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Abstract

A family of numerical models for the phenomenological linear flexoelectric theory for continua
and their particularisation to the case of three-dimensional beams based on a skew-symmetric
couple stress theory is presented. In contrast to the standard strain gradient flexoelectric models
which assume coupling between electric polarisation and strain gradients, we postulate an electric
enthalpy in terms of linear invariants of curvature and electric field. This is achieved by intro-
ducing the axial (mean) curvature vector as a strain gradient measure. The physical implication
of this assumption is many-fold. Firstly, analogous to the standard strain gradient models, for
isotropic (non-piezoelectric) materials it allows constructing flexoelectric energies without break-
ing material’s centrosymmetry. Secondly, unlike the standard strain gradient models, nonuniform
distribution of volumetric part of strains (volumetric strain gradients) do not generate electric po-
larisation, as also confirmed by experimental evidence to be the case for some important classes of
flexoelectric materials. Thirdly, a state of plane strain generates out of plane deformation through
strain gradient effects. Finally, under this theory, extension and shear coupling modes cannot be
characterised individually as they contribute to the generation of electric polarisation as a whole.
As a first step, a detailed comparison of the developed couple stress based flexoelectric model with
the standard strain gradient flexoelectric models is performed for the case of Barium Titanate
where a myriad of simple analytical solutions are assumed in order to quantitatively describe the
similarities and dissimilarities in effective electromechanical coupling under these two theories.
From a physical point of view, the most notable insight gained is that, if the same experimental
flexoelectric constants are fitted in to both theories, the presented theory in general, reports up
to 200% stronger electromechanical conversion efficiency. From the formulation point of a view,
the presented flexoelectric model is also competitively simpler as it eliminates the need for high
order strain gradient and coupling tensors and can be characterised by a single flexoelectric coef-
ficient. In addition, three distinct mixed flexoelectric variational principles are presented for both
continuum and beam models that facilitate incorporation of strain gradient measures in to a stan-
dard finite element scheme while maintaining the C0 continuity. Consequently, a series of low and
high order mixed finite element schemes for couple stress based flexoelectricity are presented and
thoroughly benchmarked against available closed form solutions in regards to electromechanical
coupling efficiency. Finally, nanocompression of a complex flexoelectric conical pyramid for which
analytical solution cannot be established is numerically studied where curvature induced necking
of the specimen and vorticity around the frustum generate moderate electric polarisation.

Keywords: Flexoelectricity, size-dependent piezoelectricity, couple stress theory,
curvature-induced polarisation, mixed high order finite elements

Preprint submitted to Journal of the Mechanics and Physics of Solids January 23, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Modelling linear piezoelectricity for actuation and energy harvesting purposes using the classical
continuum mechanics theory is now well established in the literature, Erturk and Inman [2011];
duToit et al. [2005]; Trindade et al. [2001a,b]; Schröder and Gross [2004]; Poya et al. [2015]. It is
well known, that for a material to exhibit electric polarisation in the presence of mechanical strain
(direct piezoelectric effect), it needs to have a noncentrosymmetric crystal structure, Wooster
[1973]. Recently, there has been a considerable research on producing piezoelectric effects from
centrosymmetric (non-piezoelectric) materials, for instance, from perovskite ferroelectrics Zubko
et al. [2007, 2013] and even graphene nano-shells and biological membranes, Dumitrica et al. [2002];
Petrov [2006]; Maranganti et al. [2006]; Kalinin and Meunier [2008]; Maranganti and Sharma [2009];
Zelisko et al. [2014]; Deng et al. [2014]. To generate polarisation in centrosymmetric materials, the
inversion symmetry of the material needs to be broken and this becomes achievable through the
application of non-uniform strains (strain gradients). Theoretical and experimental evidence of this
size-dependent phenomenon which is also termed “flexoelectricity” has been reported in Tagantsev
[1986]; Ma and Cross [2001, 2002]; Catalan et al. [2005]; Ma and Cross [2006]; Zubko et al. [2007];
Sharma et al. [2007, 2010]; Gharbi et al. [2011]; Krichen and Sharma [2016] for other classes of
centrosymmetric cubic and isotropic materials; see Tagantsev [1986]; Yudin and Tagantsev [2013]
for a historical review. As discussed in Yudin and Tagantsev [2013] a crystalline material of
any symmetry can be capable of producing electric polarisation under a nonuniform strain field or
simply in the presence of strain gradient. The effective flexoelectric coefficients are certainly orders
of magnitude smaller (in the range of µC/m, Ma and Cross [2001]) compared to their piezoelectric
counterparts, however for nano-electromechanical systems where the device and material length
scales are comparable, gradient of strain can have appreciable effects, Deng et al. [2014]; Jianga
et al. [2013].

From a generalised continuum mechanics point of view (c.f. Eringen and Maugin [1990] for
related terminologies), flexoelectricity is considered as a higher order gradient theory where size
effects are accounted for in a phenomenological sense. The study of higher order gradient theories
and generalised continua dates back to the seminal work of Cosserat and Cosserat [1909] which was
later revisited by Mindlin and Tiersten [1962]; Mindlin [1964, 1965, 1968]; Mindlin and Eshel [1968],
Toupin [1962, 1964]; Eringen [1966, 1972a,b, 1983, 1999]; Eringen and Maugin [1990]; Ericksen and
Truesdell [1958] among others. In general, the fundamental kinematic assumption of these theories
is in considering every material particle in the continuum to be equipped with a substructure
(micro-continuum). Different models of strain gradient theory assume different kinematics, Eringen
[1966]; Toupin [1962, 1964]; Lam et al. [2003]; Hadjesfandiari and Dargush [2011]. The micropolar
continuum is one particular member of this class in which every micro-continuum is treated as a
rigid body equipped with a rotational field emanating from the microstructure and termed as micro-
rotation “triédre mobile”, Cosserat and Cosserat [1909]. Since micro-rotations of discrete particles
can not be considered continuous inside the matter, a different model of gradient theories called
the couple stress theory considers macro-rotation “triédre caché” as a true continuum kinematical
measure in order to study size effects, Mindlin and Tiersten [1962]; Toupin [1962]; Koiter [1964];
Yang et al. [2002]; Park and Gao [2008]. The couple stress model can be considered as a constrained
theory of the micropolar continuum, Toupin [1964]; Neff [2006]; Neff and Jeong [2009].

Generalisation of standard continuum in the case of couple stress theory is based on the follow-
ing concepts: i) the deformation of substructure is measured based on a field of proper orthogonal
rotations in the configurational space of the continuum and, ii) an additional kinematic measure
related to the gradient of this rotation (curvature) is included to the set of thermodynamic state
variables, Simo et al. [1992]; Steinmann [1994]; Steinmann and Stein [1997]; Neff [2006]; Bauer
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et al. [2012]. Consequently, the work-conjugate to the curvature tensor, called the couple-stress
enters the boundary value problem and in general the balance of angular momentum does not
vanish.

State of the art flexoelectric models are however based on classical strain gradient theories
of Mindlin [1965]; Mindlin and Eshel [1968]; Eringen [1972a,b]; Toupin [1964] where gradients of
strain and electric field explicitly appear in the electric enthalpy of the system. As a result, a
third order stress tensor (hyper stress) and a second order electric displacement tensor enter the
boundary value problem, see Maranganti et al. [2006]; Maranganti and Sharma [2009]; Abdollahi
et al. [2014, 2015]; Deng et al. [2018]. In order to close this system, the Gauss’s law needs to
be modified to facilitate balance equation for the newly arisen high order tensorial quantities.
For instance, the models used in Maranganti et al. [2006]; Majdoub et al. [2008, 2009]; Sharma
et al. [2007]; Gharbi et al. [2011]; Abdollahi et al. [2014]; Maranganti and Sharma [2009]; Mao and
Purohit [2014] are all based on this approach. Certainly, this is a deviation from the true solution
of the Maxwell equations. Whether, micropolar, couple stress or in general, formulations based on
curvature energy have an advantage over classical strain gradient theories, is yet to be established
Chen [2012]; Hadjesfandiari [2013].

