoelectric
models based on standard strain gradient wherein coupling between electric polarisation and
strain gradients is assumed, we postulate an electric enthalpy in terms of linear invariants of
curvature and electric field. This is achieved by introducing the axial curvature vector as a
strain gradient measure. We have shown that the implication of this assumption is many-fold.
Firstly, for isotropic (non-piezoelectric) materials it allows constructing flexoelectric energies
without breaking material symmetry. Secondly, nonuniform distribution of volumetric part
of strains (volumetric strain gradients) do not generate electric polarisation, as confirmed by
experimental evidence to be the case for some important classes of flexoelectric materials. In
this regard, the current flexoelectric model can be considered as a more restrictive case of strain
gradient theories. Thirdly, a state of plane strain generates out of plane deformation through
strain gradient effects. Finally, extension and shear coupling modes cannot be characterised
individually as they contribute to the generation of electric polarisation as a whole. For the
case of three-dimensional beams, we have shown that the skew-symmetric couple stress model
in general, generate stresses spanned over the cross section rather than aligned with the lon-
gitudinal axis of the beam and as a result special care must be taken to integrate them over
the cross section. Four distinct variational principles are presented for both continuum and
beam models namely, a displacement-potential formulation, a penalty formulation, a Lagrange-
multiplier formulation and an augmented Lagrangian formulation. The three later formulations
facilitate incorporation of strain gradient measures in to a standard finite element scheme while
maintaining the C0 continuity. To this end, the efficacy of high order finite elements along with
the computational efficiency of mixed finite elements have been utilised to develop a series of
low and high order mixed finite element schemes for couple stress based flexoelectricity. Nu-
merical results of finite element discretisations for the three latter variational formulations are
first benchmarked against available closed form solutions in regards where good agreements
was found between the reference and numerical results. Furthermore, a detailed comparison of
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the developed couple stress based flexoelectric model with the standard strain gradient flexo-
electric models has been performed for the case of Barium Titanate where a myriad of simple
analytical solutions have been proposed in order to quantitatively describe the similarities and
dissimilarities in effective electromechanical coupling under these two theories. It is observed
that, if the same experimental flexoelectric constants are fitted in to both theories, the current
couple stress theory in general, reports stronger electromechanical conversion efficiency. This is
mainly due to the fact that, most flexoelectric problems involve bending and flexural deforma-
tion and, as a result, the axial curvature vector responsible for generating electric polarisation
is much more pronounced in these cases.

The final and third part of the thesis deals with the high performance implementation
of electromechanics using a generic domain-aware tensor contraction framework. In order to
have a unified base for developing high performance kernels for all classes of electromechanics
discussed, a new high performance tensor contraction framework for the numerical analysis
of coupled electromechanics on streaming architectures is presented. In addition to explicit
SIMD instructions and smart expression templates, the framework introduces domain specific
constructs for the tensor cross product and its associated algebra. The two key ingredients
of the presented expression template engine are as follows. First, the capability to math-
ematically transform complex chains of operations to simpler equivalent expressions, while
potentially avoiding routes with higher levels of computational complexity and, second, to per-
form a compile time depth-first or breadth-first search to find the optimal contraction indices
of a large tensor network in order to minimise the number of floating point operations. For
optimisations of tensor contraction such as loop transformation, loop fusion and data locality
optimisations, the framework relies heavily on compile time technologies rather than source-
to-source translation or JIT techniques. Every aspect of the framework is examined through
relevant performance benchmarks, including the impact of data parallelism on the performance
of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in
the evaluation of tensor networks, the compilation cost and memory footprint of the framework
and the performance of tensor cross product kernels. The framework is then applied to finite
element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in
kernel-based numerical integration of complex electroelastic energy functionals. In this context,
domain-aware expression templates combined with SIMD instructions are shown to provide a
significant speed-up over the classical low-level style programming techniques.

