

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Computer Physics Communications

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa32097

Paper:

Poya, R., Gil, A. & Ortigosa, R. (2017). A high performance data parallel tensor contraction framework: Application to

coupled electro-mechanics. Computer Physics Communications

http://dx.doi.org/10.1016/j.cpc.2017.02.016

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa32097
http://dx.doi.org/10.1016/j.cpc.2017.02.016
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Accepted Manuscript

A high performance data parallel tensor contraction framework:
Application to coupled electro-mechanics

Roman Poya, Antonio J. Gil, Rogelio Ortigosa

PII: S0010-4655(17)30068-1
DOI: http://dx.doi.org/10.1016/j.cpc.2017.02.016
Reference: COMPHY 6164

To appear in: Computer Physics Communications

Received date: 1 November 2016
Revised date: 10 January 2017
Accepted date: 15 February 2017

Please cite this article as: R. Poya, A.J. Gil, R. Ortigosa, A high performance data parallel
tensor contraction framework: Application to coupled electro-mechanics, Computer Physics
Communications (2017), http://dx.doi.org/10.1016/j.cpc.2017.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

A high performance data parallel tensor contraction framework:

Application to coupled electro-mechanics

Roman Poya a,b 1, Antonio J. Gil a2, Rogelio Ortigosa a

aZienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay
Campus, SA1 8EN, United Kingdom

bInstitute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748
Garching b. München, Germany

Abstract

The paper presents aspects of implementation of a new high performance tensor contraction
framework for the numerical analysis of coupled and multi-physics problems on streaming
architectures. In addition to explicit SIMD instructions and smart expression templates, the
framework introduces domain specific constructs for the tensor cross product and its associated
algebra recently rediscovered by Bonet et. al. [1, 2] in the context of solid mechanics. The
two key ingredients of the presented expression template engine are as follows. First, the
capability to mathematically transform complex chains of operations to simpler equivalent
expressions, while potentially avoiding routes with higher levels of computational complexity
and, second, to perform a compile time depth-first search to find the optimal contraction
indices of a large tensor network in order to minimise the number of floating point operations.
For optimisations of tensor contraction such as loop transformation, loop fusion and data
locality optimisations, the framework relies heavily on compile time technologies rather than
source-to-source translation or JIT techniques. Every aspect of the framework is examined
through relevant performance benchmarks, including the impact of data parallelism on the
performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O
optimality in the evaluation of tensor networks, the compilation cost and memory footprint of
the framework and the performance of tensor cross product kernels. The framework is then
applied to finite element analysis of coupled electromechanical problems to assess the speed-ups
achieved in kernel-based numerical integration of complex electroelastic energy functionals. In
this context, domain-aware expression templates are shown to provide a significant speed-up
over the classical low-level style programming techniques.

Keywords: Tensor contraction, data parallelism, domain-aware expression templates,
nonlinear coupled electromechanics

1. Introduction

In the field of multilinear algebra, tensor contraction refers to operations involving natural
pairing of tensors in finite dimensional vector spaces. Such operations are archetypal of quantum

1Corresponding Author: r.poya@swansea.ac.uk
2Corresponding Author: a.j.gil@swansea.ac.uk

Preprint submitted to Computer Physics Communications February 23, 2017

and classical mechanics. It is well known that, efficient implementation of tensor contraction of
tensor networks involving sum of multiple indices is a NP-hard problem [3–8]. Current adopted
methodologies typically rely either on graph optimisation techniques to find optimal contraction
indices, such as depth-first [3, 6], breadth-first [9, 10] and cheapest-first constructive approaches
[7, 8] or dynamic programming with memoisation [7], all well established in the field of quantum
many-body physics and quantum chemistry. On the other hand, in the field of mechanics of
continua, tensor contractions arise naturally, in the variational forms of the governing equations
[11–13] and hence in their consistent linearisation. Finite element discretisation of these forms,
then heavily rely on tensorial operations between the gradient of the chosen functional spaces
and the work conjugates and Hessian of the internal energies [11, 14, 15].

A myriad of strategies can be applied to optimise tensor contractions that emerge from
the discretisation of an underlying variational formulation. A noteworthy approach which is
typically utilised by domain specific languages (DSLs) designed for automated finite element
code generation, is the exploitation of the structure and topology of the tensors either by a
careful study of the bilinear operator and the chosen functional spaces or by performing similar
graph optimisation techniques in order to minimise the number of floating point operations
[11, 16]. Such optimisation techniques have been applied successfuly for instance in [16–21] for
various discretisation schemes such as continuous Galerkin, discontinuous Galerkin and various
functional spaces such as H1, H(div) and H(curl) spaces, for elliptic as well as hyperbolic
PDEs. As an automated finite element code generator, these approaches typically abstract
away the numerical implementation from the mathematical formulation and have the potential
to optimise the entire finite element assembly procedure. The framework described in this
manuscript is not desgined to be an automated code generator for variational forms (form com-
piler). Instead, it is rather designed to serve as a generic tensor algebra library that facilitates
an explicit mechanism for declaring tensorial operations, while potentially employing analogous
optimisation techniques, where applicable. As a result, the implementation specificities of a
given problem is left to the developer and not automated. However, the framework provides a
high level API, to bring forth low level optimisations at the disposal of the user (say for explicit
finite element programming) and as a result could be used as a standalone frontend software
or an optimising backend for a form compiler.

Akin to the current framework are the specifically tailored numerical tensor algebra frame-
works developed in C++. The foundation for implementation of a high performance tensor
algebra framework was laid by the works of Veldhuizen et. al. [22, 23] and Landry [13]
on Blitz++ and FTensor libraries, respectively. Other notable examples of tensor algebra
frameworks include nDarray [24], LTensor [25], libtensor [26] and Eigen’s third party tensor
package [27]. Barring Eigen which is based on C++11 variadic templates, all of the aforemen-
tioned frameworks are C++03 compliant, which implies they are not truly multi-dimenional
tensor libraries. In other words, these frameworks have support for tensors with up to a few
spatial dimensions. Furthermore, none of the aforementioned frameworks implement domain-
aware expression templates and optimisation algorithms, since they are designed as generic
numerical tensor algebra libraries. On the other hand, such optimisation techniques are more
suited to domain specific tensor contraction frameworks, examples of which include for instance,
the Tensor Contraction Engine [28–30], TiledArray [31] and Cyclops Tensor Framework

[32, 33], which are designed for distributed and thread-parallel tensor operations for quantam
mechanical computations. A few noteworthy differences between the current framework and

2

the aformentioned tensor contraction libraries, specifically the Tensor Contraction Engine are
as follows. a) the utilisation of compile time technologies for ahead-of-time evaluations us-
ing C++11 metaprogramming rather than source-to-source translation or JIT techniques, b)
implementation of low-level optimisation techniques such as data parallelism and loop trans-
formation (in C++) instead of relying on a low-level language optimising compiler (Fortran) c)
the focus on small tensor networks rather than big, out-of-core tensors and finally d) the focus
on continuum multi-physics simulations rather than quantum chemistry applications.

The fundamental design principle that all tensor frameworks rely on is the concept of ex-
pression templates in C++ [13, 34, 35], which provides a powerful means for lazy or on-demand
evaluation of arbitrary chained operators as well as delaying the evaluation of certain tensor
algebraic operations. In contrast to the classical operator overloading technique, expression
templates completely avoid the need for creation of intermediate temporaries. In [36, 37] novel
expression templates are presented which go beyond the level 1 BLAS overloads whilst exploring
other optimisation opportunities such as loop-tiling and data parallelism.

Recently, data parallel and stream computing have become a requisite for large scale simula-
tions of scientific problems. Recent generations of CPUs and GPUs, require data-parallel codes
for full efficiency. Data parallelism essentially implies that the same sequence of operations
should be applied to mutliple data sets synchronously. This reduces the need for instruction
scheduling in favour of more arithmetic and logic units [37, 38]. On CPU architectures data
parallelism is implemented via SIMD (Single Instruction Multiple Data) registers and instruc-
tions, wherein a single SIMD register can store multiple values and a single SIMD instruction
can execute multiple operations on those values [39–41]. The FMA (Fused-Multiply-Add) in-
struction set is an archetypal example of data parallelism. There are typically two approaches
to explicit vectorisation namely, the use of frameworks which are built as an extension to the
language such as OpenMP [42, 43], Cilk Plus [44] and OpenCL [45] and the use of SIMD vector
types [27, 38, 46]. In this work, an explicit vectorisation approach using vector types is adopted.

In this manuscript, the implementation aspects of a modern C++ based open-source data
parallel tensor contraction framework named Fastor are presented. The framework released
under the MIT licence and is accessible through https://github.com/romeric/Fastor. Fas-
tor follows a different design philosophy compared to most of the available tensor algebra
frameworks. It is based on statically sized arrays with a powerful in-built metaprogramming
engine that allows it to perform sophisticated optimisations at compile time. In particular,
its domain-aware or so-called smart expression template engine facilitates, a) transformation
of chained operations to mathematically equivalent but highly efficient expressions, potentially
avoiding the call to many level 3 type BLAS subroutines, b) compile time depth-first search
to find the optimal contraction indices of complex tensor networks and, c) generation of cus-
tomised kernels for operations on small tensors (of different order, size and data type) where
typically the call to external libraries such as BLAS can be inefficient [38, 40]. The paper is
organised as follows. In section 2, the governing equations of electroelasticity and the convex
multi-variable constitutive equations introduced in [47–50] are presented, to showcase the focus
of the current tensor contraction framework. In section 3, the interface design of the framework
is discussed, by starting from the explicit SIMD vector types, the tensor class, the smart expres-
sion template engine and finally a convenient interface for tensor contraction operations using
indicial notation. This is followed by a discussion on data alignment and compile time loop
transformation optimisations in subsection 3.6. In section 4, a series of numerical examples are

3

provided. These include fundamental performance benchmarks for data parallel isomorphic and
nonisomophic tensor products of tensor pairs in single and double precision floating points, the
memory vs FLOP tradeoff in evaluation of large tensor networks, and their eventual compila-
tion costs. Finally, finite element examples pertaining to the numerical integration of complex
constitutive models are presented in section 5 illustrating the importance of data parallelism
and domain aware expression templates.

2. Nonlinear continuum electromechanics

In this section, essential concepts of electroelasticity are discussed as a key application area
for the current tensor contraction framework.

2.1. Kinematics

Let us consider the motion of an electromechanical body which in its initial configuration
is defined by a domain V of boundary ∂V with outward unit normal N . After the motion,
the body occupies a final configuration defined by a domain v of boundary ∂v with outward
unit normal n, as shown in Figure 1. The pseudo-time (t) dependent mapping field φ links a
material particle from initial configurationX to final configuration x according to x = φ(X, t).
The deformation gradient tensor F is defined as

x1, X1

x3, X3

x2, X2

dA

da = HdA

dX

dx = F dX

dV0

dV = JdV0

x = φ(X, t)

Figure 1: Motion map of a body V and the kinematic measures {F ,H, J}.

F = ∇0x =
∂φ(X, t)

∂X
, (1)

where ∇0(·) is the Lagrangian (initial configuration) gradient operator. In addition, with
the help of the tensor cross product operations, the cofactor and Jacobian (H = CofF and
J = detF) of the deformation are defined as, [1, 2, 51] 3

H =
1

2
F F ; HiI =

1

2
EijkEIJKFjJFkK ; (2a)

J =
1

3
H : F ; J =

1

3
HiIFiI . (2b)

3Throughout the paper, the symbol (·) indicates the scalar product a · b = aibi, the symbol (:), the double
contraction operation A : B = AijBij , the symbol (×), the cross product between vectors [a × b]i = Eijkajbk
and the symbol (⊗), the outer or dyadic product [a ⊗ b]ij = aibj . The Einstein summation convention is
followed throughout, wherever indices appear.

4

As shown in Figure 1, {F ,H , J} are the kinematic measures relating the differential fibre, area
and volume elements from initial {dX, dA, dV } to final {dx, da, dv} configuration.

2.2. Governing equations of electroelasticity

The set of equations governing the physics of an electromechanical system, can be sum-
marised in the Lagrangian setting as follows [47, 52–57].

DIVP + f 0 = 0 in V ; (3a)

PN = t0 on ∂tV (3b)

DIVD0 − ρ0 = 0 in V ; (3c)

D0 ·N = −ω0 on ∂ωV (3d)

where P is the first Piola-Kirchhoff stress tensor, f 0 and t0, the Lagrangian body force and
traction force vectors, respectively, D0, the Lagrangian electric displacement field, ρ0 and ω0,
the electric charge per unit initial volume and area, respectively. Equation (3)(a,b) represents
the balance of linear momentum and (3)(c,d), the Gauss’s law. The rotational equilibrium
dictates that F TP = PF T and the Faraday’s law in Lagrangian form can be written as
E0 = −∇0φ, with E0 the Lagrangian electric field. The described set of governing equations
is subjected to suitable Dirichlet boundary condition(s).