Historically, flexoelectricity has been mainly studied in the context of beams. In fact, this is also
reflected in the experimental set-ups for determining effective transverse flexoelectric coefficients
(the bending piezoelectricity test), for example, in the works of Takayoshi [1974]; Fukada et al.
[1987]; Ma and Cross [2001, 2002, 2005, 2006]. From the perspective of structural mechanics,
amongst the many gradient theories, the couple stress theory has evolved as a competitive technique
to model size effects in beams and plates Park and Gao [2006, 2008]; Ma et al. [2008]; Reddy
[2011]; Reddy and El-Borgi [2014]; Srinivasa and Reddy [2013]; Tsiatas [2009]. The most successful
implementation of couple stress theory for beams is based on the modified couple stress theory
proposed by Yang et al. [2002]. The modified couple stress theory assumes that the moment of
couples vanishes and as a result the underlying curvature tensor is symmetric (and deviatoric)
and work conjugate to a deviatoric couple stress. For isotropic materials, this scenario yields
only one material length scale (since the spherical part of the curvature energy vanishes) which
is a practically desirable feature in the analysis of micro and nanobeams. In Jeong and Neff
[2010] sense, this model corresponds to the weakest curvature energy allowable in linear Cosserat
continuum.

Three competitive variants of the couple stress model can be considered to study flexoelectricity.
The modified couple stress model of Yang et al. [2002], the skew-symmetric couple stress model of
Hadjesfandiari and Dargush [2011] and the conformally invariant model of Ghiba et al. [2017]. As
it will be shown later, in the model of Yang et al. [2002] the rotational kinematic measure namely,
the symmetric deviatoric curvature tensor still contains diagonal terms that contribute to uniform
contraction of the cross-section and torsional rigidity of the beam, although energetically (this
curvature tensor is work-conjugate to the deviatoric couple stress) they are never activated. This
effect has been mainly ignored in subsequent formulations of the modified couple stress theory for
beam models, for instance in Park and Gao [2006, 2008]; Ma et al. [2008]; Reddy [2011]; Reddy
and El-Borgi [2014]. For classical beam models, it is certainly desirable to choose a kinematic
measure that excludes cross-sectional terms. The skew-symmetric Hadjesfandiari and Dargush
[2011] and the conformal Ghiba et al. [2017] couple stress models specifically preclude such terms
in the curvature tensor and are more suited for the particularisation of couple stress to the case
of beams. Among the two, the skew-symmetric couple stress model can be easily extended to
the case of isotropic flexoelectricity, as the skew-symmetric nature of the curvature tensor (i.e.
the mean/axial curvature vector) makes it an ideal candidate for constructing linear invariants in
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conjunction with the electric field without breaking material’s centrosymmetry.
Following the authors’ recent development on the analysis of linear piezoelectric beams Poya

et al. [2015], in this manuscript, the theoretical formulation and the associated finite element im-
plementation of linear flexoelectricity in piezoelectric and non-piezoelectric materials based on a
skew-symmetric couple stress theory is presented in the context of continua and beams. For the
case of beams, no particular assumption is made on the direction of anisotropy or electric polar-
isation and a consistent second order interpolation of the electric field across the cross section is
utilised. Furthermore, as strain gradient theories in general lead to high continuity requirements
in the choice of functional spaces (for a material of grade N , CN continuity is required [see Toupin
[1962]]) for finite element discretisation, by relying on mixed variational formulations this require-
ment is relaxed and standard C0 continuous interpolation functions are utilised for finite element
discretisation, leading to an extremely efficient computational implementation. It should be men-
tioned that, while in Hadjesfandiari and Dargush [2011] it is claimed that the skew-symmetric
couple stress theory is a physically valid continuum theory of its own (where every kinematic and
kinetic in the theory have a physical meaning), despite having followed the same theoretical de-
velopment, the present manuscript mathematically starts from a micropolar theory point of view
and poses the variational principles of linear flexoelectricity as constrained minimisation problems
to facilitate standard finite element implementations. It should also be noted the theory of mi-
cropolar and couple stress flexoelectricity is not new and have already been presented in Romeo
[2015]; Chen [2012]; Hadjesfandiari and Dargush [2011]; Anqing et al. [2016]. The contribution of
this manuscript is in presenting a series of new variational formulations for continua and beams
and their subsequent numerical (finite element) discretisations for flexoelectricity. In the context
of beams specifically, mixed finite element formulations for flexoelectricity are not explored. Fur-
thermore, the focus is on qualitative and quantitative comparison of strain gradient and couple
stress flexoelctric theories which as discussed later have substantial physical impact in analysing
flexoelectric structures, which to the best of the authors’ knowledge have not been reported before.

The structure of the paper is as follows. In section 2, the balance equations of electromechanics
in a generalised micropolar continuum is presented. In section 3, the skew-symmetric couple
stress model as a rotationally constrained case of the micropolar theory is discussed and the
corresponding variational formulations are presented in section 4. In section 5 the couple stress
problem is cast under the kinematics and electrostatics of three-dimensional flexoelectric beams
and the associated virtual work and governing equations are derived. Finally, in section 6 a set
of analytical and numerical problems to study the electromechanical conversion efficiency of the
theory with respect to other available work in the literature are reported.

2. Balance equations of electromechanics in micropolar continuum

Let Ω Ă R3 be a bounded contractible domain occupied by a micropolar continuum during the
time interval r0,Ts and Γ be its boundary, equipped with a unit outward normal n, as shown in
Figure 1. In this case, the static Faraday and Gauss laws can be summarised as follows

∇ˆE “ 0 and divD̃ ´ ρe “ 0 in Ωˆ r0,Ts, (1)

where ∇ˆ denotes the curl operator, E is the electric field intensity vector, D̃ is the electric dis-
placement vector and ρe is the volume charge density. According to the Helmholtz decomposition
(also known as the fundamental theorem of vector calculus) and in the absence of magnetic fields,
the electric field vector E can be reformulated as E “ ´∇ψ, where ψ is a scalar potential field.
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Dirichlet and Neumann boundary conditions can then be introduced as

ψ “ ψ̄ on Γψ ˆ r0,Ts, (2a)

D̃ ¨ n “ ´q0 on ΓD ˆ r0,Ts. (2b)

where Γ “ ΓD Y Γψ and ΓD X Γψ “ H. In the context of small deformations, the motion of the
continuum can be defined by a displacement field u : Ωˆ r0,Ts Ñ R3, such that px, tq ÞÑ upx, tq,
where x P Ω represents a material point and t P r0,Ts the time. The conservation of linear
momentum equation is defined as

divσ̃ ` ρb “ ρ:u in Ωˆ r0,Ts, (3)

where ρ is the density of the continuum, σ̃ is the non-symmetric force stress tensor, b is a body force
per unit of mass and a superimposed dot (double dot) indicates partial (double) differentiation
with respect to time (e.g. 9 :“ B

Bt and: :“ B2
Bt2 ). Dirichlet, Neumann and initial conditions can be

introduced as

u “ ū on Γu ˆ r0,Ts, (4a)

σ̃ ¨ n “ t on Γσ ˆ r0,Ts, (4b)

u “ u0 in Ω̄ˆ 0, (4c)

9u “ 9u0 in Ω̄ˆ 0, (4d)

where Γ “ Γσ Y Γu and Γσ X Γu “ H. The vector t in (4b) represents the force-traction. In
the context of small rotations, the angular motion of the continuum can be defined by a field of
proper orthogonal rotations ω : Ω ˆ r0,Ts Ñ SOp3q, such that the mapping, px, tq ÞÑ ωpx, tq is
an isometric linear transformation. The conservation of angular momentum is defined as

divµ̃` ξ : σ̃T ` ρl “ ρJ :ω in Ωˆ r0,Ts, (5)

where µ̃ is the couple (hyperstress) stress tensor, l is the body couple, J is the rotational or spin
inertia (determined by the shape and size of micro-continuum elements, de Borst and Sluys [1991])
and ξ is the third order permutation tensor 1. Dirichlet, Neumann and initial conditions can be
introduced as

ω “ ω̄ on Γω ˆ r0,Ts, (6a)

µ̃ ¨ n “m on Γµ ˆ r0,Ts, (6b)

ω “ ω0 in Ω̄ˆ 0, (6c)

9ω “ 9ω0 in Ω̄ˆ 0, (6d)

1Throughout the paper, the symbol p¨q is used to indicate the scalar product or contraction of a single index
a ¨ b “ aibi; the symbol p:q is used to indicate double contraction of two indices A : B “ AijBij ; the symbol pˆq
is used to indicate the cross product ra ˆ bsi “ ξijkajbk via the permutation tensor ξijk and the symbol pbq is
used to indicate the outer or dyadic product rab bsij “ aibj . Whenever indices are used, unless otherwise stated,
Einstein’s summation convention will be assumed.