10.2 Future Outlook

In line with the theme of this work, we will once again divide our future outlook in further
development of the platform presented in the thesis into three parts

1. High order curvilinear mesh generation: The multi-level curvilinear mesh defor-
mation technique discussed in the thesis despite being able to generate extremely good
quality meshes is not designed to enforce the fundamental metrics in either a strong or
week form on to the meshes. It is merely designed to employ these metrics using a poly-
convex definition of the internal energy. We are certain that for complicated geometries
a two-step strategy should be employed in such a way that the first step would consist
of deforming the mesh using the solid mechanics analogy and in the second step a mesh
enhancement procedure would be undertaken once again using the solid mechanics anal-
ogy. However, in the second step the metrics would be enforced weakly using a mixed
variational principles gauranteeing the fulfilment of the desired qualities.

2. Fluid-structure interaction for electromechanics: Dielectric elastomers have a
promising future in biomedical applications, where they have already been suggested
as reliable actuators capable of pumping blood and hence, act as an artificial heart.
Immersed or boundary fitted methodologies are reliable numerical techniques for the
simulation of these fluid structure interaction scenarios. Alternatively, considering the
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effect of vacuum through a FEM-BEM coupling is also an interesting notion that needs
to be explored.

3. Automatic code generation for electromechanics: High performance computing in
the field material science has witnessed a significant growth in the last decade. Automatic
code generation from a variational formulation description could be a driving force for
building high performance kernels for modelling of materials. The tensor contraction
framework described in this thesis, at the moment can only study the topological structure
of tensors and can emit extremely efficient data and instruction parallel low-level code
from it. Future work in this regard would be focussed on automatically generating code
directly from the description of a convex multi-variable electroelastic energy. Other forms
of automatic parallelisation would be also explored with an eye to leave minimal to no
effort for user intervention.
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Appendix A

Coefficients of the closed-form
solution for piezoelectric beam

The coefficients used in the analytical solution presented in section 7.6 are as follows

b1 :“
a2 a6

a1
` a7, b2 :“

a3 a6

a1
` a8,

c1 :“ a13 `
a3 a11

a1
, c2 :“ a8 `

a3 a6

a1
,

c3 :“ a10 `
a5 a9

a4
, c4 :“

a9

a4
´
a11

a1
`
a6 c1

a1 c2
,

b3 :“ ´
c4

c3
, b4 :“

c1

c2 c3
,

b5 :“ a12 ´
b1 c1

c2
`
a2 a11

a1
, b6 :“

a11

a1
´
a6 c1

a1 c2
,

b7 :“
c1

c2
, b8 :“

1

2

ˆ

a14a6

a1
` a16

˙

,

b9 :“
a17

2
`
b8 c1

c2
´
a11 a14

2 a1
, k :“

c

b5
c3
,

c5 :“
1

2

ˆ

a20 `
a3 a18

a1

˙

, c6 :“
b8 c5

c2
´
a21

4
´
a14 a18

4 a1
,

k1 :“

c

a24

c6
, c7 :“

a19

2
´
c5 b1
b2

`
a2 a18

2 a1
,

c8 :“
a21

4
´
b8 c5

b2
`
a14 a18

4 a1
, c9 :“

a18

2 a1
´
a6 c5

a1 b2
,

m1 :“
c7 ´ a23

c8
, m2 :“ Q̄m

c9

c8
` Q̄e

c5

b2 c8
´ β|x“l

c7

c8
,

m3 :“ ´
a22

c8
.
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Appendix B

Couple stress theories and
constitutive laws for linear
flexoelectricity

B.1 The indeterminate couple stress theory and its relation to
the classical Cosserat theory

The theory in this section is a reiteration of the classical couple stress model briefly discussed
here for the convenience of the reader. In classical linear elasticity due to symmetry of strains
(ε) an isotropic material is fully described with only two strain invariants. However, when the
strain tensor is non-symmetric (ε̃), at least three invariants are needed to describe an isotropic
solid, Hence, the free energy takes the form, [227, 136]