2.3. Convex multi-variable electroelasticity

The internal energy density e, encapsulating the constitutive information necessary to close
the system of governing equations, is defined as e = e(F ,D0). Recently, Gil and Ortigosa
[47, 48, 58, 59] have introduced the concept of multi-variable convexity, which satisfies the
well-posedness of the governing equations described in subsection 2.2, and postulated as

e(F ,D0) = W (F ,H , J,D0,d); d = FD0, (4)

where W represents a convex multi-variable functional in terms of the extended set of arguments
V = {F ,H , J,D0,d}. As presented in [47], the first Piola-Kirchoff stress tensor and the electric
field vector can be expressed as

P = ΣF + ΣH F + ΣJH ; PiI = ΣFiI
+ EijkEIJKΣHjJ

FkK + ΣJHiI ; (5)

E0 = ΣD0 + F TΣd; E0I
= ΣD0I

+ FIiΣdi
, (6)

where ΣA = ∂W
∂A

, where A can represent any element from the set V . Furthermore, consistent
linearisation of the governing equations leads to the constitutive tensors of the material namely,
the fourth order elasticity tensor C, the third order piezoelectric or coupling tensor Q and the
second order dielectric tensor θ, defined as

C =
∂2e(F ,D0)

∂F ∂F

∣∣∣∣∣
F=∇0x

; Q =
∂2e(F ,D0)

∂D0∂F

∣∣∣∣∣
F=∇0x

; θ =
∂2e(F ,D0)

∂D0∂D0

∣∣∣∣∣
F=∇0x

. (7)

Alternatively, following [47], the components C,Q and θ can be defined in terms of the set of
work-conjugates V using Table 1, where WAB = ∂2W

∂A∂B
, where A and B can represent any two

elements from the set V . In the context of finite elements, equations (5-7) need to be evaluated

5

C

WF F + F (WHH F) +WJJH ⊗H + C1 + 2(WF H F)sym

+ 2(WF J ⊗H)sym + 2(WF d ⊗D0)sym + 2((F WHJ)⊗H)sym

+ 2((F WHd)⊗D0)sym + 2(H ⊗ (WJd ⊗D0))sym + A

where AiIjJ = EijpEIJP (ΣH + ΣJΣH)pP ; C1iIjJ
= (Wdd)ij D0ID0J

For any fourth order tensor T , T sym
iIjJ = 1

2 (TiIjJ + TjJiI)

QT

WF D0 + F WHD0 +H ⊗WJD0 + QT
1 + QT

2 + QT
3 + QT

4 + QT
5

where

[QT
1]iIJ = [WdD0]iJD0I

; [QT
2]iIJ = [WF d]iIjFjJ ;

[QT
3]iIJ = [F WHD0]iIjFjJ ; [QT

4]iIJ = [H ⊗WJd]iIjFjJ ;

[QT
5]iIJ = [Wdd]ijFjJD0I

θ
WD0D0 +

(
WD0dF + F TWdD0

)
+ F TWddF

Table 1: Elasticity tensor C, piezoelectric tensor Q and dielectric θ tensor re-expressed in terms of the compo-
nents of the Hessian operator.

at every quadrature point. Hence, the computational cost of numerical integration would be
dictated primarily by the evaluation of the work-conjugates and the Hessian of the internal
energy [60].

2.4. A simple multi-variable constitutive model

A simple internal energy functional which complies with the definition of multi-variable
convexity in (4), can be defined as

W = µ1IIF + µ2IIH −2(µ1 + 2µ2)lnJ +
κ

2
(J − 1)2

︸ ︷︷ ︸
f(J)

+ 1
2ε1
IID0 + 1

2ε2J
IId, (8)

where II(•) denotes the squared of the L2 norm of the entity (•) and {µ1, µ2, ε1, ε2, κ}, positive
material constants. For this model, P (5) and E0 (6) are

P = 2µ1F + 2µ2H F +

(
f ′(J)− 1

2ε2 J2
IId

)
H ; E0 =

1

ε1

D0 +
1

ε2 J
F Td,

and the non-zero components of the Hessian operator HW1 are defined as

WFF = 2µ1I; WHH = 2µ2I; WJJ =

(
f ′′(J) +

1

4ε2 J3
IId

)
;

WJd = − 1

ε2J2
d; WD0D0 =

1

ε1

I; Wdd =
1

ε2J
I. (9)

The tensors C, Q and θ can now be obtained from (9) using Table 1.

6

3. Interface design principle for tensorial operations

In the next subsections, the multiple stages of designing a tensor contraction framework
using modern C++ features are presented, with the point of departure being the explicit SIMD
vector types. It is assumed that the reader is familiar with the fundamental concepts of generic
and generative programming in the context of scientific computing [23, 27, 36, 37, 61, 62]. For
computatinal terminologies used in the manuscript, the reader can refer to Appendix A and for
the actual implementation details, to Fastor’s official repository, (available under MIT license)
https://github.com/romeric/Fastor.

3.1. Data parallelism through SIMD vector types

To facilitate vector based instruction scheduling for tensorial operations, the first step is
to implement explicit SIMD vector types. In the current setting, using C++ polymorphism,
a set of SIMD vector types are implemented which encompass vector-enabled X86 CPU archi-
tectures from SSE to SSE4.2 and AVX to AVX2. While this is an in-built extension to the
current framework, further CPU architectures such as AVX-512, MIC, Neon, AltiVec, MSA
and potentially GPU support can be included by relying on the Vc library [38]. The API for
the in-built extensions are kept close to that of Vc, so that in the eventual case of changing
backends, a simple change of namespace should suffice. Nevertheless, in the current iteration,
the framework is capable of performing vector operations on SSE2-SSE4.2/AVX-AVX2 archi-
tectures. For a full implementation of SIMD vector types and further ABI considerations, the
reader can refer to [38, 46, 63].

3.2. The abstract tensor class

The point of departure for the implementation of a tensor framework is a base or an abstract
tensor type. Utilising the Curiously Recurring Template Pattern (CRTP) idiom [27, 34], a
straightforward implementation of the AbstractTensor is shown in Listing 1.

Listing 1: A canonical implementation of abstract tensor type
template <class Derived , FASTOR_INDEX Rank >

class AbstractTensor {

public:

static constexpr FASTOR_INDEX Dimension = Rank;

AbstractTensor () = default;

FASTOR_INLINE const Derived& self() const {

return *static_cast <const Derived*>(this);

}

};

In this context, the AbstractTensor faciliates static binding of all derived classes to the base
class, avoiding the late binding mechanism [22, 23, 62, 64], which is a key step for a successful
implementation of the expression templates (notice the presence of member function self)
[36, 37]. Additionally, note that the seemingly unnecessary template parameter, the rank of
the tensor is also passed for instantiation of the AbstractTensor.

3.3. The tensor class

The implementation of the tensor class then follows a rather classical approach. A canonical
implementation of the tensor class, removing the bounds checking and further trivial details
is shown in Listing 2, where the key ingredients of the class can be summarised as follows.
First, a set of data members are defined, namely the order or spatial dimension of the tensor

7

(Dimension), the total size of the tensor to be allocated in the memory (Size) and the stride
necessary for vector instructions (Stride).4

Listing 2: A canonical implementation of the tensor class
template <typename T, size_t ... Rest >

class Tensor: public AbstractTensor <Tensor <T,Rest...>,sizeof ...(Rest)> {

private:

typedef T scalar_type;

T FASTOR_ALIGN _data[product <Rest ...>:: value];

public:

static constexpr FASTOR_INDEX Dimension = sizeof ...(Rest);

static constexpr FASTOR_INDEX Size = product <Rest ...>:: value;

static constexpr FASTOR_INDEX Stride = stride_finder <T>:: value;

template <typename Derived , size_t Rank >

FASTOR_INLINE Tensor <T,Rest ...>& operator =(const AbstractTensor <Derived ,Rank >& expr) {

const Derived &src = expr.self();

for (FASTOR_INDEX i = 0; i < Size; i+= Stride) {

src.evaluate(i).store (& _data[i]);

}

return *this;

}

FASTOR_INLINE SIMDVector <T> evaluate(T i) const {

SIMDVector <T> out;

out.load(&_data[i]);

return out;

}

template <size_t I, size_t J, size_t K>

FASTOR_INLINE Tensor(const UnaryTraceOp <BinaryMatMulOp <Tensor <T,I,J>,UnaryTransposeOp <

Tensor <T,K,J>>>> &a) {

_doublecontract <T,I,K>(a.expr.lhs.expr.data(),a.expr.rhs.data());

}

}

In this context, the first member function (the copy assignment operator) is responsible for
static binding of any complex expression that performs element-wise operations on the tensors,
to the tensor class. Note that in contrast to the classical expression templates, in the current
implementation shown in Listing 2, the expression is evaluated for one SIMD vector, instead of
one scalar at a time, as can be seen in the implementation of the member function evaluate.
It is also necessary for all the expressions (such as UnaryOps and BinaryOps) to provide an
evaluate member function. Listing 2 represents a simple example of blending expression
templates and SIMD instructions (also refer to [37], for a similar implementation) for a truly
multi-dimensional tensor algebra framework.

3.4. Smart expression templates: Operation minimisation through mathematical transformation

Once the tensor class is defined, what remains is the implementation of a high level inter-
face for tensor algebraic operations. However, efficient execution of these operations does not
only depend on how each individual operation/subroutine is implemented, but also on the pat-
tern these operations are evaluated (in situations when they operate jointly on tensors). The
fundamental idea of expression templates is to treat complex chain of operations as a single
expression and the decision to when (how soon or late) this expression should be evaluated
is called the evaluation policy, which typically depends on the nature and complexity of the

4Note that in Listing 2, it is assumed that data is appropriately aligned by the vector (register) size, the size
of the tensor is a multiple of the vector stride and that no padding is necessary.

8

operators involved in the expression [27]. For instance, in Listing 2 the evaluation of an ex-
pression is bound to the assignment operator (operator=). The evaluation policy can be also
overwritten at any given time by invoking the evaluate function explicitly.

As a common practice in implementing expression templates, all element-wise and level 1
BLAS expressions inherit from the AbstractTensor to facilitate delayed evaluation of chained
operations, as can be seen in the copy assignment operator in Listing 2.

Fastor implements operator chaining for beyond level 1 BLAS routines through template
specialiation(s) of the copy and move constructors. The idea behind chaining certain operators
of level 2/3 BLAS type routines is essentially to be able to mathematically transform them
to simpler expressions before evaluating them. This leads to the interesting notion of smart
expression templates that facilitate exploitation of complexity reducing algorithms through
mathematical equivalence and that can be viewed as more of domain specific semantics, built
on top of a generic tensor algebra library.

For instance, the last member function (copy constructor) in Listing 2, provides an example
of smart expression template in Fastor, where the tensor expression tr(ABT) is dispatched
to A : B = AijBij. This indeed reduces the computational complexity of the problem from
O(n3) for matrix matrix multiplication, O(n2) for transpose and O(n) for trace, to O(n2) for
double contraction. Furthermore, vector implementation of double contraction is trivial. In
the context of tensor algebra, such operations frequently occur and Fastor implements copy
and move constructors for a series of such type of operations. Once again, note that expres-
sions such as BinaryMatMulOp, UnaryTransposeOp and UnaryTraceOp are evaluated immedi-
ately if they act individually on a tensor. A canonical implementation of a smart expression
(UnaryTransposeOp) is shown in Listing 3 (notice the second overload of the member function
evaluate).

Listing 3: A canonical implementation of transpose operator
template <typename Expr >

struct UnaryTransposeOp {

UnaryTransposeOp(const Expr& expr) : expr(expr) {}

template <typename U>

FASTOR_INLINE U evaluate(U i, U j) const {

return expr(j,i);

}

const Expr &expr;

};

template <typename Expr >

FASTOR_INLINE UnaryTransposeOp <Expr > transpose(const Expr &expr) {

return UnaryTransposeOp <Expr >(expr);

}

3.5. Smart expression templates: Operation minimisation through compile time depth-first con-
structive approach

While exploiting low-flop algorithms through mathematical transformation may be sufficient
for named operators (such as UnaryTraceOp, UnaryDetOp etc), when the tensorial operations
are expressed in indicial notation (i.e. when no named operators are present), a generalisation
of the approach presented in subsection 3.4, is to perform a graph optimisation technique to
find the optimal contraction indices of the tensor network. This leads to the more generic

9

operation minimisation technique implemented in Fastor, the so-called depth-first constructive
approach, defined in Appendix A.