It is important to note that all tensor fields p̃¨q represent micropolar quantities, differentiating them with their
counterparts in couple stress theory. In general, when the grapheme p„„„q does not appear, such as on electric field
E, it implies that the definition of the field/quantity is the same in both theories.

Furthermore, unless specified otherwise, all tensor fields p̂¨q represent skew-symmetric tensors dual to their cor-
responding axial vector p¨q.
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where Γ “ Γµ Y Γω and Γµ X Γω “ H. The vector m in (6b) represents the moment-traction, see
Figure 1. For the full set of corrected boundary conditions in couple stress elasticity refer to Madeo
et al. [2016]; Ghiba et al. [2017]. The coupled electro-mechanical initial boundary value problem,
defined by equations (1) to (6), must be complemented with three closure equations related to the
electro-mechanical nature of the generalised continuum. For a conservative material, the closure
equations can be derived from the enthalpy density of the system Ψ defined in terms of the small
strain tensor ε̃, the curvature tensor χ̃ the electric field vector E as follows

σ̃pε̃, χ̃,Eq : “ BΨ̃pε, χ̃,EqBε̃ , (7)

µ̃pε̃, χ̃,Eq : “ BΨ̃pε̃, χ̃,EqBχ̃ , (8)

D̃pε̃, χ̃,Eq : “ ´BΨ̃pε̃, χ̃,EqBE , (9)

expressing the force stress tensor σ̃, the couple stress tensor µ̃ and the electric displacement vector
D̃ in terms of the small strain tensor ε̃, the curvature tensor χ̃ and the electric field E where the
compatibility equations (kinematic measures), are defined in the classical Cosserat sense Nowacki
[1986]; Neff [2006]; Braun [2010]

ε̃ :“ ∇u´ ω̂, χ̃ :“ ∇ω, (10)

where the following relationships exist between the axial vector and its dual skew-symmetric tensor

ω̂ :“ ω I, ω “ axlpω̂q
where I is the identity tensor and the symbol which appears in (10) is the tensor cross product,
introduced for the first time by de Boer [1982] and recently brought in to the context of solid
mechanics with its associated algebra by Bonet et al. [2015a,b,c] and further extensively used in the
context large deformation electromechanics by Gil and Ortigosa [2016]; Ortigosa and Gil [2016a,b].
A variety of electro-mechanical constitutive models are available in the literature defined in terms
of different enthalpy expressions, such as in Chen [2012]; Sharma et al. [2007]; Hadjesfandiari
[2013]; Schröder and Gross [2004]; Gil and Ledger [2012]. In the case of linear flexoelectricity, σ̃, µ̃
and D̃ obtained this way render algebraic summations of mechanical (strain related) (¨)m, micro-
mechanical (curvature/strain gradient related) (¨)g and electrical (¨)e components. For instance,
the electric displacement vector D̃ can be expanded as

D̃ “ D̃m ` D̃g ` D̃e; D̃m :“ ẽ : ε̃, D̃g :“ f̃ : χ̃, De :“ ε ¨E, (11)

where ε is the symmetric second order dielectric permittivity tensor, ẽ is the third order piezoelec-
tric tensor and f̃ is the third order flexoelectric tensor. Note that due to the asymmetric nature of
strain and curvature tensors, there is no symmetry restriction on ẽ and f̃ , thus allowing for more
general electromechanical couplings, Chen [2012]. Analogously, the force stress tensor σ̃ can be
decomposed additively as

σ̃ “ σ̃m ` σ̃g ` σ̃e; σ̃m :“ C̃ : ε̃, σ̃g :“ D̃ : χ̃, σ̃e :“ ´E ¨ ẽ, (12)

and the couple stress tensor χ̃ can be additively decomposed as

µ̃ “ µ̃m ` µ̃g ` µ̃e; µ̃m :“ ε̃ : D̃, µ̃g :“ B̃ : χ̃, µ̃e :“ ´E ¨ f̃ . (13)
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where C̃ is the fourth order anisotropic elasticity tensor and B̃ and D̃ are fourth order tensors
characterising the behaviour of micro-continuum. Note that, for centrosymmetric materials, cou-
pling between the strain tensor ε̃ and the curvature tensor χ̃ is not possible as this breaks the
point symmetry (centrosymmetry), and invariance of the strain energy requires D̃ “ 0, Nowacki
[1986]; Lakes [1995]. Finally, the initial boundary value problem of the coupled system is defined
by equations (1)-(6), (11)-(13).

n

��

�u

r · �t + ⇢b = ⇢ü

⌦

r · µ̂ + ⇠ : �tT + ⇢l = ⇢J!̈

�µ

�!

r ·D � ⇢e = 0

�D

� 

(a) (b) (c)

Figure 1: Schematic representation of the governing equations of couple stress and the decomposition of the
boundary of a couple stress continua into a) displacements and tractions, Γ “ Γσ Y Γu and Γσ X Γu “ H, b)
rotations and couples/moments Γ “ ΓµYΓω and ΓµXΓω “ H and, c) surface charge and electric flux, Γ “ ΓDYΓψ

and ΓD X Γψ “ H. Note that, while the boundary conditions associated with the electrostatics of the system are
independent, in couple stress theory wherein the rotations are constrained and individual variations of the fields are
not allowed, it is only possible to apply two tangential components of moments on a traction boundary Γσ, and/or
two tangential components of rotations on a displacement boundary Γu Mindlin and Tiersten [1962]; Koiter [1964];
Neff et al. [2016]. Note that σt represents the non-symmetric stress tensor defined in section 3.)

3. The skew-symmetric couple stress theory

The classical linear couple stress theory is formally a limit case of linear micropolar theory. The
fundamental assumption is to enforce the following constraint on the rotations of the substructure

ωpx, tq “ 1

2
∇ˆ upx, tq in Ωˆ r0, T s. (14)

Equation (14) is in fact the infinitesimal rotation (vorticity) vector of Cauchy elasticity. As dis-
cussed in Appendix A, this limit model can be obtained from the linear isotropic Cosserat model.
However, the consequence of imposing this constraint in general implies the indeterminacy of the
couple stresses, as the spherical part of the curvature energy vanishes, see Appendix A. Further-
more, the strain tensor becomes symmetric, that is

ε̃ “ ε, (15)

where ε represent the symmetric small strain tensor work conjugate to the force stress tensor
of Cauchy elasticity σ and the curvature tensor in (10) remains unchanged. Furthermore, the
grapheme p„„„q can be dropped from all quantities. The definition of the curvature tensor as the
skew-symmetric part of gradient of rotation has been extensively studied in Hadjesfandiari and
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Dargush [2011]; Hadjesfandiari [2013]; Darrall et al. [2014, 2015], giving rise to skew-symmetric
couple stress theories, where it is claimed a skew-symmetric couple stress theory is a self-contained
theory of its own and does not physically emanate as a limit case of the micropolar theory. The
theory however can still be mathematically posed as such. Following this philosophy, the couple
stress curvature χ will have a dual representation

χ̂ “ ∇skewω “ ∇skew∇skewu or χ “ 1

4
∇ˆ∇ˆ u, (16)

where
χ “ axlpχ̂q, χ̂ “ χ I,

where ∇skew denotes the skew-symmetric part of the gradient and the curvature vector is also called
the mean curvature vector in skew-symmetric couple stress theory. This definition of curvature
vector opens new opportunities for modelling flexoelectricity in centrosymmetric materials, since
the electric enthalpy can be defined in terms of linear invariants of the axial curvature vector
and electric field, without breaking the centrosymmetry of material. This also shows that the
isotropic modified couple stress models developed by Yang et al. [2002]; Park and Gao [2006]; Ma
et al. [2008] cannot be generalised for the flexoelectric case as any linear invariant of symmetric
curvature tensor in the enthalpy breaks the centrosymmetry.