W isopε̃, χ̃q “W iso
ε̃ pε̃q `W iso

χ̃ pχ̃q

“
µ` µc

2
ε̃ : ε̃`

µ´ µc
2

ε̃ : ε̃T `
λ

2
ptrε̃q2

`
ζ ` η

2
χ̃ : χ̃`

ζ ´ η

2
χ̃ : χ̃T `

α

2
ptrχ̃q2, (B.1)

where µ and λ are Lamé constants and µc, ζ, η and α are four additional material parameters
known as Cosserat constants. The constant µc is called the Cosserat’s coupled modulus. If we
additively decompose ∇u and ∇ω into their symmetric and skew-symmetric parts

∇u “ ∇symu`∇skewu, ∇ω “ ∇symω `∇skewω, (B.2)

and substitute in (B.1), we obtain

W iso
ce pε̃, χ̃q “ µ||∇symu||2 ` µc||ω̂ ´∇skewu||2 `

λ

2
||∇ ¨ u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

` ζ||∇symω||2 ` η||∇skewω||2 `
α

2
||∇ ¨ ω||2. (B.3)

At the limit when the Cosserat couple modulus µc ÞÑ 8, the effect of microstructure would be
too rigid to be incorporated in the strain energy W iso

ε̃ pε̃q and one can constrain the rotations
as

ω̂ ´∇skewu “ 0 ñ ω “
1

2
∇ˆ u, (B.4)

which renders

∇ ¨ ω “ 1

2
∇ ¨ p∇ˆ uq “ 0, (B.5)

3
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leaving the parameter α indeterminate. Also called the Cosserat theory of constrained rotations,
this model was first introduced by [215], discussed in [305], and elaborated lucidly by [154];
hence it is also referred to as the Mindlin-Toupin-Koiter theory. The strain and curvature
tensors now become

ε̃ “ ∇u´∇skewu “ ∇symu “ ε, (B.6)

χ̃ “ ∇ω “ 1

2
∇p∇ˆ uq (B.7)

Hence, in couple stress theory, the strain tensor is symmetric and the curvature tensor as seen
in (B.5) is solenoidal. Also note that in the modified couple stress theory [330], the curvature
tensor is symmetric, meaning that the parameter η in (B.1) also vanishes and the curvature
energy considered is then the weakest possible in [227, 137] sense.

B.2 Constitutive equations for isotropic and anisotropic couple
stress flexoelectric materials

In this section, the constitutive equations for isotropic and anisotropic couple stress based
linear flexoelectric material models are presented, based on [117]. For the anisotropic case the
constitutive equations are given both in terms of the curvature vector and its dual, Table B.1.
Note that the following relationships exist between material tensors and their duals

Description Isotropic Anisotropic

Enthalpy Ψ isopεij , χi, Eiq “
µ εijεij `

λ
2
εkkεll ` 8η χiχi ´

4f̄ χiEi ´
1
2
εij EiEj

Ψanispεij , χ̂ij , Eiq “
1
2
Cijklεijεkl ` 1

2
B̂ijklχ̂ijχ̂kl `

D̂ijklεijχ̂kl ´ eijkEiεjk ´
f̂ijkEiχ̂jk ´

1
2
εijEiEj

or

Ψ˚
anis

pεij , χi, Eiq “
1
2
Cijklεijεkl ` 1

2
Bijχiχj ´

Dijkεijχk ´ eijkEiεjk ´
fijχiEj ´

1
2
εijEiEj

Force stress σij “ 2µεij ` λεkkδij σij “ Cijklεkl ` D̂ijklχ̂kl ´ ekijEk
or

σij “ Cijklεkl `Dijkχk ´ ekijEk
Couple stress µi “ 8ηχi ´ 2f̄Ei µ̂ij “ B̂ijklχ̂kl ` D̂klijεkl ´ f̂kijEk

or

µi “
1
2
pBijχj `Djkiεjk ´ fjiEjq

Electric Displacement Di “ εEi ` 4f̄χi Di “ εijEj ` eijkεjk ` fijkχ̂jk, or

Di “ εijEj ` eijkεjk ` fijχj

Table B.1: Constitutive equations for isotropic and anisotropic couple stress based linear flex-
oelectric materials

B̂ijkl “
1

4
ξijmξklnBmn, Bmn “ ξijmξklnB̂ijkl,

D̂ijkl “
1

2
ξmlkDijm Dijm “ ξlkmD̂ijkl,

f̂ijk “
1

2
filξkjl, fil “ f̂ijkξkjl,

with the following restrictions on material tensors

Cijkl “ Cklij “ Cjikl, B̂ijkl “ B̂klij “ ´B̂jikl, D̂ijkl “ D̂jikl “ ´D̂ijlk,

eijk “ eikj , f̂ijk “ ´f̂ikj , εij “ εji,
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or equivalently in their vector form

Bij “ Bji,
Dijk “ Djik.