For the purpose of illustrating specific features and a possible function signature for tensor
contraction through indicial notation, a prototypical implementation of the (einsum) function,
between three arbitrary order tensors is presented in Listing 4, without the use of expression
templates.5

Listing 4: Overloaded implementation of Einstein summation for three tensor singletons of arbitrary order
template <typename Index_I , typename Index_J , typename Index_K ,

template <typename ,FASTOR_INDEX ...Rest0 > class Tensor0 ,

template <typename ,FASTOR_INDEX ...Rest1 > class Tensor1 ,

template <typename ,FASTOR_INDEX ...Rest2 > class Tensor2 ,

typename T, FASTOR_INDEX ...Rest0 , FASTOR_INDEX ...Rest1 , FASTOR_INDEX ... Rest2 ,

typename std::enable_if <sizeof ...(Rest0)== Index_I :: NoIndices &&

sizeof ...(Rest1)== Index_J :: NoIndices &&

sizeof ...(Rest2)== Index_K ::NoIndices ,bool >:: type=0 >

FASTOR_INLINE typename ContractionType <Index_I ,Index_J ,Index_K ,Tensor <T,Rest0...>,Tensor <T,

Rest1...>,Tensor <T,Rest2 ...>>::type einsum(const Tensor0 <T,Rest0 ...> &a, const Tensor1 <T,

Rest1...> &b, const Tensor2 <T,Rest2 ...> &c) {

// perform compile time depth -first search

// if necessary call the by -pair (two tensor) overload

// if not , set up the contraction loop nest (Cartesian product)

// perform loop transformation and SIMD vectorisation

// perform isomorphic / noisomorphic tensor product

}

Notice how the static nature of the tensors facilitates resolving the indices of the einsum function
at compile time. With an optimising compiler this leads to no extra register allocation for the
indices. This is in contrast with most of the existing tensor algebra frameworks that allocate
tensors dynamically. In Listing 4, Index is simply a template structure (struct) of integral
constants with one compile time (constexpr) data member, the NoIndices which accounts for
the number of template parameters passed to it. Furthermore, note that the return type of
einsum is computed at compile time through the ContractionType meta-function and the right
amount of stack memory is allocated beforehand, which is also in contrast with the C/Fortran
static arrays. A few representative examples of how the tensor objects are called and the above
einsum function can be applied, are presented in Listing 5.

Listing 5: An example of Tensor instantiation and contraction of AijkBijlmCklmnpq

enum {I,J,K,L,M,N,P,Q};

Tensor <double ,2,3,4> A; Tensor <double ,2,3,5,6> B; Tensor <double ,4,5,6,8,4,3> C;

// fill/populate A,B and C explicitly

A.random (); B.range (2); C.fill (42.42);

// perform tensor contraction

auto d = einsum <Index <I,J,K>,Index <I,J,L,M>,Index <K,L,M,N,P,Q>>(A,B,C);

// d is deduced as Tensor <double ,8,4,3> and 96* sizeof(double)=768B is statically allocated .

3.6. Data alignment and compile time construction of contraction loop nests

From a computational point of view, vector or data parallel implementation of tensor con-
traction requires careful attention to memory alignment. In a generic tensor contraction pro-
cedure, since arbitrary indices are allowed to contract, computations along strides leading to

5In the presence of expression templates, overloading the einsum function to account for more (or less) than
three tensors is not necessary, as a single tensor expression can take care of all possible overloads. For instance,
the ContractionType in Listing 4 could as well be an expression instead of the resulting tensor and then its
evaluation could be bound to a copy assignment operator similar to the one presented in Listing 2.

10

non-contiguous and unaligned memory access patterns and cache misses become the funda-
mental bottleneck. To solve this issue, some libraries designed for large dynamically allocated
arrays, allow computations on general strides [65], while there are alternative frameworks that
work with strict alignment and further data padding for the purpose of vectorisation [36]. Due
to the strong focus of this framework on data parallelism and further due to stack allocation,
the tensors are always aligned in the memory by the largest SIMD vector size that the processor
is capable of i.e. 16B alignment for SSE and 32B alignment for AVX and so on, as shown in
Listing 2 (i.e. FASTOR ALIGN). However, strided data access is intrinsic to the nature of tensor
contraction [26, 32], and as will be discussed shortly, Fastor employs cost-effective broadcasting
vectorisation in such cases. With this decision on data alignment, Fastor classifies tensor opera-
tions into three categories, namely isomorphic tensor products (outer products), nonisomorphic
tensor products (tensor contraction), and tensor permutation, as defined in Appendix A.

Once the decision on memory alignment is fixed, a variable number of nested for loops
need to be set up depending on the contraction indices of the tensors appearing in the network.
Since the Tensor objects presented in Listing 2 are static, Fastor uses this information to set
up the contraction loop nest at compile time by generating the Cartesian product of iteration
spaces of tensors. This can be typically achieved using recusrive template instantiation. To
illustrate this, consider the isomorphic tensor product of singleton [D]ijk = [a]i[B]jk, where
a is a first order tensor of size 2 and B is a second order tensor of 2×3. The loop trans-
formation procedure for this singleton is shown in Figure 2. Figure 2 is a simple example

[a]i[B]jk → Tensor<double,2> a; Tensor<double,3,2> B

i j k
0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1
1 0 0
1 0 1
1 1 0
1 1 1
1 2 0
1 2 1

i j k
0 0 0
0 1 0
0 2 0
1 0 0
1 1 0
1 2 0

Dijk ai Bjk

0 0 0
2 0 2
4 0 4
6 1 0
8 1 2
10 1 4

Perform SSE vectorisation
using V = SIMDVector<double,SSE>;

V vec = V(a.data()+idx a)*V(B.data()+idx B);

vec.store(out.data()+idx out);

Generate Cartesian product of iteration spaces

Unroll the innermost loop by 2

Generate flattened indices for tensors

Figure 2: Loop transformation optimisation for the contraction loop nest of singleton [D]ijk = [a]i[B]jk

of loop transformation through compile time code generation. Note that, this approach is a
generalisation of an efficient matrix-matrix multiplication implementation using SIMD vector
types proposed as a language extension to the C++ standard committee [63]. Once performed,
this type of loop transformation can facilitate other compile time optimisation opportunities,
such as distinguishing loop-invariant code, subsequent hoisting and more importantly study-
ing the vectorisability nature of the nest. In the context of vectorisability, a Cartesian product
(contraction loop nest) can be classified as fully vectorisable, partially vectorisable or broadcast-
vectorisable (refer to Appendix A for definitions). While partial vectorisibility implies that the
final remainder operations that do not fit in the vectorised loop nest during tensor contraction
procedures should be treated in a scalar fashion, broadcast-vectorisable means employing mul-
tiple cost-effective broadcast vector instructions, for computing tensor contraction on strides.
This definition of vectorisability allows for an implementation strategy that enables explicit
vectorisation in floating point as well as in memory load and store operations. To elaborate

11

this vectorisation procedure, a schematic representation of a broadcast-vectorisable tensor pair
is shown in Figure 3 for the nonisomorphic tensor product [C]im = [A]ijkl[B]mjkl.

× =

3

4

6

5

4

4

6

5

3

4

[A]ijkl = Tensor<double,3,4,6,5> [B]mjkl = Tensor<double,4,4,6,5> [C]im = Tensor<double,3,4>

Contracting dimensions

Loop span for fastest changing index = 4 ⇒ 4× sizeof(double) = 32B, (AVX broadcast-vectorisable)
→ Unroll the Cartesian product by 4, perform AVX vectorisation

S
trid

e
len

gth
=

4
*
6
*
5

=
1
2
0

Figure 3: AVX vectorisation of the nonisomorphic tensor product of singleton [C]im = [A]ijkl[B]mjkl on strides
(cells represent tensor’s dimensions not the register width).

Notice that, in Figure 3 m is the fastest changing index of the nest ijklm, and the memory
access for tensor B requires broadcasting intrinsics [66] of the tensor into AVX registers (as
opposed to aligned loading) by an offset=120, while the floating point and memory I/O
operations on tensors A and C remain fully AVX vectorisable.

Finally, having performed loop transformation (Figure 2) and SIMD vectoristation (Fig-
ure 3), the third optimisation step is to perform loop fusion. Loop fusion is a direct consequence
of operator chaining applied on tensor networks. At its current iteration, Fastor tries to obey
the ISO C standard on strict aliasing rules. This implies that, if a network comprising of many
singletons is to be evaluated, the contraction of each singleton is evaluated individually into
temporaries and the loop fusion is then applied at the top level, in order to avoid chaining of
singletons of different complexity and hence memory aliasing. To elaborate this, consider the
evaluation of the tensor network [G]jkl = [A]ijk[B]il + ρtr(I)[c]k[D]jl +

√
[E]jkl, where ρ is a

constant coefficient, I is the second order identity tensor in R3×3 and c, D and {A, B, E, G}
are first, second and third order tensors of arbitrary size, respectively. The loop fusion pro-
cedure applied on this network is shown in Figure 4. In Figure 4, ρ being a constant and

[G]jkl = [A]ijk[B]il + ρtr(I)[c]k[D]jl +
√

[E]jkl

Evaluate singleton Evaluate singleton

[G]jkl = [T 0]jkl + ρtr(I)[T 1]jkl +
√

[E]jkl

Fuse loopsSmart Expression + Hoist

Generate CP & indices: idx T0, idx T1, idx E, idx G

using V = SIMDVector<T,ABI>;

V vec r(3.*rho), vec G;

for (auto i=0; i<CP::Span; i+=V::Stride) {
vec G = V(T0+idx T0)+vec r*V(T1+idx T1)+V(E+idx E).sqrt();

vec G.store(G+idx G);

}

Figure 4: Loop fusion for the evaluation of the network [G]jkl = [A]ijk[B]il + ρtr(I)[c]k[D]jl +
√

[E]jkl

12

tr(I) a Fastor smart expression, are hoisted out of the loop during the evaluation of singleton
[T 1]jkl = [c]k[D]jl. After evaluation of all singletons, the Cartesian product (CP) is computed
and a single vectorised loop is set up to compute G. The cost of creating these temporaries is
evaluated in subsection 4.2 in the context of compile time operation minimisation. The future
endeavour for extending Fastor is to explore batched evaluations of intermediate singletons in
a multi-threaded environment as also recently presented in the context of GPGPU in [67].

It is worth mentioning that, generating the Cartesian product of the iteration space and
the indices of the tensor network metaprogrammatically can lead to dramatic increase in com-
pilation time. Depending on the level of optimisation required, each individual step described
above can be performed either at compile time or run time, by issuing the -DCONTRACT OPT to
the compiler. These optimisation steps and further compilation aspects of tensor contraction
in Fastor are studied in more detail in subsection 4.3.

4. Benchmark examples

In this section, a series of fundamental benchmarks are presented to highlight further aspects
of the tensor contraction framework. In particular, the benchmarks presented in the next few
subsections examine the following aspects of the framework:

1. Impact of SIMD vectorisation on the performance of tensor contraction of arbitrary order
tensors

2. Impact of operation minimisation on tensor contraction and the associated memory vs
FLOPs tradeoff for various cache heirarchies

3. Compilation aspects of the framework and the impact of aggressive loop transformation

All the numerical examples are run on Intel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz pro-
cessor running Ubuntu 16.04. The processor has three cache levels namely, an 8 way associative
private 32KB L1 data cache (and 32KB L1 instruction cache), an 8 way associative private 256KB
L2 cache and a 20 way associative shared 20MB L3 cache, in addition to a 32GB DDR3 (1866
MHz) RAM. Furthermore, it supports SSE to SSE 4.2 and AVX, but not AVX2 or FMA in-
structions. The following three compilers are used for the benchmarks namely, GCC 6.2.0,
Clang 3.9.0 and ICC 17.0.1. If the compiler and Fastor’s optimisation level are not specified,
GCC and -CONTRACT OPT should be assumed, respectively. All the reported CPU run-times
are measured by taking the average of one million calls, unless the benchmark took a consid-
erably long time finish, in which case the number of calls where lowered by a factor of 10.
Furthermore, in the SIMD tensor contraction benchmark presented in the next subsection, the
performance was measured by turning off the turbo mode (although similar performance traits
were observed under the turbo mode). The raw data, pre-built binaries and Python scripts for
visualisation, for all the numerical examples presented in the manuscript are accessible through
https://github.com/romeric/LogfilesFastor.

4.1. Impact of SIMD vectorisation on the performance of tensor contraction of arbitrary order
tensors

As a starting point, it is important to verify that the tensor contraction framework achieves
predicted speed-ups from explicit SIMD vectorisation and that no significant overhead is intro-
duced by the underlying layers of abstractions. To this end, the present benchmark attempts
to analyse the speed-ups achieved in FLOP and memory I/O over the scalar code (in the sense
of [38], it is a combination of arithmetic and memory I/O benchmark, but rather in the context

13

of tensor contraction). Here, scalar code refers to a variant of the implemenation where no
explicit vectorisation has been performed and the compiler auto-vectoriser is purposely turned
off. This is important in order to assess if the framework achieves the theoretical maximum of
SSE/AVX FLOPs and (read/write) bytes per cycle.