In light of (15) and in order to further simplify the process of material characterisation, the
most well established couple stress models assume an additive decomposition of the internal energy
of the system into a macromechanical energy expressed in terms of the invariants of classical strain
tensor, a micromechanical energy expressed in terms of the invariants of the curvature vector
and a couple term imposing the couple stress constraint Yang et al. [2002]; Park and Gao [2006];
Ghiba et al. [2017]. Extending this to the case of flexoelectricity, the total internal energy of the
electromechanical system can be written as

Ψ̆p∇symu,∇skewu,ω,Epψqq “ Ψpεpuq,∇ˆ u,ω,Epψqq
“ Ψmacpεpuq,Epψqq `Ψmicpχpωq,Epψqq `Ψconp∇ˆ u,ωq, (17)

where Ψconp∇ˆu,ωq typically takes the form shown in Appendix A if different variations of the
fields are considered and vanishes if the couple stress constraint is strongly enforced.

Remark : When coupled invariants of strain and curvature are neglected the constitutive term D in
(13) vanishes and consideration of infinitesimal strain tensor ε leads to a symmetric local (Cauchy)
stress and a symmetric constitutive tangent operator. However, a skew-symmetric non-local stress
tensor σ̂g (dual to vector σg) [see (12)] still emerges from the enforcement of the couple stress
constraint which is not work-conjugate to ε. In other words, σ̂g can be treated as a geometric
term. This renders a non-symmetric total force stress tensor σt that contains both constitutive
and geometric contributions. Certainly, this is also true for the classical indeterminate couple
stress theory of Mindlin and Tiersten [1962] (i.e. the presence of body couples in the total force
stress tensor); c.f. page 101 in Eringen [1967]. In essence, the equations of linear momentum and
angular momentum can be re-written as

divσt ` ρb “ ρ:u in Ωˆ r0,Ts, (18)

divµ̂` ξ : σ̂g
T ` ρl “ ρJ :ω in Ωˆ r0,Ts. (19)

We note that, in couple stress theories the effect of micro-inertia (angular velocities) can be ne-
glected due to their associated moment of inertia being quadratic in characteristic length scale,
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Georgiadis and Velgaki [2003]. In addition, since it is emphasised that the couple stress theory is a
continuum theory, the existence of micro-inertia cannot have a physical justification Hadjesfandiari
and Dargush [2011]. Furthermore, since the body couple term ρl performs work against δω and
δω can be written in terms of δu (where δω and δu are possible boundary compatible variations
of ω and u, respectively) the body couple can be transformed to a body force and a traction force
contribution Hadjesfandiari and Dargush [2011]. This leaves us with angular momentum equation
of the form

´∇ˆ µ` ξ : σ̂g
T “ ξ : pσ̂gT ´∇µq “ 0 in Ωˆ r0,Ts, (20)

which implies

σ̂g
T “ ∇µ in Ωˆ r0,Ts, (21)

signifying that in skew-symmetric couple stress theory, σ̂g is not an independent quantity and can
in fact be linked to the couple stress vector µ which itself is a constitutive stress. As a consequence,
σ̂g, and µ̂ contribute to the traction boundary condition. Subjected to the consideration of suitable
boundary conditions, the skew-symmetric couple stress theory discussed here can be regarded as
a restrictive case of the indeterminate couple stress theory of Mindlin and Tiersten, Neff et al.
[2016]. However, as shown later, all the difficulties in boundary conditions can be circumvented if
independent variations of the fields u and ω are considered.

4. Variational formulations in couple stress based electromechanics of continua

In this section, four different variational formulations for couple stress based electromechanics
are described in the continuum setting namely, a displacement potential formulation, a lagrange
multiplier formulation, an augmented Lagrangian formulation and a penalty formulation.

4.1. The displacement-potential variational formulation

A two-field variational formulation can be established by strongly imposing the couple stress
constraint. Focusing on the electro-elastodynamics of the conservative flexoelectric system, the
internal and external forces together with the motion between times T0 “ 0 and T , can be deter-
mined from a Hamilton’s principle, Deng and Dargush [2017]; Sudeep et al. [2005]. To this effect,
we introduce the Lagrangian L as

Lpu, 9u, ψq “ Kp 9uq ´ Πintpu, ψq ´ Πextpu, ψq (22)

where K is the kinetic energy of the body expressed as a function of velocity 9u and Π the total
potential energy of the system, containing the work of internal and external electromechanical
forces such that

Kp 9uq “ 1

2

ż

Ω

ρ 9u ¨ 9u dV, (23a)

Πintpu, ψq “
ż

Ω

Ψpεpuq,ωpuq, ψq dV “
ż

Ω

Ψmacpεpuq,Epψqq `Ψmicpχpuq,Epψqq dV, (23b)

Πextpu, ψq “
ż

Ω

ˆ
ρpb ¨ u` l ¨ ωpuqq ´ ρ0ψ

˙
dV `

ż

Γ

ˆ
t ¨ u`m ¨ ωpuq ´ q0ψ

˙
dA (23c)
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Considering the action integral as the integral of the Lagrangian over the time interval t “ r0, T s,
the Hamilton’s principle states that the mapping satisfying the equations of motion and elec-
trostatics can be obtained by making the action integral stationary with respect to all possible
mappings which are compatible with the boundary conditions. In the present case this leads to
the following Euler-Lagrange equations

BL
Bu ´

d

dt

BL
B 9u

“ 0,
BL
Bψ “ 0. (24)

Denoting the virtual and incremental variations of displacements and electric potential as δu, ∆u,
δψ and ∆ψ respectively leading to

δω “ 1

2
∇ˆ δu, ∆ω “ 1

2
∇ˆ∆u. (25)

The stationary condition of the kinetic energy then becomes

d

dt

BL
B 9u

“ d

dt

BK
B 9u

“
ż

Ω

ρ:u ¨ δu dV. (26)

The stationary conditions of the internal energy can be found by computing the directional deriva-
tive of the energy with respect to virtual variations of displacements and electric potential as

DΠintrδus “
ż

Ω

ˆBΨ
Bε : δε` pBΨBω Iq : δω̂ ` BΨBχ ¨ δχ

˙
dV “

ż

Ω

ˆ
σ : δε` σ̂g : δω̂ ` µ ¨ δχ

˙
,

(27a)

DΠintrδψs “
ż

Ω

BΨ
BE ¨ δE dV “ ´

ż

Ω

D ¨ δE dV, (27b)

where δε, δχ and δE represent virtual variations of strain tensor, curvature vector and electric field
vector respectively. Moreover, without loss of generality, σ now represents the total constitutive
tensor which might or might not include gradient effects depending on material symmetry; see
(12).2 Analogouly, consistent linearisation of the external work leads to

DΠextrδus “
ż

Ω

ρ

ˆ
b ¨ δu` l ¨ δω

˙
dV `

ż

Γ

ˆ
t ¨ δu`m ¨ δω

˙
dA, (28a)

DΠextrδψs “ ´
ż

Ω

ρ0ψ dV ´
ż

Γ

q0ψ dA, (28b)

where δω is defined in (25). It is also necessary to compute the relevant tangent operators through
further consistent linearisation of (28) which can be written as (the symmetric terms are omitted)

DΠintrδu; ∆us “
ż

Ω

ˆ
∆ε :

B2Ψ

BεBε : δε`∆χ ¨ B
2Ψ

BχBχ ¨ δχ
˙

dV

2Depending on the notation, the work-conjugacy between δχ and µ can also be written in terms of their dual
representation µ̂ij : δχ̂ij “ ξijkξijlµkδχl “ 2µkδχk,

which shows that the proper work-conjugate to δχ is in fact 2µ. For notational convenience, here it is assumed
that this factor is embedded in the definition of the axial couple stress vector µ.
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`
ż

Ω

ˆ
∆ε :

B2Ψ

BεBχ ¨ δχ`∆χ ¨ B
2Ψ

BχBε : δε

˙
dV

“
ż

Ω

ˆ
∆ε : C : δε`∆χ ¨B ¨ δχ

˙
dV

`
ż

Ω

ˆ
∆ε : D ¨ δχ`∆χ ¨DT : δε

˙
dV, (29a)

DΠintrδu; ∆ψs “
ż

Ω

ˆ
∆E ¨ B

2Ψ

BεBE : δε`∆E ¨ B
2Ψ

BχBE ¨ δχ
˙

dV

“ ´
ż

Ω

ˆ
∆E ¨ e : δε`∆E ¨ f ¨ δχ

˙
dV, (29b)

DΠintrδψ,∆ψs “
ż

Ω

∆E ¨ B
2Ψ

BEBE ¨ δE dV “ ´
ż

Ω

∆E ¨ ε ¨ δE dV, (29c)

where ∆ε, ∆χ and ∆E represent incremental variations of strain tensor, curvature vector and
electric field vector respectively. Furthermore, the coupled terms in (29a) vanish for isotropic
materials. Note that upon performing further integration by part on (27) new boundary terms
emerge that contribute to traction force and couple force Neff et al. [2016]. In general, the total
force stress can be written as

σt “ σ ` σ̂g, where σ̂g “ 1

2
p∇ˆ µq I. (30)

The set of equations in (27), (28) and (29) facilitate straightforward finite element discretisation
in terms of displacements and electric potential. This formulation however, dictates C1 continuity
for displacements which inevitably requires the use of non-standard function spaces and is not
pursued here.