Note that in general there is no restriction on flexoelectric tensor f and for the most general
case, there are 78 distinct material parameters. For isotropic materials, the number of distinct
component reduces to 4 material constants and one characteristic length scale. These are the
two Lamé constants pλ, µq, one permittivity coefficient pεq, one flexoelectric coefficient pf̄q and
the curvature coefficient η is related to µ through the characteristic length scale ls, such that

Bij “ 16ηδij , η “ µl2s , fij “ f̄ δij , εij “ ε δij .



Appendix C

Boundary conditions, process design
and rendering of curvilinear
elements

In this section, the issue of applying boundary conditions, post processing and rendering of
curvilinear finite element is discussed. Unlike standard finite elements where the boundary
conditions are always applied on an a planar mesh approximating the CAD geometry and
wherein only the vertices of the mesh are exactly placed on CAD, in curvilinear finite elements it
is possible to reconstruct an interpolated surface using the finite element interpolation functions
and have a much more accurate representation of the actual CAD boundaries. Particularly,
with the developed curved finite element technique it is possible to interact with the CAD
model at different stages of the analysis and be able to identify the right topological surfaces
to apply the boundary conditions on. Most finite element packages lack a standard interface
for applying boundary conditions on the actual model boundaries and instead tend to work on
the discretised mesh, which make their scope limited to simple geometries. Figure C.1 shows
how the user can apply Dirichlet and/or Neumann boundary condition on a specified region of
a CAD model in Florence.

In general if the linear mesh and the CAD model are supplied externally from different
sources, identifying the right topological surfaces for applying boundary conditions become a
time consuming process as an associativity has to be established between the two (smooth
and discrete representations). The sub-package of Florence for processing curvilinear meshes
namely PostMesh has multiple algorithms to identify the right CAD surfaces that mesh faces
lie on. In general, these algorithms can be categorised as:

1. Axis-aligned bounding box algorithm

2. Projection algorithm

3. Surface-to-surface minimisation algorithm

The axis aligned bounding box technique is fast way to identify mesh faces lying on CAD sur-
faces, by creating exact bounds for each topological surface. Mesh faces lying on the topological
surface will always remain within the box. The projection algorithm is the most standard way
of building associativity between smooth and discrete surfaces but suffers from Opn2q computa-
tional complexity. The surface-to-surface minimisation algorithm is an extremely sophisticated
procedure to build the associativity by either reconstructing a smooth representation of the
discrete surfaces or by discretising the smooth topology into discrete mesh faces. The interested
readers and users can read more about the topic on the PostMesh webpage.

Once the surfaces have been identified and reconstructed using the desired curved FEM
interpolation degree, further processing of each individual mesh face is necessary to find basic
properties of the discrete mesh such as unit normals, mean, Gaussian and principal curvatures
etc. This is necessary for applying boundary conditions on curved faces and is done using an

6
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internal tessellation strategy. This tessellation is performed in the isoparametric coordinate
using the same FE interpolation degree that is used for geometry and analysis and the trans-
formed to physical space. Figure C.2 shows how unit normals can be computed (necessary for
applying pressure type boundary conditions) on a curvilinear p “ 9 mesh.