In the present benchmark, the interest is in the run-time performance of SIMD vectorised
tensor contraction of tensor pairs, hence, operation minimisation is not performed. Further-
more, both vector and scalar variants are based on the same contraction loop nest and are
both compiled with “-O3 -mavx” options. Furthermore, for the purpose of benchmarking, it
was necessary to ensure that the scalar code was not vectorised by passing -fno-tree-vectorize

to GCC, -fno-vectorize to Clang and -no-vec to ICC and carefully examining the generated
assembly codes. The internal level of optimisation utilised for these benchmarks correspond to
the default option -DCONTRACT OPT=0. This optimisation level is indeed equivalent to writing
the contraction loop nest explicitly as multiple nested for loops and relying on the compiler for
further optimisations. This is indeed also important in order to completely isolate and measure
the performance of SIMD vectorisation. Fastor’s further internal optimisation levels are studied
in subsection 4.3.

Figure 5 presents the speed-ups gained from SIMD vectorisation over the scalar code, for
isomorphic tensor products of arbitrary order tensors. These include outer products of the
following pairs [A]ij[B]kl, [A]ijk[B]lmn, [A]ijkl[B]mnpq, [A]ijklm[B]npqrs, [A]ijklmn[B]pqrstu and
[A]ijklmnpq[B]rstuvwxy, where the size of tensors A and B are kept identical. Furthermore, to
assess the performance of SIMD vectorisation, the last dimension of the tensors are chosen to
be a multiple of SSE (4 for single precision and 2 for double precision) and/or AVX (8 for
single precision and 4 for double precision) registers. It should be emphasised that, Figure 5
benchmarks are relative to the scalar code and essentially show the speed-up in load and
store (bytes transferred per cycle) as well as floating point operations (only multiplication in
case of outer product). While for arithmetic operations optimal speed-ups can be achieved,
the load and store operations strongly depend on the size of the tensor. In the benchmarks
presented in this section, the smallest tensor size resulting from the outer product is 288B =

0.0087890625×L1 cache and the largest tensor size is 1MB = 4×L2 cache.
Next, the performance of nonisomorphic tensor contraction of pairs of arbitrary order tensors

are analysed against the scalar code, with the analysis parameters and the compiler options
remaining the same as before. However, in contrast to the case of outer product of tensors,
the number of loops to be set up/merged depend on the number of contracting indices (see
Figure 3) and the floating point operations performed are multiplication followed by addition.
Figure 6 shows the speed-up achieved in tensor contraction of pairs of tensors using SIMD
vector types over the scalar code. For this benchmark all tensors fit in to L1 cache.

As can be observed, in both isomorphic (outer product) and nonisomorphic tensor product
benchmarks, optimal speed-ups are achieved with SSE (4X for SP and 2X for DP) as well
as AVX (8X for SP and 4X for DP) vectorisation over the scalar variant. Certainly, for the
isomorhpic tensor products where tensors do not fit in L1 cache Figure 5(e,f), a more noticable
degradation in speed-up is observed. The variations in speed-up with different tensor sizes
can be explained by carefully studying the assembly code generated by the compilers. In that,
since tensor objects in Fastor are static, an optimising compiler may generate different intrinsics
for different tensor sizes, which may be optimal for some but not the other. As a particular
example, consider the case of AVX vectorisable double precision tensor products in Figure 5

14

4x4
SP

2x1
6 S

P
3x2

DP
4x4

DP
0

2

4

6

8

10

12

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

4x4
x4

SP

2x3
x16

SP

4x3
x2

DP

2x3
x4

DP
0

2

4

6

8

10

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

2x3
x4x

4 S
P

2x3
x4x

8 S
P

5x4
x3x

2 D
P

2x3
x5x

4 D
P

0

1

2

3

4

5

6

7

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(a) (b) (c)

2x2
x2x

2x4
SP

2x2
x2x

3x1
6 SP

2x2
x2x

2x2
DP

2x2
x2x

3x1
6 DP

0

2

4

6

8

10

12

14

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

2x2x
2x2x

2x4
SP

2x2x
2x2x

2x8
SP

2x2x
2x2x

2x2
DP

2x2x
2x2x

2x4
DP

0

1

2

3

4

5

6

7

8

9

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

2x2x2
x2x2x

2x2x4
SP

2x2x2
x2x2x

2x8 SP

2x2x2
x2x2x

2x2 DP

2x2x2
x2x2x

2x4 DP
0

1

2

3

4

5

6

7

8

9

S
p
ee
d-
up

SSE AVX SSE AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(d) (e) (f)
Figure 5: Speed-ups achieved by SIMD vectorisation in perfoming outer product of tensors of single precision
(SP) and double precision (DP) floating point over the scalar version with tensors of order (a) 2 ([A]ij [B]kl),
(b) 3 ([A]ijk[B]lmn), (c) 4 ([A]ijkl[B]mnop), (d) 5 ([A]ijklm[B]nopqr), (e) 6 ([A]ijklmn[B]opqrst) and, (f) 8
([A]ijklmno[B]pqrstuvwxy). Since the order and dimension of the tensors in outer product are kept the same, a
4× 4 for instance, essentially implies [A]4×4 ⊗ [B]4×4.

and Figure 6, for whom the three compilers used for this benchmark generate the following
different intrinsics for the innermost loop:

1. GCC 6.2.0 generates one additional move (movslq), one add (addq) and one shift and
rotate instruction (salq) and emits aligned load and store instructions for all tensors.

2. Clang 3.9.0 generates the most compact code with no additional instructions, but
changes the aligned load instruction for tensor A to a broadcast (vbroadcastsd), and
emits aligned store instructions.

3. ICC 17.0.1 generates two additional move (movslq) and two shift and rotate instructions
(shlq), changes the aligned load instruction for tensor A to a broadcast (vbroadcastsd)
and emits an unaligned store instruction (vmovupd) for the output tensor. This explains
the slight drop in speed-up observed with ICC in certain cases.

It is important to clarify this aspect through inspecting the generated intrinsics, since the
vectorisation approach followed by Fastor is through explicit SIMD vector types, which at
times, is known to be sensitive to compiler’s mis-compilation [27, 38].

4.2. The depth-first search approach and memory vs FLOPs tradeoff

As defined in Appendix A, the depth-first search is an operation minimisation technique
for tensor contraction over complex networks that performs by-pair tensor contraction in the
network. This essentially leads to the creation of multiple intermediate temporaries and hence

15

(2x3x4x
5x2) × (2x3x3x

4) SP

(2x3x4x
5x2) × (2x3x3x

2) DP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
ee
d-
up

SSE SSE

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(2x3x4x
5x2) × (2x3x3x

8) SP

(2x3x4x
5x2) × (2x3x3x

4) DP
0

1

2

3

4

5

6

7

8

S
p
ee
d-
up

AVX AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(3x4x5
x8) × (3x4x4

) SP

(3x4x5
x8) × (3x4x2

) DP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
ee
d-
up

SSE SSE

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(a) (b) (c)

(3x4x5
x8) × (3x4x8

) SP

(3x4x5
x8) × (3x4x8

) DP
0

1

2

3

4

5

6

7

8

9

S
p
ee
d-
up

AVX AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(3x4x2
x8) × (3x4x2

x4) SP

(3x4x2
x8) × (3x4x2

x2) DP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
ee
d-
up

SSE SSE

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(3x4x2
x8) × (3x4x2

x8) SP

(3x4x2
x8) × (3x4x2

x8) DP
0

1

2

3

4

5

6

7

8

9

S
p
ee
d-
up

AVX AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(d) (e) (f)

(2x3x2x3x2x3x2
x3x2) × (2x3x2x3x2x3x2

x3x4) SP

(2x3x2x3x2x3x2
x3x2) × (2x3x2x3x2x3x2

x3x2) DP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
ee
d-
up

SSE SSE

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(2x3x2x3x2x3x2
x3x2) × (2x3x2x3x2x3x2

x3x4) SP

(2x3x2x3x2x3x2
x3x2) × (2x3x2x3x2x3x2

x3x2) DP
0

1

2

3

4

5

6

7

8

S
p
ee
d-
up

AVX AVX

GCC 6.2.0

Clang 3.9.0

ICC 17.0.1

(g) (h)

Figure 6: Speed-ups achieved by SIMD vectorisation in perfoming tensor contraction on pairs of tensors of
single precision (SP) and double precision (DP) floating point over the scalar version with (a) single index
contraction ([A]ijklm[B]njop) using SSE, (b) single index contraction ([A]ijklm[B]njop) using AVX, (c) two
index contraction ([A]ijkl[B]ijm) using SSE, (d) two index contraction ([A]ijkl[B]ijm) using AVX, (e) three
index contraction ([A]ijkl[B]ijkm) using SSE, (f) three index contraction ([A]ijkl[B]ijkm) using AVX, (g) 8
index contraction ([A]ijklmnopq[B]ijklmnopr) using SSE and, (h) 8 index contraction ([A]ijklmnopq[B]ijklmnopr)
using AVX. x-labels represent the actual dimensions of the tensors.

can be perceived as a performance bottleneck. An alternative methodology to this is to evaluate
the whole tensor network at once, without performing a depth-first algorithm. On the other
hand, if the tensors are statically allocated (like in Fastor) and the temporaries created by
the depth-first search fit in CPU cache, the operation minimistion may instead prove to be
more cache optimal, by virtue of increasing the spatial locality. In this section, a fundamental
benchmark is manufactured that compares the run-time perfomance of the by-pair (termed here
as FLOP optimal) tensor contraction algorithm against the single expression evaluation (termed
here as memory-saving) algorithm. Note that, these benchmarks do not include the performance
of the depth-first search approach in finding the optimal sequence of tensor contraction. As
the depth-first search algorithm itself is performed metaprogrammatically, no run-time code
is generated for it. The compilation time and further performance aspects of the depth-first

16

search are studied in subsection 4.3.
To be able to compare the performance of the two aforementioned approaches, a three

tensor singleton ([D]kmn = [A]ijk[B]ijl[C]mnl) is chosen first. The cost of contracting this
network through a single evaluation is 3ξiξjξkξlξmξn, where ξa denotes the iteration space of
index a and the 3 stands for 2 multiplications and one addition. A fixed sequence for by-
pair tensor contraction is then chosen, namely [T]kl = [A]ijk[B]ijl ⇒ [D]kmn = [T]kl[C]mnl,
where T represents the temporary. The total cost of the contraction over the network is now
2(ξiξjξkξl + ξkξlξmξn), where 2 stands for one multiplication and one addition.

Note that depending on the iteration space of tensors the above sequence may not always
correspond to the most optimal one. Nonethless, an attempt is made to keep the above sequence
optimal either by manually choosing the sizes of tensors A, B, C or through the compiler flag
-DFASTOR KEEP DP FIXED. The sizes of the tensors are then successively increased in such a
way that the memory requirement for the intermediate temporary D ranges from fitting into
L1 cache to four times the size of L3 cache. Certainly, as the dimensions increase, the number
of floating point operations also increase. The assessment is then based on how much reduction
in FLOP count is necessary to outweigh the cost of allocation of the temporary i.e. for a
temporary fitting into a given cache, what should be the approximate reduced FLOP count,
where

reduced FLOP count = costMemOpt − costFLOPOpt

= 3(ξiξjξkξlξmξn)− 2(ξiξjξkξl + ξkξlξmξn).

Figure 7 shows the speed-up of FLOP optimal contraction over the memory-saving contraction
scheme, while keeping the temporary size to fit into a fixed cache and successively increasing the
iteration space in order to increase the reduced FLOP count. Hence, every bar in Figure 7,
compares the two schemes for a fixed data size and fixed reduced FLOP count. While the
contraction loop nest certainly differs, it is made sure that both algorithms are equally vectorised
(in particular, using AVX intrinsics), in order to fully isolate the aspect of SIMD vectorisation
from operation minimisation. Hence, depending on the vectorisation, the reduction in FLOP
count should be divided by the vector size (which is not done here for the purpose of clarity).

As can be observed in Figure 7, for tensor networks fitting L1 cache, even a reduction of
100-1000 FLOPs through the depth-first scheme can be beneficial. For L2 cache a saving of
103 or more in FLOPs is needed to actually outweigh the single expression evaluation scheme.
Similarly, for L3 cache, a reduction of 106 and for tensor networks not fitting in any cache,
a reduction of (107) in floating point operations is required for the by-pair tensor contraction
scheme to be beneficial. Certainly, as the saving in FLOP increases for a given cache size,
orders of magnitude performance can be gained over the memory-saving approach.

The same benchmark is then repeated with a different tensor network, namely the four tensor
singleton [E]lo = [A]ijk[B]ijl[C]mnk[D]mno, where the performance of contracting this network
through a single expression evaluation (with cost 4ξiξjξkξlξmξnξo) is compared with the by-pair
approach for the sequence [T 0]kl = [A]ijk[B]ijl; [T 1]ko = [C]mnk[D]mno ⇒ [E]lo = [T 0]kl[T 1]ko
requiring the creation of two temporaries now (with a total cost of 2(ξiξjξkξl+ξmξnξkξo+ξkξlξ0)),
hence

reduced FLOP count = costMemOpt − costFLOPOpt

= 4(ξiξjξkξlξmξnξo)− 2(ξiξjξkξl + ξmξnξkξo + ξkξlξ0).