4.2. The penalty formulation

A natural way to formulate the couple stress flexoelectric problem is to treat the vorticity of
the substructure w as an independent field and impose the couple stress constraint weakly through
a penalty approximation. In this case the potential energy of the system is given by

Π́intpu,ω, ψq “
ż

Ω

Ψ́pεpuq,χpωq,Epψqq dV `
ż

Ω

κ

2
||1

2
∇ˆ u´ ω||2 dV, (31)

where || ¨ || is the Frobenius norm. As shown in Appendix A, the elegance of this formulation
comes from the fact that κ can be treated as the Cosserat modulus and hence, the formulation
adheres to a physically meaningful treatment of couple stress flexoelectricity.

Avoiding redundant derivations of stationary conditions of kinetic and external energies and
focussing only on the internal energy, the first directional derivative of the (31) with respect to the
virtual varitions of displacements, vorticity and electric potential yields

DΠ́intrδus “
ż

Ω

σ : δε dV `
ż

Ω

κ

ˆ
1

2
∇ˆ u´ ω

˙
¨
ˆ

1

2
∇ˆ δu

˙
dV, (32a)

DΠ́intrδωs “
ż

Ω

µ ¨ δχ dV ´
ż

Ω

κ

ˆ
1

2
∇ˆ u´ ω

˙
¨ δω dV, (32b)

DΠ́intrδψs “ ´
ż

Ω

D ¨ δE dV, (32c)
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It is also necessary to compute the relevant tangent operators through further consistent lineari-
sation of (32)

DΠ́intrδu; ∆us “
ż

Ω

∆ε : C : δε dV `
ż

Ω

κ

ˆ
1

2
∇ˆ∆u

˙
¨
ˆ

1

2
∇ˆ δu

˙
dV, (33a)

DΠ́intrδu; ∆ωs “ ´
ż

Ω

κ∆ω ¨
ˆ

1

2
∇ˆ δu

˙
dV `

ż

Ω

∆χ ¨DT : δε dV, (33b)

DΠ́intrδu; ∆ψs “ ´
ż

Ω

δE ¨ e : δε dV, (33c)

DΠ́intrδω; ∆ωs “
ż

Ω

∆χ ¨B ¨ δχ dV `
ż

Ω

κ∆ω ¨ δω dV, (33d)

DΠ́intrδω; ∆ψs “ ´
ż

Ω

∆E ¨ f ¨ δχ dV, (33e)

DΠ́intrδψ,∆ψs “ ´
ż

Ω

∆E ¨ ε ¨ δE dV, (33f)

where the second integrand in (33b) vanishes for isotropic materials. Note that, with a slight abuse
of notation the kinematic variables and their work-conjugates have not been renamed, although
strictly speaking their description under displacement-potential and penalty formulations are not
the same. Analogous to displacement potential formulation, the total force stress tensor in the
penalty formulation can be written as

σt “ σ ` σ̂g, where σ̂g “ κp1
2
∇ˆ u´ ωq I, (34)

which shows that the penalty parameter κ is indeed the Cosserat modulus and the constraint will
be imposed if κ Ñ 8. In essence, this is an approximate enforcement, however the advantage
of this formulation certainly, lies in the fact that it does not introduce a new variable for the
enforcement of the constraint.

4.3. The Lagrange multiplier formulation

The couple stress constraint can also be imposed exactly albeit in a weak sense through the
so-called Lagrange multiplier approach. In this formulation, a new variable is introduced to impose
the constraint and the internal energy of the system is given by

Π̄intpu,ω, s, ψq “
ż

Ω

Ψ́pεpuq,χpωq,Epψqq dV `
ż

Ω

s ¨
ˆ

1

2
∇ˆ u´ ω

˙
dV, (35)

where s is the vector of Lagrange multipliers enforcing the constraint. Focussing only on the
internal energy, the first directional derivative of the (39) with respect to the virtual variations of
displacements, vorticity, Lagrange multiplier and electric potential yields

DΠ̄intrδus “
ż

Ω

σ : δε dV `
ż

Ω

s ¨ p1
2
∇ˆ δuq dV, (36a)

DΠ̄intrδωs “
ż

Ω

µ ¨ δχ dV ´
ż

Ω

s ¨ δω dV, (36b)

DΠ̄intrδss “
ż

Ω

δs ¨
ˆ

1

2
∇ˆ u´ ω

˙
dV, (36c)
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DΠ̄intrδψs “ ´
ż

Ω

D ¨ δE dV, (36d)

It is also necessary to compute the relevant tangent operators through further consistent lineari-
sation of (36)

DΠ̄intrδu; ∆us “
ż

Ω

∆ε : C : δε dV, (37a)

DΠ̄intrδu; ∆ωs “
ż

Ω

∆χ ¨DT : δε dV, (37b)

DΠ̄intrδu; ∆ss “
ż

Ω

∆s ¨ p1
2
∇ˆ δuq dV, (37c)

DΠ̄intrδu; ∆ψs “ ´
ż

Ω

δE ¨ e : δε dV, (37d)

DΠ̄intrδω; ∆ωs “
ż

Ω

∆χ ¨B ¨ δχ dV `
ż

Ω

κ∆ω ¨ δω dV, (37e)

DΠ̄intrδω; ∆ss “ ´
ż

Ω

∆s ¨ δω dV, (37f)

DΠ̄intrδω; ∆ψs “ ´
ż

Ω

∆E ¨ f ¨ δχ dV, (37g)

DΠ̄intrδs; ∆ss “ 0, (37h)

DΠ̄intrδψ,∆ψs “ ´
ż

Ω

∆E ¨ ε ¨ δE dV, (37i)

where (37b) vanishes for isotropic materials. Note that, with a slight abuse of notation, the
kinematic variables and their work-conjugates have not been renamed, although strictly speaking
their description compared to the last two variational formulations have changed. The total force
stress tensor can now be written as

σt “ σ ` σ̂g, where σ̂g “ 1

2
s I, (38)

which shows that the Lagrange multiplier s can be interpreted as the skew-symmetric part of total
force stress tensor emanating from microstructural contribution.

4.4. The augmented Lagrangian formulation

From a numerical implementation point of view, the Lagrange multiplier approach leads to the
popular saddle point problem that typically occurs in constrained energy minimisation problems
such as incompressibility. Hence, it is at times advantageous to add a penalty type regularisation
term to the internal energy of the system. This approach is termed as the augmented Lagrangian
formulation and the internal energy of the system is given by

qΠintpu,ω, s, ψq “
ż

Ω

Ψ́pεpuq,χpωq,Epψqq dV `
ż

Ω

s ¨
ˆ

1

2
∇ˆ u´ ω

˙
dV `

ż

Ω

1

2κ
s ¨ s dV. (39)

Consistent linearisation of this energy is similar to the Lagrange multiplier formulation and the
only two new terms arising are

DqΠintrδss “
ż

Ω

δs ¨
ˆ

1

2
∇ˆ u´ ω

˙
dV `

ż

Ω

1

κ
s ¨ δs dV, (40)
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DqΠintrδs; ∆ss “
ż

Ω

1

κ
∆s ¨ δs dV, (41)

and the total force stress tensor remains unchanged.

5. Couple-stress flexoelectric theory for three-dimensional beams

Having established a curvature-induced flexoelectric theory through couple stress formulation
for the continua, in this section, we turn our attention to couple stress flexoelectricity in three-
dimensional beams. Extending the work of Poya et al. [2015] on piezoelectric beams to flexoelec-
tricity, we start with kinematics and electrostatics of a generic three-dimensional beam. Work-
conjugates and area resultants are then introduced to facilitate similar variational formulations for
beams. The Euler-Lagrange equations of three-dimensional beams are then derived in a compact
form to facilitate interested readers with their closed form solutions.