Get CAD Get CAD surfaces to apply BC

Get the meshed surfaceIdentify mesh faces on CAD

Reconstruct the surface using curvilinear FEM

p “ 3 p “ 6 p “ 9

Figure C.1: Procedure to identify associativity between smooth and discrete topologies and
reconstruct the smooth topology using curvilinear FEM
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A single mesh face Tessellated mesh face Unit normals on tessellated mesh face

Zoomed in face showing unit normals on the tessellated face

Figure C.2: Finding unit normals on a single curved mesh face



Appendix D

Computational terminologies,
idioms and relationships in tensor
networks’ theory

D.1 Computational aspects of tensor contraction

In this section, some common computational terminologies used in the context of tensor con-
traction are defined.

Definition 1 Tensor network: A complex network of tensors comprising of two or more ten-
sors, multiplied and summed over a set of indices, for instance AijkBlmj ` CijklDjEm ` ....
Definition 2 Singleton: A singleton or a single term tensor network is a single sub-expression
of (Definition 1), for instance AijkBlmj.
Definition 3 Isomorphic tensor product (outer product): Given a tensor pair A and B be-
longing to vector spaces Ξ and ℵ, respectively, their product is said to be isomorphic, if and
only if there are no contracting indices between the two, i.e. if isomorphism exists between the
vector space of the product Υ and the product of the vector spaces Ξb ℵ.

Definition 4 Nonisomorphic tensor product (tensor contraction): Given a tensor pair A and
B belonging to vector spaces Ξ and ℵ, respectively, their product is said to be nonisomorphic,
if at least there is one common index between the two i.e. if no isomorphism exists between the
vector space of the product Υ and the product of the vector spaces Ξb ℵ.

Definition 5 Named operator: An operation performed on a tensor, a pair or a network is
said to be named, if there is a specific name for the function signature, for instance, gemm,

matmul, rotg, transpose, trace.

Definition 6 Un-named operator: An operation performed on a tensor, a pair or a network
is said to be un-named, if it is expressed through indicial notation and there is no in-built
or standardised BLAS or LAPACK name it. For instance, Aiii is an un-named reduction
operation.

Definition 7 Contraction loop nest: A variable number of nested for loop iterating over the
space of tensor dimensions.

Definition 8 Fully vectorisable contraction loop nest: A loop nest is said to be fully vectorisable
if and only if a) the span (iteration space) of the fastest changing index in the Cartesian product
is a multiple of SIMD vector size and b) the index is not a contraction index.

Definition 9 Partially vectorisable contraction loop nest: A loop nest is said to be partially
vectorisable if and only if a) the span (iteration space) of the fastest changing index in the
Cartesian product is not a multiple of SIMD vector size but nevertheless greater than it and b)
the index is not a contraction index.

9
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Definition 10 Broadcast-vectorisable contraction loop nest: A loop nest is said to be broadcast-
vectorisable if a) the span (iteration space) of the fastest changing index in the Cartesian product
is a multiple of or greater than SIMD vector size b) the index is a contraction index. Double
contraction is a special case of broadcast-vectorisable contraction loop nests.

Definition 11 Depth-first constructive search: A compile-time graph search to find the order
in which pairs of tensors need be contracted so that the contraction over all tensor network
incurs minimum floating point operations. The by-pair nature of tensor network evaluation
leads to multiple intermediate temporaries which introduces a memory vs FLOP tradeoff.
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[103] Gee, M. W., Küttler, U., and Wall, W. A. Truly monolithic algebraic multigrid for
fluid-structure interaction. International Journal for Numerical Methods in Engineering
85, 8 (2011), 987–1016.

[104] Georgiadis, H. G., and Velgaki, E. G. High-frequency Rayleigh waves in mate-
rials with micro-structure and couple-stress effects. International Journal of Solids and
Structures 40 (2003), 2501–2520.

[105] Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.-F., and Toulorge, T.
The generation of valid curvilinear meshes. In IDIHOM: Industrialization of High-Order
Methods-A Top-Down Approach. Springer, 2015, pp. 15–39.

[106] Geuzaine, C., and Remacle, J.-F. Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods
in Engineering 79, 11 (2009), 1309–1331.

[107] Gharbi, M., Sun, Z., Sharma, P., White, K., and S., E.-B. Flexoelectric properties
of ferroelectrics and the nanoindentation size-effect. International Journal of Solids and
Structures 48 (2011), 249–256.