17

8.1
92
×10

3

5.7
34
×10

4

1.2
29
×10

5

1.0
4×

10
6

1.1
99
×10

7

1.1
21
×10

8
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
1)

1.796

4.466
6.452

9.204

51.235

113.701

Memory-Saving vs FLOP Optimal Contraction

6.5
54
×10

4

4.5
88
×10

5

9.8
3×

10
5

8.3
23
×10

6

9.5
94
×10

7

8.9
71
×10

8
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
2)

1.385

3.453
4.737

6.396

34.166

54.072

Memory-Saving vs FLOP Optimal Contraction

2.6
21
×10

6

3.6
7×

10
7

3.3
03
×10

8
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
3)

1.507

2.93
4.232

Memory-Saving vs FLOP Optimal Contraction

2.0
97
×10

7

2.9
36
×10

8
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
M
em

or
y)

1.477

2.742

Memory-Saving vs FLOP Optimal Contraction

(a) (b) (c) (d)
Figure 7: Speed-up achieved for contraction of three tensor singletons ([A]ijk[Bijl[C]mnl) using by-pair contrac-
tion over single expression evaluation for tensor sizes that fit a) L1 cache (size of temporary created 16KB=0.5×L1
cache), b) L2 cache (size of temporary created 128KB=0.5×L2 cache), c) L3 cache (size of temporary created
10MB=0.5×L3 cache) and, d) main memory (size of temporary created 80MB=4×L3 cache). x-labels indicate the
number of FLOPs saved/reduced by utilising by-pair (FLOP optimal) contraction and numbers on top of bars
show the corresponding speed-up.

Figure 8 shows the speed-up of FLOP optimal contraction over memory-saving contraction

6.1
44
×10

4

4.4
85
×10

5

4.0
61
×10

6

3.2
96
×10

7

1.3
21
×10

8

1.0
57
×10

9
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
1)

1.098

4.736

23.326

38.826 40.403 36.347

Memory/FLOP Optimal Contraction

8.3
56
×10

6

5.8
64
×10

7

5.2
79
×10

8
100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
2)

1.081

5.105

35.339

Memory/FLOP Optimal Contraction

7.8
64
×10

6

6.6
85
×10

7

6.1
73
×10

8
10−1

100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
L
3)

0.826

3.918

7.388

Memory/FLOP Optimal Contraction

2.0
97
×10

7

2.4
12
×10

8

1.1
22
×10

9
10−1

100

101

102

103

S
p
ee
d-
up

(f
or

da
ta

in
M
em

or
y)

0.389

1.848
2.631

Memory/FLOP Optimal Contraction

(a) (b) (c) (d)
Figure 8: Speed-up achieved for contraction of four tensor singletons ([A]ijk[B]ijl[C]mnk[D]mno) using by-pair
contraction over single expression evaluation for tensor sizes that fit a) L1 cache (size of temporary created
16KB=0.5×L1 cache), b) L2 cache (size of temporary created 128KB=0.5×L2 cache), c) L3 cache (size of tempo-
rary created 10MB=0.5×L3 cache) and, d) main memory (size of temporary created 80MB=4×L3 cache). x-labels
indicate the number of FLOPs saved/reduced by utilising by-pair (FLOP optimal) contraction and numbers on
top of bars show the corresponding speed-up.

scheme, while keeping the sizes of the temporaries to fit into fixed cache and successively
increasing the iteration space in order to increase the reduced FLOP count.

Certainly, the performance is now affected by the creation of two temporaries. For tensor
networks fitting L1 cache a reduction of 104 in FLOPs, for tensor networks fitting L2 cache a
reduction of 106 in FLOPs, for tensor networks fitting L3 cache a reduction of 107 in FLOPs and
for tensor networks not fitting in any cache a reduction of > 108 in FLOP count is required for
the by-pair tensor contraction scheme to outperform the single expression evaluation scheme.

One can correlate these numbers to the latency of data fetch (from different caches) of the
architecture. For the L1 cache of the tested Intel Xeon processor, the ratio of bytes read/writen
(4 cycle latency) to floating point operation (5 cycles mul + 3 cycles add) per each iteration
of contraction loop nest is going to be small enough (refer to [66] for various cache latencies).
Hence, for tensors fitting in L1 cache, even minimal savings in FLOPs can be beneficial.

Note that, due to the design of the current tensor contraction framework, all temporaries are
allocated on the stack. Different (and perhaps more in favour of the memory-saving approach)
performance traits should be expected for dynamic and heap allocated tensors. Since the
reduction in FLOP count is correlated to the size of tensors, it may not always be apparent to
choose one scheme over the other, and that leads to the idea of a heuristic cost model [14, 41].

18

It is worth mentioning that, these benchmarks essentially relate the correlation of fixed memory
allocations to the sequence (evalution pattern) of operation minimisation. In cases where the
sequence is not fixed, the operation minimisation may prove to be even more beneficial [68].

4.3. Compilation aspects of operation minimisation and further compile time tensor contraction
optimisations

As described in subsection 3.6, generating the Cartesian product of iteration space and fur-
ther the indices of tensors metaprogrammatically can lead to an increase in compilation time.
In this subsection, compilation aspects of Fastor are studied under two settings. First, the
different optimisation levels available in Fastor for tensor contraction (supplied as compiler flag
-DCONTRACT OPT) are studied. These optimisation levels essentially relate to the construction
of contraction loop nests (i.e. the Cartesian products) and loop transformation optimisations
described in subsection 3.6 which are in fact not related to operation minimisation. Second,
the compilation aspects of operation minimisation is studied and compared to the compila-
tion aspects of single expression evaluation scheme. The latter study is indeed related to the
benchmarks described in previous subsection on runtime perfomance of the two schemes.

As Fastor can compute the Cartesian product of contraction loop nest either at compile
time or at runtime, this leads to the following three optimisation levels

1. -DCONTRACT OPT=0 [default]: The Cartesian product is computed at runtime. This is
equivalent to explicitly writing the contraction loop nest and relying on the compiler to
optimise it.

2. -DCONTRACT OPT=1: The Cartesian product is computed at compile time and stored in
variadic template containers, but the indices of tensors are computed at runtime. In that,
the cost of indexing and memory access is still present at run time.

3. -DCONTRACT OPT=2: The Cartesian product and the indices of tensors are computed at
compile time and stored in variadic template containers. This is an extreme level of
optimisation which completely eliminates dynamic memory I/O (at least in theory) and
mandates that only floating point arithmetics should be performed at run time.

Note that, irrespective of the optimisation levels described above, Fastor will always have
enough information to perform loop enrolling and vectorisation, as the information regarding
the iteration space of tensors is available at compile time.

To study the various aspects of the above optimisation levels, a singleton comprising of
one 7th order tensor A and one 8th order tensor B is considered. The singleton is then
contracted such that the nonisomorphic vector space is successively increased. These correspond
to 7 index contraction [A]ijklmno[B]ijklmnop, 6 index contraction [A]ijklmno[B]ijklmnpr, 5 index
contraction [A]ijklmno[B]ijklmprs, 4 index contraction [A]ijklmno[B]ijklprst, 3 index contraction
[A]ijklmno[B]ijkprstu, 2 index contraction [A]ijklmno[B]ijprstuv and finally one index contraction
[A]ijklmno[B]iprstuvw, respectively. The dimensions of the tensors are chosen such that each of
the aformentioned multi-index contractions correspond to a Cartesian product with dimesnions
28 × 8, 29 × 9, 210 × 10, 211 × 11, 212 × 12, 213 × 13 and 214 × 14, respectively. In fact, these
dimensions range from small to large, in order to assess the compilation times for all kinds of
feasible applications. Four aspects of these optimisation levels are then studied namely, the
compilation time, memory footprint, generated binary size and the eventual execution time of
each. All the benchmarks are run with double precision AVX vectorisable nests with compiler
flags as “-O3 -mavx”. Although various compiler flags could be used to optimise for generated

19

binary sizes and sanitise memory footprint, they would lead to extensive parametric studies,
which is not the purpose here. The goal here is, to study Fastor’s internal optimisation schemes
with realistic compiler flags (also in order to be consistent with the other benchmarks). The
only two additional flags used are -Wstack-usage for GCC and -fconstexpr-steps=16000000

for Clang.

(a) (b)

(c) (d)

Figure 9: Compilation aspects of different optimisation levels for multi-index tensor contraction of singletons
(Lower is better). a) compilation time (wall time), b) memory footprint, c) size of binaries generated, and d)
eventual execution time (wall time). Contraction indices correspond to: (7 index)→ A]ijklmno[B]ijklmnop (span
28 × 8), (6 index) → [A]ijklmno[B]ijklmnpr (span 29 × 9), (5 index) → [A]ijklmno[B]ijklmprs (span 210 × 10),
(4 index) → [A]ijklmno[B]ijklprst (span 211 × 11), (3 index) → [A]ijklmno[B]ijkprstu (span 212 × 12), (2 index)
→ [A]ijklmno[B]ijprstuv (span 213 × 13)and (1 index) → [A]ijklmno[B]iprstuvw (span 214 × 14), respectively.
Note that data for GCC 6.2.0 for 4 index contraction and lower is not available for optimisation level -DOPT=2,
due to stall and excessive memory footprint. -DOPT is used as a shorter name alias for -DCONTRACT OPT.

From Figure 9 (shown as raw data), the first observation is that -DCONTRACT OPT=0 has
the compilation time and memory footprint of a typical application in C++, with all the
compilers. The second observation is that for -DCONTRACT OPT=2, GCC compilation time and
memory usage (8.2GB memory footprint) increases exponentially for 5 index contraction (i.e.
for the span 210 × 10) and eventually consumes all the available memory and stalls for 4 index
contraction (i.e. for the span 211 × 11). Further build profiling reveals that unlike ICC and
Clang, GCC stores up all large variadic templates and static arrays on the stack in order to
perform global optimisation for fixed indices, but does not optimise the memory I/O. A deeper
insight can be gained through a comparison of different optimisation levels presented in Table 2

20

and Table 3. As can be observed, the memory usage and compile time increases quadratically
for Clang starting from 4 index contraction, under the two latter optimisation levels. ICC
shows the least memory footprint (up to ≈2GB) for both higher optimisation levels and GCC
and Clang show the shortest compilation time for -DCONTRACT OPT=1 and -DCONTRACT OPT=2,
respectively. The size of generated binaries are all comparable for all compiler for a fixed
optimisation level. Clang generates a slightly more compact code compared to the other two
compilers for -DCONTRACT OPT=0 and ICC generates the most compact code for the other two
optimisation levels.

These results impact the run time accordingly. GCC compiled codes, show no signifcant
improvement in run time since the stack size is increased but memory I/O is still present.
However, at the cost of high memory usage and compilation time, ICC and Clang completely
optimise away the run time memory I/O and generate codes with -DCONTRACT OPT=2 which
is more than 80X faster than that of -DCONTRACT OPT=0 and nearly up to 5X faster than
-DCONTRACT OPT=1 (see Figure 9d). Note that, these performance gains come on top of the
benchmarks presented in subsection 4.1 for vectorisation (as here all the generated codes are
AVX vectorised). However, as can be seen from the raw data in Figure 9, for -DCONTRACT OPT=0,
GCC emits fully aligned memory load and store instructions which perform slightly faster than
their counterparts from the other compilers (as also explained in subsection 4.1).

It should be mentioned that -DCONTRACT OPT=1,2 correspond to optimisation levels that
neither a compiler would be willing to perform nor are they available in any vendor specific
libraries, such as BLAS. In fact, their implementation, require building a compile time vir-
tual engine to perform numerical analysis on template parameters (analogous to a numerical
analysis software that performs computations on arrays at runtime). Certainly, the complexity
involved in developing a metaprogramming engine of such sort is tremendous and the bench-
marks in Figure 9 reflect that. For instance, at -DCONTRACT OPT=2, Fastor performs sorting,
concatenation, reshaping and many more operation of (n log (n)) on std::integer sequences
(C++14) with length n more than 1000. This shows that the metaprogramming engine in
Fastor extends much beyond expression templates and operator chaining.

The motivation behind implementing these optimisations, is due to the domain specific
nature of Fastor to primarily optimise tensor contractions in finite element computations where
extremely large tensors rarely occur, and for which the compilation time could remain in seconds
and the memory footprint would be in the range of a few 100 megabytes at most. Note that,
a more in-depth analysis of template instantiation and compile time profiling is beyond the
scope of this study. For such diagnostic studies (carried out using the LLVM based Templight
[69, 70]), the interested reader can refer to https://github.com/romeric/LogfilesFastor

for more details.