5.1. Kinematics of three-dimensional flexooelectric beams

Let us consider the motion of a beam Ω Ă R3 as shown in Figure 2. The beam in the undeformed
configuration has a straight axis of length l and is completely characterised with an orthonormal
reference triad te1, e2, e3u, where e3 is parallel to the beam axis and teαupα “ 1, 2q lie in the plane
which defines the cross sectional area A (with boundary BA) of the beam Ω “ A ˆ l 3. Assuming
for simplicity that this reference frame (placed at r0, 0, x3sT ) coincides with the global one (placed
at r0, 0, 0sT ), as shown in Figure 2, the displacements of the beam considering small rotations can
be described as; see Poya et al. [2015]

px, tq ÞÑ upx, tq “ wpx3, tq ` θpx3, tq ˆ ppx1, x2q, (42)

where ppx1, x2q :“ xαeα is the position vector of a material point within the cross section A with

x2

x1

x3

e2

e1

e3

c2

c1

c3

~ϕ

O a2

a1

a3

Figure 2: Motion of Beam in R3. The initial orthonormal triad te1, e2, e3u transforms to the orthonormal triad
tc1, c2, c3u.

respect to the origin of the triad te1, e2, e3u. Vectors w “ wiei and θ “ θiei are collectively called
the generalised beam displacements. Expression (42) represents a time dependent affine mapping

3Throughout the remainder of the paper, any Greek indices will be assumed to vary in the integer interval [1,2]
and Latin indices to vary in the integer interval [1,2,3].
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for any material point contained within the cross sectional area A of the beam. Noticing that
∇u “ Bu

Bxi b ei and Bp
Bxα “ eα, the small strain tensor ε can be rewritten as

ε “ 1

2

„
pεm ` κm ˆ pq b e3 ` e3 b pεm ` κm ˆ pq


, (43)

where

εm :“ Bw
Bx3

` e3 ˆ θ, κm :“ Bθ
Bx3

, (44)

are called the strain measures of the linear beam model, which characterise translational deforma-
tion and rotational deformation, respectively. The explicit form of the strain tensor is

ε “ 1

2

»
–

0 0 Bw1

Bx3 ´ θ2 ´ Bθ3
Bx3

0 Bw2

Bx3 ` θ1 ` Bθ3
Bx3

sym
Bw3

Bx3 ` x2
Bθ1
Bx3 ´ x1

Bθ2
Bx3

fi
fl . (45)

As it is well known in classical beam theories and can also be seen clearly from (45), there is
no deformation within the cross-section of the beam (eα ¨ εeβ “ 0). Following our argument in
subsection 4.1, and with finding the beam balance equations of flexoelectric beams in mind, from
the onset, we strongly impose the couple stress constraint (14), to obtain

px, tq ÞÑ ωpx, tq “ 1

2
∇ˆ

ˆ
wpx3, tq ` θpx3, tq ˆ ppx1, x2q

˙
, (46)

where on the right hand side of (46) we have substituted the continuum displacements in terms
of beam’s generalised displacements using (42). Similar to the strain tensor, the symmetric and
skew-symmetric parts of gradient of ω can be written in their matrix form as

∇symω “ 1

4

»
–
´ Bθ3
Bx3 0 ω1,3

´ Bθ3
Bx3 ω2,3

sym 2 Bθ3Bx3

fi
fl , ∇skewω “ 1

4

»
–

0 0 ω1,3

0 0 ω2,3

´ω1,3 ´ω2,3 0

fi
fl , (47)

where

ω1,3 “ Bθ1

Bx3

´ B
2w2

Bx2
3

´ x1
B2θ3

Bx2
3

, ω2,3 “ Bθ2

Bx3

` B
2w1

Bx2
3

´ x2
B2θ3

Bx2
3

.

From (47) we observe that the symmetric part vorticity gradient is deviatoric i.e. trp∇symωq “ 0.
However, the non-zero diagonal components of symmetric part of the gradient still contribute to
the uniform contraction of the cross section by an amount proportional to p´ Bθ3

Bx3 q and increase the

torsional rigidity of the beam by an amount proportional to p2 Bθ3Bx3 q. From the point of view of
classical beam theories, it is essential that the strain measures should not include cross-sectional
deformation. This further justifies the use of a skew-symmetric curvature tensor as a fundamental
kinematic measure however, it should be noted that, the conformal variant of the couple stress
theory recently reported by Ghiba et al. [2017] based on the kinematic measure ∇ ε also excludes
these cross-sectional rotational modes. The axial curvature vector defined in (16) can now be
written in terms of the beam kinematics

χ “ 1

4
e3 ˆ

ˆ
e3 ˆ pεg ` κg ˆ pq

˙
“ 1

4
Īpεg ` κg ˆ pq, (48)
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where

εg “ B
2w

Bx2
3

` κm ˆ e3, κg “ B
2θ

Bx2
3

, (49)

are the strain gradient measures of the linear beam model, augmenting the classical strain measures
(44) and

Ī “ e3 b e3 ´ I. (50)

The symmetric part of the gradient of rotation utilised in the purely mechanical planar beam
theories developed by Park and Gao [2006, 2008], Ma et al. [2008]; Reddy [2011]; Şişmek and
Reddy [2012, 2013]; Li and Luo [2017] can also be represented in a compact form including the
torsional terms as

p∇symωq3 “ axlp∇skewωq ˆ e3 ` 2κm3 e3, (51)

where the subscript 3 in (51) represents the longitudinal (e3) direction.4

5.2. Electrical Mapping

Following our recent development in Poya et al. [2015], similar to the beam kinematics, we
approximate electric potential ψ : Ω ˆ r0, T s Ñ R across the cross section of the beam through a
Taylor series expansion, defined as

px, tq ÞÑ ψpx, tq :“ φpx3, tq ` ppx1, x2q ¨ βpx3, tq ` 1

2
ppx1, x2q ¨ γpx3, tq ppx1, x2q, (52)

where ψ represents a parabolic expansion across the cross sectional area A of the beam, completely
defined in terms of φ the electric potential at the reference triad origin r0, 0, x3sT , its gradient β
and its Hessian γ, namely scalar, vector and symmetric second order tensor beam axis-varying
functions. It is important to remark that the only approximation for the distribution of the
electric potential is established across the section of the beam (see Figure 3).

The electric field vector E can now be obtained by computing the gradient of the newly
introduced electric potential ψ as E :“ ´∇ψ yielding (refer to equation (52)), after some algebraic
manipulation

E “ ´εe ´ pe3 b pqκe ´ V : ςe ´W : γ, (53)

where

εe :“ Bφ
Bx3

e3 ` β, κe :“ Bβ
Bx3

, ςe :“ Bγ
Bx3

, (54)

with the third order tensors V and W defined by

V :“ e3 b 1

2
ppb pq , W :“ eα b 1

2
ppb eα ` eα b pq . (55)

Considering equation (53), it is interesting to notice the similarities with the definition of the
small strain tensor ε (43). Notice how the first two terms on the right hand side of equation (53)

4Interestingly, a direct consequence of (50) for the case of skew-symmetric couple stress theory is that, the couple
stress resultants are first projected on to the axis of the beam prior to area integration. In classical beam theory,
this projection vanishes due to the symmetry of Cauchy stresses i.e. ei ˆ pσeiq “ 0; see Hjelmstad [2005].
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stem from the linear contribution in (52) (as in formula (43)) whereas the last two terms stem
from the quadratic contribution in (52).

− −

− −

+

Undeformed, P = 0

− −

− −

+

Uniform strain, P = 0

− −

− −

+

Non-uniform strain, P 6= 0

(a) (b) (c)

Figure 3: A schematic representation of electric polarisation in a centrosymmetric lattice beam, (a) undeformed
state - no polarisation, (b) when uniformly strained, the atomic displacements of the centrosymmetric lattice
will follow the elastic medium approximation resulting in no polarisation, (c) when strained non-uniformly, the
atomic displacements no longer follow the elastic medium approximation and the symmetry restriction (symmetrical
movement of ions) is broken resulting in electric polarisation opposite to the direction of applied strain, Zubko et al.
[2013]; Deng et al. [2014].