[108] Ghasemi, H., Park, H. S., and Rabczuk, T. A level-set based IGA formulation for
topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics
and Engineering 313 (2017), 239 – 258.

[109] Ghiba, I.-D., Neff, P., Madeo, A., and Münch, I. A variant of the linear isotropic
indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal
force-stress, symmetric couple-stresses and orthogonal boundary conditions. Mathematics
and Mechanics of Solids 22, 6 (2017), 1221–1266.

http://dx.doi.org/10.1063/1.339243
http://dx.doi.org/10.1088/0964-1726/13/4/N04
http://dx.doi.org/10.1088/0964-1726/13/4/N04
http://dx.doi.org/10.1016/S0020-7683(03)00054-4
http://dx.doi.org/10.1016/S0020-7683(03)00054-4
http://dx.doi.org/10.1016/j.ijsolstr.2010.09.021
http://dx.doi.org/10.1016/j.ijsolstr.2010.09.021


BIBLIOGRAPHY

[110] Gil, A. J., Adhikari, S., Scarpa, F., and Bonet, J. The formation of wrinkles
in single-layer graphene sheets under nanoindentation. Journal of Physics: Condensed
Matter 22, 14 (2010), 145302.

[111] Gil, A. J., and Ledger, P. D. A coupled hp-finite element scheme for the solution of
two-dimensional electrostrictive materials. International Journal for Numerical Methods
in Engineering 91, 11 (2012), 1158–1183.

[112] Gil, A. J., Lee, C. H., Bonet, J., and Ortigosa, R. A first order hyperbolic
framework for large strain computational solid dynamics. Part II: Total Lagrangian com-
pressible, nearly incompressible and truly incompressible elasticity. Computer Methods
in Applied Mechanics and Engineering 300 (2016), 146–181.

[113] Gil, A. J., and Ortigosa, R. A new framework for large strain electromechanics
based on convex multi-variable strain energies: Variational formulation and material
characterisation. Computer Methods in Applied Mechanics and Engineering 302 (2016),
293 – 328.

[114] Gil, A. J., Ortigosa, R., and Lee, C. H. A computational framework for large strain
nearly and truly incompressible electromechanics based on convex multi-variable strain
energies. Computer Methods in Applied Mechanics and Engineering 310 (2016), 297 –
334.

[115] Golub, G. H., and Van Loan, C. F. Matrix Computations, 4th ed. Johns Hopkins
Studies in Mathematical Sciences, Baltimore, USA, 2012.

[116] Guennebaud, G., and Jacob, B. Eigen v3. http://eigen.tuxfamily.org, 2010.

[117] Hadjesfandiari, A. R. Size-dependent piezoelectricity. International Journal of Solids
and Structures 50 (2013), 2781–2791.

[118] Hadjesfandiari, A. R., and Dargush, G. F. Couple stress theory for solids. Inter-
national Journal of Solids and Structures 48 (2011), 2496–2510.

[119] Hartono, A., Sibiryakov, A., Nooijen, M., Baumgartner, G., Bernholdt,
D. E., Hirata, S., Lam, C.-C., itzer, R. M., Ramanujam, J., and Sadayappan,
P. Automated Operation Minimization of Tensor Contraction Expressions in Electronic
Structure Calculations. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 155–164.

[120] Heinecke, A., Henry, G., Hutchinson, M., and Pabst, H. LIBXSMM: Accel-
erating small matrix multiplications by runtime code generation. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (Piscataway, NJ, USA, 2016), SC ’16, IEEE Press, pp. 84:1–84:11.

[121] Henry, A. S., Park, G., and Daniel, J. I. Estimation of electric charge output for
piezoelectric energy harvesting. Strain 40, 2 (2004), 49–58.

[122] Hesthaven, J. S., and Warburton, T. Nodal high-order methods on unstructured
grids I. time-domain solution of Maxwell’s equations. Journal of Computational Physics
181, 1 (2002), 186–221.