↓ \→ Compilation Time Memory Usage Binary Size Execution Time
GCC Clang ICC GCC Clang ICC GCC Clang ICC GCC Clang ICC

7 Index 1.127 1.112 1.189 1.084 1.116 1.103 0.274 0.353 0.315 0.7 0.669 7.388
6 Index 1.253 1.34 1.395 1.18 1.29 1.241 0.347 0.511 0.383 1.038 17.352 12.565
5 Index 1.564 1.745 2.016 1.384 1.751 1.539 0.495 0.746 0.516 1.239 22.809 17.058
4 Index 2.082 2.64 3.423 1.836 3.064 2.195 0.813 1.253 0.832 1.004 27.694 16.102
3 Index 3.34 4.214 7.033 2.686 7.261 3.638 1.542 2.428 1.501 1.012 28.171 15.837
2 Index 6.212 10.086 13.435 4.748 21.449 6.767 3.111 4.88 2.905 0.938 30.133 17.053
1 Index 12.78 23.506 44.008 9.296 72.99 13.52 6.935 11.006 6.277 0.778 22.376 15.942

Table 2: Compilation aspects & run time performance of -DCONTRRACT OPT=1 normalised with respect to -DCONTRRACT OPT=0

Next, the compilation aspect of operation minimisation is studied. For this benchmark,
the cost of compilation over the single expression evaluation scheme (when depth-first search
is not perfomed) is studied. However, unlike the benchmarks conducted in subsection 4.2, the

21

↓ \→ Compilation Time Memory Usage Binary Size Execution Time
GCC Clang ICC GCC Clang ICC GCC Clang ICC GCC Clang ICC

7 Index 1.639 0.995 1.243 3.688 1.122 1.117 0.249 0.353 0.293 0.763 0.765 11.984
6 Index 3.247 1.444 1.487 12.618 1.304 1.269 0.322 0.432 0.338 1.458 25.055 25.361
5 Index 10.583 1.981 2.363 50.688 1.778 1.593 0.396 0.589 0.427 2.329 44.861 46.86
4 Index - 3.236 4.61 - 3.13 2.307 - 0.9 0.607 - 66.444 67.764
3 Index - 5.316 10.439 - 7.378 3.847 - 1.528 0.986 - 82.122 80.098
2 Index - 12.54 22.455 - 21.7 7.185 - 2.811 1.721 - 73.247 73.02
1 Index - 28.31 83.96 - 73.481 14.369 - 5.589 3.277 - 65.373 62.965

Table 3: Compilation aspects & run time performance of -DCONTRRACT OPT=2 normalised with respect to -DCONTRRACT OPT=0

interest here is not in the runtime performance of the operation minimisation, hence, studying
cache heirarchies and creation of intermediate temporaries are not pursued. Instead the two
compilation aspect namely, compilation time and compiler’s memory footprint is studied as a
function of the Cartesian product (iteration space of nests) and reported in Table 4-Table 6 as
the number of FLOPS saved/reduced, since these two parameters (iteration span and number
of FLOPS saved) are correlated. All the benchmarks are run by resorting back to the default
optimisation level i.e. -DCONTRACT OPT=0, as operation minimisation is an orthogonal matter to
loop transformation optimisations. Analogous to the benchmarks presented in subsection 4.2,
a three tensor singleton [A]ijk[B]ijl[C]mnl, a four tensor singleton [A]ijk[B]ijl[C]mnl[D]no and
a five tensor singleton [A]ijk[B]ijl[C]mnl[D]no[E]p are chosen and their sizes are successively
increased. Table 4, Table 5 and Table 6 show the compilation time and memory usage operation

Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
44544 1.307 1.307 1.325 1.07 1.07 1.076
89088 1.331 1.255 1.32 1.063 1.249 1.075
178176 1.288 1.712 1.289 1.062 1.726 1.077
356352 1.29 1.331 1.385 1.074 1.063 1.078
712704 1.34 1.252 1.283 1.062 1.242 1.078
1425408 1.295 1.705 1.323 1.07 1.729 1.078
2850816 1.294 1.288 1.364 1.067 1.062 1.079

Table 4: Compilation cost of operation minimisation normalised with respect to single expression evalution for 3 tensor singleton

minimisation scheme over the single expression scheme for each of the aforementioned singleton.
As can be observed from the results, the compilation time is not related to the sizes of the
tensors but rather to the number of tensors (or operators) appearing in the whole tensor
network. This is a fairly certain issue as the depth-first search recursive in nature6. In that, the
compilation time and memory footprint of four and five tensor singleons are around 30% and
80-100% more than those of single expression evaluations. However, in terms of raw timings,
the highest compilation time for operation minimisation has been 2.25 seconds (with ICC)
which corresponds to a FLOP reduction of 41566208. The conclusion drawn from these results
is that, a compile time depth-first search is fundamentally low-cost if the number of tensors in
the network are small. At the cost increasing the compile time by merely a few seconds million
to billions of runtime operations can be saved.

5. Applications & Real-world experimentation: Kernel-based numerical integra-
tion of nonlinear materials
In this section, numerical examples pertaining to the application of the current tensor

contraction library in an embedded finite element framework are presented, specifically, in

6The cost of depth-first search through Fastor’s meta-engine is at most n!/2, where n is the number of tensors
appearing in the network.

22

Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
256512 1.255 1.281 1.78 1.27 1.271 1.294
513024 1.26 1.758 1.584 1.261 1.731 1.292
1026048 1.256 1.282 1.359 1.26 1.054 1.296
2052096 1.31 1.318 1.459 1.262 1.259 1.295
4104192 1.268 1.716 1.512 1.258 1.731 1.295
8208384 1.263 1.314 1.427 1.265 1.047 1.296
16416768 1.281 1.244 1.438 1.268 1.249 1.299

Table 5: Compilation cost of operation minimisation normalised with respect to single expression evalution for 4 tensor singleton

Saved FLOPs
Compilation Time Memory Usage

GCC Clang ICC GCC Clang ICC
649472 1.745 1.778 2.293 1.758 1.759 1.822
1298944 1.727 1.32 2.288 1.753 1.052 1.823
2597888 1.724 1.263 2.188 1.745 1.242 1.827
5195776 1.716 1.747 2.311 1.763 1.749 1.829
10391552 1.778 1.277 2.205 1.756 1.046 1.828
20783104 1.724 1.256 2.274 1.752 1.246 1.827
41566208 1.745 1.712 2.314 1.756 1.738 1.828

Table 6: Compilation cost of operation minimisation normalised with respect to single expression evalution for 5 tensor singleton

numerical integration of work-conjugates and Hessian of some polyconvex hyperelastic and
multi-variable convex electroelastic energy functionals presented in section 2. The objective of
these examples are to examine the speed-ups gained in numerical integration (or the so-called
local assembly) of complex energy functionals using the framework’s data parallelism, smart
expression templates and additional domain specific features (benchmarked in the previous
sections). In order to gain insights into each of the aformationed optimisation steps, the Fastor’s
implementation is benchmarked against three different individual implementations, namely

1. Explicitly-vectorised Implementation [Variant 1]: This implementation benefits
from Fastor’s explicit vectorisation but uses classical operator overloading. Compari-
son against this implementation will measure solely the benefit of operator chaining of
expression templates for finite element local assembly procedures.

2. Auto-vectorised Implementation [Variant 2]: This implementation does not benefit
from Fastor’s explicit vectorisation and this is left to the compiler’s auto-vectoriser. The
implementation also uses classical operator overloading. Comparison against this imple-
mentation will measure the impact of explicit SIMD vectorisation and operator chaining
for finite element local assembly procedures.

3. Classical Implementation [Variant 3]: This implementation does not benefit from
Fastor’s explicit vectorisation and operator chaining. Furthermore, unlike variants 2 and
3, this implementation uses a classical implementation of the tensor cross product. Com-
parison against this implementation will measure the impact of explicit SIMD vectorisa-
tion, operator chaining and optimised tensor cross product kernels for finite element local
assembly procedures. Note that this implementation only holds for three-dimensional
problems, as the tensor cross product is a three-dimensional operator.

Note that while the backend implementaions for each implementation differs, they are all
similar in terms of API, functions’ signatures, data structures used and the local assembly
contraction loop nest (in fact, all implementations are fundamentally based on Listing 6).
Furthermore, all variants are compiled with identical compiler flags. An attempt is made
to keep the other implementations as close to a realistic implementation as possible, in that

23

the calls to functions such as determinant, inverse, transpose and cofactor used within the
quadrature loop nest (as shown in Listing 6) are kept the same for all the implementations
i.e. they are all call optimised in-built routines. This is true for most implementations, where
such calls are dispatched to either vendor BLAS or optimised in-built subroutines. The only
exception is that for the third variant of the implementation, the cross function in Listing 6
uses a classical implementation as its implementation is not available in say, BLAS. It is worth
mentioning that, in the current tensor contraction framework, the optimised implementation of
the tensor cross products involves complete manual loop unrolling, explicit AVX vectorisation,
zero elimination and restructuring of the data for super-scalar execution. The technique of
eliminating zeros from the computation is a rather common practice in generating domain
specific kernels [11, 40].

To this effect, three energy functionals are chosen, one purely mechanical (the Mooney-
Rivlin model) and two electromechanical, including the one presented in subsection 2.4, all
listed in Table B.9 in Appendix B. The assessment is then to perform finite element analyses
based on displacement-based formulation for mechanical problems and displacement-potential
based formulation for electromechanical problems with high order triangles and tetrahedral
elements and monitor the speed-ups achieved for local assembly. The quadrature loop nest is
set up in the most classical fashion, in that it includes iteration over the quadrature points and
test and trial spaces [11, 14, 15, 18, 41]. However, the last two loops (over test and trial spaces)
are removed in favor of the abstraction provided by Fastor’s Tensor class.

Consequently, in line with the theme of this framework, explicit tensorial operations involv-
ing computation of the following quantities are carried out within every quadrature point: a)
the Jacobian of the isoparametric mapping (∇Xξ) (as described in [71] b) the material gradi-
ent of the displacements (∇0u), c) the variables in the extended kinematic set V , d) the set of
work-conjugates and subsequently the first Piola-Kirchhoff stress tensor and the electric field
vector and finally e) the Hessian of the internal energy.

It should be clear that, the utmost efficiency of the approach taken here for local assembly
is not the objective of these benchmarks. The benchmarks rather showcase the usage of the
framework in explicit finite element programming through seemingly hidden domain aware
expressions, which plays a key role in kernel-based numerical integration shown in Listing 6.

Listing 6: The structure of the quadrature loop nest
for (auto g=0; g<ngauss; ++g) {

// Compute Jacobian of isoparametric mapping

auto ParentGradientX = matmul(GradBases ,LagrangeElemCoords);

// Compute material gradient

auto MaterialGradient = matmul(inverse(ParentGradientX),GradBases);

// Compute the deformation gradient tensor

auto F = matmul(MaterialGradient ,EulerElemCoords);

// Compute the cofactor of deformation gradient tensor

auto H = cofactor(F);

// Compute the Jacobian of deformation gradient tensor

auto J = determinant(F);

// Compute work - conjugates

// Sigma_F , Sigma_H , Sigma_J , Sigma_D0 and Sigma_d

// Compute the first Piola -Kirchhoff stress tensor

auto P = Sigma_F + cross(Sigma_H ,F) + Sigma_J*H;

// Compute the electric field/ displacement

// E0 , D0

// Compute the Hessian components

// WFF , WFH , WFJ , WFD0 , WFd , WHH , WHJ ,... Wdd

// Compute the Hessian of the energy W

// H_W ...

}

24

In the current setting, kernel-based computation is a consequence of expression templates com-
bined with the C++11 auto keyword, in that, specific quantities within a quadrature loop nest
can be lumped as a single expression and a single kernel can be launched for it. To illustrate
this, consider the evaluation of the deformation gradient tensor F in Listing 6. Computing this
quantity requires computation of ParentGradientX and MaterialGradient first. However,
note that the automatic type deduction via auto does not force these quantities to bind to
an object and as a result their computation is postponed and their automatic type is chained
and carried over to the next line. Now, by the time the computation of F is requested, three
matmul and one inverse functions are chained together, see Listing 6. A canonical and rather
schematic representation of how the type of F is detected in Fastor can be represented as in
Listing 7.

Listing 7: A single expression for computing the deformation gradient tensor
BinaryMatMulOp <BinaryMatMulOp <UnaryInvOp <BinaryMatMulOp <GradBases ,LagrangeElemCoords > >,

GradBases >,EulerElemCoords >

The evalutaion policy in Fastor, detects that an efficient implementation for this chained ex-
pression is available that does not require as many memory load and store operations. Hence,
it statically dispatches the expression for F to a bespoke kernel. In particular, the evaluation
of this kernel involves SIMD optimised matrix multiplications for on-cache tensors. It is worth
mentioning that, chaining multiple operations of level 3 BLAS as shown in Listing 7, is a fun-
damentally rare feature for generic tensor algebra libraries. Fastor leverages from this by virtue
of being domain specific. Similarly, for computing the first Piola-Kirchhoff stress tensor, Fastor
detects the following expression, shown in Listing 8.