The new initial boundary value problem, adapted to a three-dimensional beam problem, is
then defined by equations (1,3,5) and (42,52), which combine the governing equations of both
elastodynamics and electrostatics, initial and boundary conditions, the coupling electro-mechanical
equations for σ, χ and D, the beam kinematics assumption u and the electric potential spatial
distribution ψ.

5.3. Displacement-potential variational formulation for flexoelectric beams

In order to establish the variational formulation of the problem at a beam level, we consider vir-
tual variations of displacements and electric potential δu and δψ, satisfying appropriate boundary
conditions. Analogous to continuum formulation and following Poya et al. [2015], we can rewrite
the variational form (virtual work) of the initial boundary value problem at beam level as

δW pu, ψ; δu, δψq :“ δWiner ` δWm
int ` δW g

int ` δW e
int ´ δWm

ext ´ δW g
ext ´ δW e

ext “ 0, (56)

where W represents the total work including strain-induced, curvature-induced and polarisation-
induced internal and their corresponding external work, such that

δWiner :“
ż

Ω

ρ:u ¨ δu dΩ, (57a)

δWm
int :“

ż

Ω

σ : δε dΩ`
ż

Ω

σ̂g : δω̂ dΩ, (57b)

δW g
int :“

ż

Ω

µ ¨ δχ dΩ, (57c)

δWm
ext :“

ż

Ω

ρb ¨ δu dΩ`
ż

Γσ
t ¨ δu dΓ, (57d)

δW g
ext :“ 1

2

„ ż

Ω

ρb ¨ p∇ˆ δuq dΩ`
ż

Γµ
m ¨ p∇ˆ δuq dΓ


, (57e)
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δW e
int :“ ´

ż

Ω

D ¨ δE dΩ, (57f)

δW e
ext :“

ż

Ω

ρeδψ dΩ`
ż

ΓD
q0δψ dΓ, (57g)

represent the different contributions (e.g. inertial, internal, external, mechanical, electrical) to the
total virtual work. Substituting the expressions for δu (42) and δψ (52) into equation (43), (48)
and (53) results in

δε “ 1

2

„
pδεm ` δκm ˆ pq b e3 ` e3 b pδεm ` δκm ˆ pq


, (58a)

δχ “ 1

4
Īpδεg ` δκg ˆ pq, (58b)

δE “ ´δεe ´ pe3 b pqδκe ´ V : δςe ´W : δγ, (58c)

where

δεm :“ BδwBx3

` e3 ˆ δθ, δκm :“ BδθBx3

, (59a)

δεg :“ B
2δw

Bx2
3

` δκm ˆ e3, δκg :“ B
2δθ

Bx2
3

, (59b)

δεe :“ BδφBx3

e3 ` δβ, δκe :“ BδβBx3

, δςe :“ BδγBx3

, (59c)

represent the virtual mechanical and electrical beam strains. Substituting the expressions for u
and δu (42) into (57a) yields (after integration over the cross sectional area A) the inertial virtual
work

δWiner “
ż

l

”
δw ¨

´
AD :w ` SD :θ

¯
` δθ ¨

´
STD :w ` ID :θ

¯ı
dx3, (60)

where

AD :“
ż

A

ρI dA, SD :“
ż

A

ρp̂ dA, ID :“
ż

A

ρp̂p̂T dA, (61)

represent the mass AD, first area moment SD and second area moment ID tensors of the cross
sectional area A. Notice that p̂ represents the skew symmetric tensor associated with the axial
vector p. When considering a reference frame whose origin coincides with the centre of mass of
the cross sectional area A, then SD “ 0. Moreover, if the reference frame is aligned along the
so-called principal directions, the second area moment tensor ID becomes diagonal.

Analogously, substituting the expression for δε (58a) into (57b) yields (after integration over
the cross sectional area A) the internal mechanical virtual work

δWm
int “

ż

l

rδεm ¨Qm ` δκm ¨Mms dx3, (62)

with

Qm :“
ż

A

σe3 dA, Mm :“
ż

A

pˆ pσe3q dA. (63)

In the above equation (62),Qm represents the internal shear/axial force whereasMm represents
the internal bending/torsion moment.
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Substituting the expression for δu (42) into (57d) yields (after integration over the cross sec-
tional area A) the standard mechanical external virtual work

δWm
ext “ rδw ¨Qm ` δθ ¨Mmsl0 `

ż

l

rδw ¨ qm ` δθ ¨mms dx3, (64)

where

qm :“
ż

A

ρb dA`
ż

BA
t dΓ, mm :“

ż

A

ppˆ ρbq dA`
ż

BA
ppˆ tq dΓ. (65)

In above equations (64) and (65), qm and mm represent a possible external distributed force
and moment, respectively, acting along the beam axis. The first term in squared brackets on the
right hand side of equation (64) represents mechanical actions (force and moment) applied at both
ends of the beam, namely x3 “ 0 and x3 “ l.

For the strain gradient (curvature) quantities, substituting the expression for δχ (58b) into
(57c) yields the micro-mechanical internal virtual work

δW g
int “

ż

l

rδεg ¨Qg ` δκg ¨M gs dx3, (66)

with

Qg :“
ż

A

1

2
Īµ dA, M g :“

ż

A

pˆ
ˆ

1

2
Īµ

˙
dA. (67)

where Qg and M g can be interpreted as size-dependent shear force and bending/torsion moment
emanating from the micro-structure. Comparing (63) and (67), it is evident that unlike the
standard force stress resultants (based on σe3), couple-stress resultants are integrated in the
plane pe3 b e3 ´ I “ Īq which is the direct consequence of couple stress constraint 2ω “ ∇ ˆ u
and the axial curvature vector (48).

Substituting the expression for δu (42) into (57e) yields (after integration over the cross sec-
tional area A) the micro-mechanical external virtual work

δW g
ext “ rδw ¨Qg ` δθ ¨M gsl0 `

ż

l

rδw ¨ qg ` δθ ¨mgs dx3, (68)

where

qg :“
ż

A

ρ

2
∇ˆ l dA`

ż

BA

1

2
∇ˆm dΓ,

mg :“
ż

A

ˆ
pˆ pρ

2
∇ˆ lq

˙
dA`

ż

BA

1

2

ˆ
pˆ p∇ˆmq

˙
dΓ. (69)

In the above equations (68) and (69), qg and mg can be interpreted as the micro-mechanical
external distributed force and moment, respectively, acting along the beam axis. We can merge
the contribution of external forces of δWm

ext (68) with δW g
ext (64), as these are prescribed quantities

carrying the same units, whose effects cannot be distinguished individually. Hence, in what follows,
with slight abuse of notation, we assume

qm “ qm ` qg, mm “mm `mg.

From the electrical point of view, substituting the expression for δE (58c) into (57f) yields
(after integration over the cross sectional area A) the internal electrical virtual work

δW e
int “

ż

l

rδεe ¨Qe ` δκe ¨M e ` δςe : Oe ` δγ : P es dx3, (70)
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where

Qe :“
ż

A

D dA, M e :“
ż

A

pD ¨ e3qp dA, (71a)

P e :“
ż

A

D ¨WdA, Oe :“
ż

A

D ¨ VdA. (71b)

In the above equations (70) and (71a), it is interesting to observe the similarities between Qe and
M e and their mechanical counterparts (63), namely Qm and Mm, respectively. In addition, due
to the quadratic nature of the electric potential distribution, two extra second order tensors arise,
that is P e and Oe expressed in terms of the third order tensors W and V already defined in (55).

Finally, substituting the expression for δψ (52) into (57g) yields (after integration over the
cross sectional area A) the electrical external virtual work as

δW e
ext “ rδφ pQe ¨ e3q ` δβ ¨M e ` δγ : Oesl0 `

ż

l

rδφ qe ` δβ ¨me ` δγ : oes dx3, (72)

where

qe :“
ż

A

ρe dA`
ż

BA
q0 dΓ, (73a)

me :“
ż

A

ρep dA`
ż

BA
q0p dΓ, (73b)

oe :“
ż

A

ρe

2
ppb pq dA`

ż

BA

q0

2
ppb pq dΓ. (73c)

Again, it is interesting to note the similarities between the above expressions qe, me (73) and
those of qm, mm (65). In equation (72), qe, me and oe represent possible distributed electrical
effects per unit of length. Moreover, pQe ¨ e3q, M e and Oe represent electrical actions applied at
both ends of the beam, namely x3 “ 0 and x3 “ L.