[123] Hesthaven, J. S., and Warburton, T. Nodal discontinuous Galerkin methods: algo-
rithms, analysis, and applications. Springer Science & Business Media, 2007.

[124] Higham, N. J., and Tisseur, F. A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra. SIAM Journal on Matrix Analysis and
Applications 21 (2000), 1185–1201.

http://dx.doi.org/10.1002/nme.4308
http://dx.doi.org/10.1002/nme.4308
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.020
http://dx.doi.org/10.1016/j.ijsolstr.2011.05.002
http://dx.doi.org/10.1111/j.1475-1305.2004.00120.x
http://dx.doi.org/10.1111/j.1475-1305.2004.00120.x


BIBLIOGRAPHY

[125] Hirata, S. Tensor Contraction Engine: Abstraction and automated parallel implementa-
tion of configuration-interaction, coupled-cluster, and many-body perturbation theories.
The Journal of Physical Chemistry A 107, 46 (2003), 9887–9897.

[126] Hjelmstad, K. D. Fundamentals of Structural Mechanics. International series in civil
engineering and engineering mechanics. Springer Inc., New York, 2005.

[127] Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering.
Wiley, 2000.

[128] Huerta, A., Angeloski, A., Roca, X., and Peraire, J. Efficiency of high-order
elements for continuous and discontinuous galerkin methods. International Journal for
Numerical Methods in Engineering 96, 9 (2013), 529–560.

[129] Hughes, T., Cottrell, J., and Bazilevs, Y. Isogeometric analysis: Cad, finite
elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering 194, 39 (2005), 4135 – 4195.

[130] Hughes, T. J. R. The Finite Element Method, Linear Static and Dynamic Analysis.
Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

[131] Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Prentice Hall Inc., Englewood Cliffs, New Jersey, 1987.

[132] Huynh, H., Wang, Z. J., and Vincent, P. High-order methods for computational
fluid dynamics: a brief review of compact differential formulations on unstructured grids.
Computers & Fluids 98 (2014), 209–220.

[133] Iglberger, K., Hager, G., Treibig, J., and Rde, U. Expression Templates Re-
visited: A performance analysis of current methodologies. SIAM Journal on Scientific
Computing 34, 2 (2012), C42–C69.

[134] J. Progsch, Y. I., and Adelmann, A. A new vectorization technique for expression
templates in C++. American Journal of Undergraduate Research 10, 4 (2012).

[135] Jeon, Y. B., Sood, R., H., J. J., and Kim, S. G. MEMS power generator with
transverse mode thin film PZT. Sensors and Actuators 122, 1 (2005), 16–22.

[136] Jeong, J., and Neff, P. Existence, uniqueness and stability in linear Cosserat elasticity
for weakest curvature conditions. Mathematics and Mechanics of Solids 15 (2010), 78–95.
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Légaré, F. The structural origin of second harmonic generation in fascia. Biomed. Opt.
Express 2, 1 (Jan 2011), 26–36.

[264] Roundy, S., and Wright, P. K. A piezoelectric vibration based generator for wireless
electronics. Smart Materials and Structures 13, 5 (2004), 1131–1142.

[265] Ruiz-Girons, E., Roca, X., and Sarrate, J. High-order mesh curving by distortion
minimization with boundary nodes free to slide on a 3d cad representation. Computer-
Aided Design 72, Supplement C (2016), 52 – 64. 23rd International Meshing Roundtable
Special Issue: Advances in Mesh Generation.

[266] Russell, S. J., and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2009.

[267] Sarrate, J., and Huerta, A. Efficient unstructured quadrilateral mesh generation.
International Journal for Numerical Methods in Engineering 49, 10 (2000), 1327–1350.

[268] Sarrate, J., and Huerta, A. An improved algorithm to smooth graded quadrilateral
meshes preserving the prescribed element size. Communications in Numerical Methods
in Engineering 17, 2 (2001), 89–99.
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[283] Şişmek, M., and Reddy, J. N. Bending and vibration of functionally graded mi-
crobeams using a new higher order beam theory and the modified couple stress theory.
International Journal of Engineering Science 64 (2012), 37–53.
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