Listing 8: A single expression for computing the Piola-Kirchhoff stress tensor
BinaryAddOp <Sigma_F ,BinaryAddOp <BinaryCrossOp <Sigma_H ,F>, BinaryMulOp <Sigma_J ,H>>>

Evaluation of this expression requires a single transparent loop within the quadrature loop nest,
which also gives rise to a myriad of other optimisation possibilities other than vectorisation, as
shown in Figure 4. The same concept is applied for the computation of other variables such as
electric field and the Hessian.7

Based on our initial set up explained at the start of the section, synthetic finite element
examples are manufactured based on two meshes, one triangular mesh and one tetrahedral
mesh, respectively, as shown in Figure 11. Moreover, careful attention is paid to the assembly
code generated by the compilers. However, for the purpose of brevity, only the results form
the Intel compiler with -O3 -xHost, are presented here. All the benchmarks in this section are
carried out with double precision floating point. For high order elements, nodal Lagrange basis
functions with optimal nodal placements [60, 72] are chosen, to guarantee the stability and
p-convergence property of the basis functions. These correspond to Fekete point nodal distri-
bution for triangles and Warburton nodes for tetrahedra. Furthermore, the optimal quadrature
scheme for triangles and tetrahedra presented in [73] is employed.

Table 7 and Table 8 show the speed-ups achieved using Fastor over the other implementa-
tions for the triangular mesh and the tetrahedral mesh, respectively. As can be observed from

7In fact, as a part of the smart expression template engine for a domain specific tensor contraction framework,
it is possible to decesively change the evaluation policies of the expressions (as described in subsection 3.4) such
that specific quantities of interest can be computed as a single kernel. This facilitates locality of reference which
has a significant importance in SIMD and GPU computing.

25

p
Mooney-Rivlin Model Electroelastic Model 1 Electroelastic Model 2

Explicit SIMD Auto-Vectoriser Explicit SIMD Auto-Vectoriser Explicit SIMD Auto-Vectoriser
p = 1 1.32 1.598 1.734 1.135 2.168 1.661
p = 2 1.226 1.758 1.645 1.336 1.982 1.77
p = 3 1.177 1.924 1.497 1.528 1.856 1.912
p = 4 1.132 2.064 1.485 1.747 1.723 1.972
p = 5 1.145 2.095 1.366 1.667 1.595 1.928
p = 6 1.089 2.085 1.334 1.93 1.517 2.202

Table 7: Speed-ups achieved in numerical integration using Fastor over other implementations for the 2D triangular mesh

p
Mooney-Rivlin Model Electroelastic Model 1 Electroelastic Model 2

Explicit
SIMD

Auto-
Vectoriser

Classic Explicit
SIMD

Auto-
Vectoriser

Classic Explicit
SIMD

Auto-
Vectoriser

Classic

p = 1 1.462 2.226 5.514 1.928 2.51 4.63 1.591 2.054 3.004
p = 2 1.964 3.52 6.711 1.957 3.358 5.181 1.7 1.978 3.208
p = 3 1.183 3.321 6.277 1.582 3.341 5.815 1.643 2.813 4.294
p = 4 1.506 4.89 7.557 1.401 3.674 5.367 1.505 3.021 4.26
p = 5 1.604 6.114 8.313 1.362 4.063 5.397 1.485 3.474 4.44
p = 6 2.009 5.96 7.382 1.247 4.171 5.034 1.267 3.214 3.971

Table 8: Speed-ups achieved in numerical integration using Fastor over other implementations for the 3D tetrahedral mesh

Table 7 (corresponding to the two-dimensional case with triangular mesh), for Mooney-Rivlin
model, where the constitutive law is simpler and the number of operators to chain within the
quadrature nest is small, most of the performance comes from SIMD vectorisation. However,
for the two electroelastic models, where the constitutive law is significantly complex and the
number of operators to chain are large, up to 85% of the performance of Fastor comes from
operator chaining; see Figure 10(a,b,c) for a visual representation.

A counter-intuitive finding from Figure 10 is that, at high polynomial degrees, the effect
of explicit vectorisation is more pronounced than operator chaining. However, by studying
the quadrature nest shown Listing 6, one can observe that most of the tensors within the
nest are small (of size d × d where the d = 2, 3 is the spatial dimension of the problem). In
the absence of operator chaining and at low polynomial degrees, Fastor attempts to generate
vectorised code for every operator individually by strictly aligning the operands pointers at 16B
or 32B boundaries, depending on the vectorisation level. This is too strict of a requirement,
that eventually forces the compiler to insert further paddings in order to avoid cache spills.
This destroys the data locality and hence impacts the run time. However, as seen in Table 7,
if the decision of vectorisation is left to the auto-vectoriser, the compiler tries to be much
more conservative about vectorisation. Alternatively if the operators are chained and then
vectorised as a single expression, the combined benefit of both paradigms (vectorisation and
operator-chaining) can be harnessed. The conclusion drawn from this observation is that,
operator chaining is essential for maintaining data locality in the quadrature nest.

At high polynomial degrees, most of the simulation time is consumed in computing the
defrormation gradient tensor F, which mainly involves the three matmul functions in Listing 6.
Despite being a Fastor smart expression (as explained earlier), the cost of matrix-matrix mul-
tiplications is certainly going to dominate the computation time as the sizes of GradBases,
LagrangeElemCoords and EulerElemCoords are much bigger compared to the rest of the vari-
ables within the quadrature loop. Operator chaining effect, while present is going to be a
fraction of the cost of matmuls between larger tensors. Accelerating the local matrix-matrix
multiplication kernels within the quadrature points is also studied in [40].

For the three-dimensinoal problems (tetrahedral mesh), similar performance traits can be
observed as shown in Table 8 and Figure 10(d,e,f). However, here the effect of zero-elimination
using the bespoke tensor cross product kernels comes into play. Note that, straight forward
implementation of the tensor cross product is d6 in computational complexity and d4 in memory

26

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining

(a) (b) (c)

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining Tensor Cross

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining Tensor Cross

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
0

20

40

60

80

100

P
er
ce
nt
ag
e
C
on
tr
ib
ut
io
n

Vectorisation Operator Chaining Tensor Cross

(d) (e) (f)
Figure 10: Contribution percentile of different optimisations for numerical integration using Fastor; (a), (b), (c)
for triangular mesh and (d), (e), (f) for tetrahedral mesh.

access, implying that it is dimension dependent and independent of the polynomial degree. As a
result, a rather constant speed-up is observed using the optimised tensor cross product kernels.
It is worth mentioning that, while a different approach to performing numerical integration
could be employed, the aforementioned results can be used as indicative numbers, of what is
possible by relying on explicit tensor manipulations.

Figure 11: Meshes used for finite element benchmarks, a) A curved mechanical component [60] and b) Artificial
hand used for simulating electrostriction [48].

6. Concluding remarks

A domain specific data parallel tensor contraction framework for numerical analysis of cou-
pled and multi-physics applications is presented. The framework encompasses tensor con-
traction of isomorphic and nonisomorphic tensor networks by relying on explicit vectorisation
using SIMD vector types. Furthermore, the in-built smart expression template engine performs
compile time operation minimisation technique using mathematical transformation for named
chained operators and depth-first constructive approach for un-named operators on tensor net-
works. The framework utilises heavy compile technologies perform aggressive loop optimisation,

27

which in certain cases can completely eliminate the run time memory I/O. Benchmark exam-
ples presented show optimal SIMD speed-ups for contraction of arbitrary order tensors on a
recent Intel processor using three different compilers. Finally, finite element examples involving
kernel-based numerical integration of complex convex multi-variable energy functional are car-
ried out in two and three dimensions, where all the features of the current tensor contraction
framework are utilised, in particular, the effect of operator chaining and launching vectorised
kernels, is shown to be paramount. In this context, numerical examples presented, confirm
significant speed-ups over the classical approaches.

Appendix A. Computational aspects of tensor contraction

In this section, some common computational terminologies used in the context of tensor
contraction are defined.

Definition 1 Tensor network: A complex network of tensors comprising of two or more ten-
sors, multiplied and summed over a set of indices, for instance AijkBlmj + CijklDjEm +

Definition 2 Singleton: A singleton or a single term tensor network is a single sub-expression
of (Definition 1), for instance AijkBlmj.
Definition 3 Isomorphic tensor product (outer product): Given a tensor pair A and B be-
longing to vector spaces Ξ and ℵ, respectively, their product is said to be isomorphic, if and
only if there are no contracting indices between the two, i.e. if isomorphism exists between the
vector space of the product Υ and the product of the vector spaces Ξ⊗ ℵ.

Definition 4 Nonisomorphic tensor product (tensor contraction): Given a tensor pair A and
B belonging to vector spaces Ξ and ℵ, respectively, their product is said to be nonisomorphic,
if at least their is one common index between the two i.e. if no isomorphism exists between the
vector space of the product Υ and the product of the vector spaces Ξ⊗ ℵ.

Definition 5 Named operator: An operation performed on a tensor, a pair or a network is
said to be named, if there is a specific name for the function signature, for instance, gemm,

matmul, rotg, transpose, trace.

Definition 6 Un-named operator: An operation performed on a tensor, a pair or a network
is said to be un-named, if it is expressed through indicial notation, for instance, Aiii is an
un-named reduction operation.

Definition 7 Contraction loop nest: A variable number of nested for loop iterating over the
space of tensor dimensions.

Definition 8 Fully vectorisable contraction loop nest: A loop nest is said to be fully vectorisable
if and only if a) the span (iteration space) of the fastest changing index in the catersian product
is a multiple of SIMD vector size and b) the index is not a contraction index.

Definition 9 Partially vectorisable contraction loop nest: A loop nest is said to be partially
vectorisable if and only if a) the span (iteration space) of the fastest changing index in the
catersian product is not a multiple of SIMD vector size but nevertheless greater than it and b)
the index is not a contraction index.

Definition 10 Broadcast-vectorisable contraction loop nest: lerA loop nest is said to be broadcast-
vectorisable if a) the span (iteration space) of the fastest changing index in the catersian product
is a multiple of or greater than SIMD vector size b) the index is a contraction index. Double
contraction is a special case of broadcast-vectorisable contraction loop nests.

28

Definition 11 Depth-first constructive search: A compile-time graph search to find the order
in which pairs of tensors need be contracted so that the contraction over all tensor network
incurs minimum floating point operations. The by-pair nature of tensor network evaluation
leads to multiple intermediate temporaries which introduces a memory vs FLOP tradeoff.

Appendix B. Material models used for finite element benchmarks

The internal energies of the materials used in section 5 are as follows

Material Model Internal Energy
Mooney-Rivlin Wmr = µ1IIF + µ2IIH − 2(µ1 + 2µ2)lnJ + κ

2
(J − 1)2

Electroelastic Model 1 Wel,1 = µ1IIF +µ2IIH−2(µ1+2µ2)lnJ+κ
2
(J−1)2+ 1

2ε1
IID0+ 1

2ε2J
IId

Electroelastic Model 2 Wel,2 = µ1IIF + µ2IIH − (2µ1 + 4µ2 + 12µe)lnJ + κ
2
(J − 1)2 +

+ 1
2ε1
IID0 + 1

2ε2J
IId + µe

(
II2

F + 2
µeεe

IIF IId + 2
µ2

eε
2
e
II2

d

)

Table B.9: Material models used for finite element benchmarks

Acknowledgement: The first author acknowledges the financial support received through The
Erasmus Mundus SEED program. Both second and third authors acknowledge the financial
support provided by the Sêr Cymru National Research Network for Advanced Engineering and
Materials.

References

[1] J. Bonet, A. J. Gil, R. Ortigosa, A computational framework for polyconvex large strain elasticity, Com-
puter Methods in Applied Mechanics and Engineering 283 (2015) 1061–1094.

[2] J. Bonet, A. J. Gil, R. Ortigosa, On a tensor cross product based formulation of large strain solid mechanics,
International Journal of Solids and Structures 84 (2016) 49–63.

[3] L. Chi-Chung, P. Sadayappan, R. Wenger, On optimizing a class of multi-dimensional loops with reduction
for parallel execution, Parallel Processing Letters 07 (1997) 157–168.

[4] J. H. Reif, Depth-first search is inherently sequential, Information Processing Letters 20 (1985) 229 – 234.
[5] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bernholdt,

R. Harrison, Towards Automatic Synthesis of High-Performance Codes for Electronic Structure Calcula-
tions: Data Locality Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 237–248.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., MIT Press,
2009.

[7] R. N. C. Pfeifer, J. Haegeman, F. Verstraete, Faster identification of optimal contraction sequences for
tensor networks, Phys. Rev. E 90 (2014) 033315.

[8] G. Evenbly, R. N. C. Pfeifer, Improving the efficiency of variational tensor network algorithms, Phys. Rev.
B 89 (2014) 245118.

[9] A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E. Bernholdt, S. Hirata, C.-C. Lam, R. M.
itzer, J. Ramanujam, P. Sadayappan, Automated Operation Minimization of Tensor Contraction Ex-
pressions in Electronic Structure Calculations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp.
155–164.

[10] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall, 2009.
[11] K. B. Ølgaard, G. N. Wells, Optimisations for quadrature representations of finite element tensors through

automated code generation, ACM Transactions on Mathematical Software 37 (2010) 8:1–8:23.
[12] B. Jeremić, K. Runesson, S. Sture, Object-oriented approach to hyperelasticity, Engineering with Com-

puters 15 (1999) 2–11.

29

[13] W. Landry, Implementing a high performance tensor library, Sci. Program. 11 (2003) 273–290.
[14] A. Logg, K.-A. Mardal, G. N. Wells (Eds.), Automated Solution of Differential Equations by the Finite

Element Method, volume 84 of Lecture Notes in Computational Science and Engineering, Springer, 2012.
[15] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, G. N. Wells, Unified Form Language: A domain-

specific language for weak formulations of partial differential equations, ACM Transactions on Mathemat-
ical Software 40 (2014) 9:1–9:37.

[16] R. C. Kirby, A. Logg, L. R. Scott, A. R. Terrel, Topological optimization of the evaluation of finite element
matrices, SIAM Journal on Scientific Computing 28 (2006) 224–240.

[17] R. C. Kirby, M. Knepley, A. Logg, L. R. Scott, Optimizing the evaluation of finite element matrices, SIAM
Journal on Scientific Computing 27 (2005) 741–758.

[18] A. Logg, G. N. Wells, DOLFIN: Automated finite element computing, ACM Transactions on Mathematical
Software 37 (2010) 20:1–20:28.

[19] A. T. T. McRae, G.-T. Bercea, L. Mitchell, D. A. Ham, C. J. Cotter, Automated generation and symbolic
manipulation of tensor product finite elements, SIAM Journal on Scientific Computing 38 (2016) S25–S47.

[20] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T. Bercea, G. R.
Markall, P. H. J. Kelly, Firedrake: automating the finite element method by composing abstractions, To
appear in ACM Transactions on Mathematical Software (2016).

[21] Prudhomme, Christophe, Chabannes, Vincent, Doyeux, Vincent, Ismail, Mourad, Samake, Abdoulaye,
Pena, Goncalo, Feel++ : A computational framework for galerkin methods and advanced numerical
methods, ESAIM: Proc. 38 (2012) 429–455.

[22] T. L. Veldhuizen, Computing in Object-Oriented Parallel Environments: Second International Symposium,
ISCOPE 98 Santa Fe, NM, USA, December 8–11, 1998 Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998, pp. 223–230.

[23] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, T. Veldhuizen, Generic Programming: Interna-
tional Seminar on Generic Programming Dagstuhl Castle, Germany, April 27–May 1, 1998 Selected Papers,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 25–39.

[24] B. Jeremi, S. Sture, Tensor objects in finite element programming, International Journal for Numerical
Methods in Engineering 41 (1998) 113–126.

[25] A. Limachea, P. Rojas Fredini, A tensor library for scientific computing, in: Mecanica Computacional,
volume XXVII, San Luis, Argentina, 2008, pp. 2907–2925.

[26] E. Epifanovsky, M. Wormit, T. Ku, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman, A. Dreuw,
A. I. Krylov, New implementation of high-level correlated methods using a general block tensor library
for high-performance electronic structure calculations, Journal of Computational Chemistry 34 (2013)
2293–2309.

[27] G. Guennebaud, B. Jacob, Eigen v3, http://eigen.tuxfamily.org, 2010.
[28] S. Hirata, Tensor Contraction Engine: Abstraction and automated parallel implementation of configuration-

interaction, coupled-cluster, and many-body perturbation theories, The Journal of Physical Chemistry A
107 (2003) 9887–9897.

[29] Q. Lu, X. Gao, S. Krishnamoorthy, G. Baumgartner, J. Ramanujam, P. Sadayappan, Empirical perfor-
mance model-driven data layout optimization and library call selection for tensor contraction expressions,
J. Parallel Distrib. Comput. 72 (2012) 338–352.

[30] C.-C. Lam, T. Rauber, G. Baumgartner, D. Cociorva, P. Sadayappan, Memory-optimal evaluation of
expression trees involving large objects, Computer Languages, Systems and Structures 37 (2011) 63 – 75.

[31] J. A. Calvin, E. F. Valeev, Task-based algorithm for matrix multiplication: A step towards block-sparse
tensor computing (2015).

[32] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, J. Demmel, A massively parallel tensor
contraction framework for coupled-cluster computations, Journal of Parallel and Distributed Computing
74 (2014) 3176 – 3190. Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing.

[33] E. Solomonik, T. Hoefler, Sparse Tensor Algebra as a Parallel Programming Model, ArXiv e-prints (2015).

30

[34] T. Veldhuizen, Expression templates, C++ Report 7 (1995) 26–31.
[35] K. Matsuzaki, K. Emoto, Implementation and Application of Functional Languages: 21st International

Symposium, IFL 2009, South Orange, NJ, USA, September 23-25, 2009, Revised Selected Papers, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 72–89.

[36] K. Iglberger, G. Hager, J. Treibig, U. Rde, Expression Templates Revisited: A performance analysis of
current methodologies, SIAM Journal on Scientific Computing 34 (2012) C42–C69.

[37] Y. I. J. Progsch, A. Adelmann, A new vectorization technique for expression templates in C++ (2011).
[38] M. Kretz, V. Lindenstruth, Vc: A C++ library for explicit vectorization, Software: Practice and Experi-

ence 42 (2012) 1409–1430.
[39] F. Witherden, A. Farrington, P. Vincent, PyFR: An open source framework for solving advection-diffusion

type problems on streaming architectures using the flux reconstruction approach, Computer Physics
Communications 185 (2014) 3028 – 3040.

[40] B. D. Wozniak, F. D. Witherden, F. P. Russell, P. E. Vincent, P. H. Kelly, GiMMiK - Generating bespoke
matrix multiplication kernels for accelerators: Application to high-order computational fluid dynamics,
Computer Physics Communications 202 (2016) 12 – 22.

[41] F. Luporini, A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A. Ham, P. H. J. Kelly,
Cross-loop optimization of arithmetic intensity for finite element local assembly, ACM Transactions on
Architecture and Code Optimization 11 (2015) 57:1–57:25.

[42] L. Dagum, R. Menon, OpenMP: An industry standard API for shared-memory programming, Computa-
tional Science & Engineering, IEEE 5 (1998) 46–55.

[43] OpenMP Architecture Review Board, OpenMP application program interface version 4.0, 2013. URL:
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[44] M. Frigo, P. Halpern, C. E. Leiserson, S. Lewin-Berlin, Reducers and other Cilk++ hyperobjects, in:
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures, SPAA
2009, ACM, New York, NY, USA, 2009, pp. 79–90.

[45] J. E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard for heterogeneous computing
systems, IEEE Des. Test 12 (2010) 66–73.

[46] A. Fog, C++ vector class library, 1.22 ed., 2016. URL: http://www.agner.org/optimize/vectorclass.
pdf.

[47] A. J. Gil, R. Ortigosa, A new framework for large strain electromechanics based on convex multi-variable
strain energies: Variational formulation and material characterisation, Computer Methods in Applied
Mechanics and Engineering 302 (2016) 293 – 328.

[48] R. Ortigosa, A. J. Gil, A new framework for large strain electromechanics based on convex multi-variable
strain energies: Finite element discretisation and computational implementation, Computer Methods in
Applied Mechanics and Engineering 302 (2016) 329 – 360.

[49] R. Ortigosa, A. J. Gil, A new framework for large strain electromechanics based on convex multi-variable
strain energies: Conservation laws, hyperbolicity and extension to electro-magneto-mechanics, Computer
Methods in Applied Mechanics and Engineering 309 (2016) 202 – 242.

[50] R. Ortigosa, A. J. Gil, C. H. Lee, A computational framework for large strain nearly and truly incom-
pressible electromechanics based on convex multi-variable strain energies, Computer Methods in Applied
Mechanics and Engineering 310 (2016) 297 – 334.

[51] R. de Boer, Vektor- und Tensorrechnung für Ingenieure, Springer, 1982.
[52] A. L. Dorfmann, R. W. Ogden, Nonlinear Theory of Electroelastic and Magnetoelastic Interactions,

Springer, Dordrecht, Heidelberg, London, New York, 2014.
[53] R. M. McMeeking, C. M. Landis, Electrostatic forces and stored energy for deformable dielectric materials,

Journal of Applied Mechanics 72 (2005) 581–590.
[54] D. K. Vu, P. Steinmann, Nonlinear electro- and magneto-elastostatics: Material and spatial settings,

International Journal of Solids and Structures 44 (2007) 7891–7905.
[55] D. K. Vu, P. Steinmann, G. Possart, Numerical modelling of non-linear electroelasticity, International

Journal for Numerical Methods in Engineering 70 (2007) 685–704.

31

[56] R. Bustamante, D. A., R. W. Ogden, Nonlinear electroelastostatics: a variational framework, Zeitschrift
fur angewandte Mathematik und Physik 60 (2009) 154–177.

[57] R. Poya, A. J. Gil, P. D. Ledger, A computational framework for the analysis of linear piezoelectric beams
using hp-FEM, Computers and Structures 152 (2015) 155–172.

[58] R. Ortigosa, A. J. Gil, J. Bonet, C. Hesch, A computational framework for polyconvex large strain elasticity
for geometrically exact beam theory, Computational Mechanics 57 (2016) 277–303.

[59] R. Ortigosa, A. J. Gil, A computational framework for incompressible electromechanics based on convex
multi-variable strain energies for geometrically exact shell theory, Computer Methods in Applied Mechanics
and Engineering In Print (2016) http://dx.doi.org/10.1016/j.cma.2016.12.034.

[60] R. Poya, R. Sevilla, A. J. Gil, A unified approach for a posteriori high-order curved mesh generation using
solid mechanics, Computational Mechanics 58 (2016) 457–490.

[61] F. Cirak, J. C. Cummings, Generic programming techniques for parallelizing and extending procedural
finite element programs, Engineering with Computers 24 (2008) 1–16.

[62] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns Applied, Addison-
Wesley, 2001.

[63] M. Kretz, Data-parallel vector types & operations, ISO/IEC C++ Standards Committee Paper (2016).
[64] S. Meyers, Effective Modern C++, O’Reilly Media, 2014.
[65] F. G. Van Zee, R. A. van de Geijn, BLIS: A framework for rapidly instantiating BLAS functionality, ACM

Transactions on Mathematical Software 41 (2015) 14:1–14:33.
[66] D. Levinthal, Performance Analysis Guide for Intel CoreTM i7 Processor and Intel XeonTM

5500 processors, 2009. URL: https://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

[67] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev,
I. Masliah, S. Tomov, High-performance tensor contractions for GPUs, Procedia Computer Science 80
(2016) 108 – 118. International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA.

[68] E. Acar, R. J. Harrison, F. Olken, O. Alter, M. Helal, L. Omberg, B. Bader, A. Kennedy, H. Park, Z. Bai,
D. Kim, R. Plemmons, G. Beylkin, T. Kolda, S. Ragnarsson, L. Delathauwer, J. Langou, S. P. Ponnapalli,
I. Dhillon, L. Lim, J. R. Ramanujam, C. Ding, M. Mahoney, J. Raynolds, L. Elden, C. Martin, P. Regalia,
P. Drineas, M. Mohlenkamp, C. Faloutsos, J. Morton, B. Savas, S. Friedland, L. Mullin, C. V. Loan, Future
directions in tensor-based computation and modeling, in: NSF Workshop Report, VA, USA, 2009.

[69] Z. Porkoláb, J. Mihalicza, N. Pataki, Á. Sipos, Analysis of profiling techniques for C++ template metapro-
grams, Ann. Univ. Sci. Budapest. Sect. Comput. 30 (2009) 97116.

[70] N. Pataki, Testing by C++ template metaprograms, Acta Univ. Sapientiae 2 (2010) 154–167.
[71] J. Bonet, A. J. Gil, R. D. Wood, Nonlinear Solid Mechanics for Finite Element Analysis: Statics, 3rd ed.,

Cambridge University Press, Cambridge, UK, 2016.
[72] F. D. Witherden, P. E. Vincent, An analysis of solution point coordinates for flux reconstruction schemes

on triangular elements, Journal of Scientific Computing 61 (2014) 398–423.
[73] F. Witherden, P. Vincent, On the identification of symmetric quadrature rules for finite element methods,

Computers & Mathematics with Applications 69 (2015) 1232 – 1241.

32