For completeness, the final virtual work expression characterising the behaviour of the piezo-
electric beam can be written as

δW :“ δWiner ` δWint ´ δWext “ 0, (74)

δWiner “
ż

l

”
δw ¨

´
AD :w ` SD :θ

¯
` δθ ¨

´
STD :w ` ID :θ

¯ı
dx3, (75a)

δWint “
ż

l

rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gsdx3

`
ż

l

rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oes dx3, (75b)

δWext “ rδw ¨Qm ` δθ ¨Mmsl0 `
ż

l

rδw ¨ qm ` δθ ¨mms dx3

`
„
δw ¨ BQ

g

Bx3

` δθ ¨ BM
g

Bx3

l

0

`
ż

l

„
δw ¨ Bq

g

Bx3

` δθ ¨ Bm
g

Bx3


dx3

` rδφpQe ¨ e3q ` δβ ¨M e ` δγ : Oesl0 `
ż

l

rδφ qe ` δβ ¨me ` δγ : oes dx3. (75c)
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5.4. Internal area resultants for displacement-potential formulation

From the mechanical standpoint, having introduced the additive decomposition of the total
Cauchy stress tensor σ in equation (12), we now proceed to find the traction vector acting in a
cross sectional area A of the beam defined by the outward unit normal e3, namely σe3. For the
mechanical contribution σm, referring to Appendix B, (43) yields

σme3 “ Ξpεm ` p̂Tκmq, rΞsij “ rCsikjlre3skre3sl. (76)

For the nonlocal contribution of the force stress tensor σ̂g, (48) yields

σ̂ge3 “ Υ1pεm ` p̂Tκmq, Υ1 “ 1

2
σ̂gÎ, (77)

where Î is the skew-symmetric tensor dual to e3 given by

Î “
»
–

0 ´1 0
1 0 0
0 0 0

fi
fl .

For anisotropic materials the nonlocal contribution of the force stress tensor σ̂g also includes
constitutive terms

σ̂ge3 “ Υ2pεg ` p̂Tκgq, rΥ2sij “ 1

4
rDsiklre3skrĪslj. (78)

Analogously, for the electrical contribution σe, (53) yields

σee3 “ Θ pεe ` pe3 b pqκe ` V : ςe `W : γq , rΘsij “ resjikre3sk. (79)

The first internal area resultant Qm, also known as the axial/shear force, can now be computed
from equations (63), (76-79) as

Qm “ Amεm ` Smκm `Amgεg ` Smg1 κg `Ae
1ε
e ` Se1κe ` Se2 : γ ` Ie1 : ςe, (80)

where

Am :“
ż

A

Ξ dA`
ż

A

Υ1 dA, Sm :“
ż

A

Ξp̂T dA`
ż

A

Υ1p̂
T dA, Amg :“

ż

A

Υ2 dA,

Smg1 :“
ż

A

Υ2p̂
T dA, Ae

1 :“
ż

A

Θ dA, Se1 :“
ż

A

Θpe3 b pq dA,

Ie1 :“
ż

A

ΘV dA, Se2 :“
ż

A

ΘW dA,

The first two terms on the right hand side of (80) stem from strain contributions, the third and
fourth terms stem from curvature contribution and the remainder stem from electrical contribution.
The second internal area resultant Mm, also known as bending/torsion moment, can also be
computed from equations (63), (76) and (79) as

Mm “ pSmqT εm ` Imκm ` Smg2 εg ` Imgκg ` Se3εe ` Ie2κe ` Ie3 : γ `Ge
1 : ςe, (82)

where

Im :“
ż

A

p̂Ξp̂T dA`
ż

A

p̂Υ1p̂
T dA, Smg2 :“

ż

A

p̂Υ2 dA, Img :“
ż

A

p̂Υ2p̂
T dA,
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Se3 :“
ż

A

p̂Θ dA, Ie2 :“
ż

A

p̂Θpe3 b pq dA, Ge
1 :“

ż

A

p̂ΘV dA,

Ie3 :“
ż

A

p̂ΘW dA.

As mentioned before, couple-stress resultants are integrated in the cross-sectional plane Ī. For
mechanical contribution µm referring to Appendix B, (43) yields

1

2
Īµm “ ΥT pεm ` p̂Tκmq, (84)

For micro-mechanical contributions µg, (48) yields

1

2
Īµg “ %pεg ` p̂Tκgq, r%sij “ 1

16
rĪsikrBsklrĪslj. (85)

Analogously, for electrical contributions µe, (53) yields

1

2
Īµe “ ℵ pεe ` pe3 b pqκe ` V : ςe `W : γq , ℵ “ 1

4
ĪfT . (86)

The couple stress area resultants Qg and M g, can now be computed from equations (67), (84-79)
as

Qg “ pAmgqTεm ` pSmg2 qTκm `Agεg ` Sgκg `Ageεe ` Sge1 κ
e ` Sge2 : γ ` Ige1 : ςe, (87)

where

Ag :“
ż

A

% dA, Sg :“
ż

A

%p̂T dA, Age
1 :“

ż

A

ℵ dA,

Sge1 :“
ż

A

ℵpe3 b pq dA, Ige1 :“
ż

A

ℵV dA, Sge2 :“
ż

A

ℵW dA,

and analogously for M g

M g “ pSmg1 qT εm ` pImgqTκm ` pSgqTεg ` Imgκg ` Sge3 ε
e ` Ige2 κ

e ` Ige3 : γ `Gge
1 : ςe, (89)

where

Ig :“
ż

A

p̂%p̂T dA, Sge3 :“
ż

A

p̂ℵ dA, Ige2 :“
ż

A

p̂ℵpe3 b pq dA,

Gge
1 :“

ż

A

p̂ℵV dA, Ige3 :“
ż

A

p̂ℵW dA.

From the electrical standpoint, having introduced the additive decomposition of the electric
displacement D in equation (11) and Appendix B, we can obtain after combining equations (11),
(43), (48) and (53)

Dm “ ΘT pεm ` p̂Tκmq, (91)

Dg “ ℵT pεg ` p̂Tκgq, (92)

De “ ´εpεe ` pe3 b pqκe ` V : ςe `W : γq. (93)
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The third internal area resultant Qe can now be computed from equations (71a), (91) and (93) as

Qe “ pAe
1qT εm ` pSe3qT κm ` pAgeqT εg ` pSge3 qT κg ´Ae

2ε
e ´ Se4κe ´ Se5 : γ ´ Ie4 : ςe, (94)

where

Ae
2 :“

ż

A

ε dA, Se4 :“
ż

A

εpe3 b pq dA,

Ie4 :“
ż

A

εV dA, Se5 :“
ż

A

εW dA.

Analogously, the fourth M e, fifth P e and sixth Oe internal area resultants can be computed from
equations (71a-71b), (91) and (93) as

M e “ pSe1qT εm ` pIe2qT κm ` pSge1 qT εg ` pIge2 qT κg
´ pSe4qT εe ´ Ie5κe ´ Ie6 : γ ´Ge

2 : ςe,

P e “ pSe2qT εm ` pIe3qT κm ` pSge2 qT εg ` pIge3 qT κg
´ pSe5qT εe ´ pIe6qT κe ´ Ie7 : γ ´Ge

3 : ςe,

Oe “ pIe1qT εm ` pGe
1qT κm ` pIge1 qT εg ` pGge

1 qT κg
´ pIe4qT εe ´ pGe

2qT κe ´ pGe
3qT : γ ´ J e : ςe,

where

Ie5 :“
ż

A

ppb e3qεpe3 ˆ pq dA, J e :“
ż

A

V˚TεV dA, Ie6 :“
ż

A

ppb e3qεW dA,

Ge
2 :“

ż

A

ppb e3qεV dA, Ge
3 :“

ż

A

W˚TεV dA, Ie7 :“
ż

A

W˚TεW dA.

Finally, we can summarise all of the above relationships between internal area resultants and
mechanical/electrical strains in the following table matrix format5

$
’’’’’’’’’’&
’’’’’’’’’’%

Qm

Mm

Qg

M g

Qe

M e

P e

Oe

,
//////////.
//////////-

“

»
——————————–

Am Sm Amg Smg1 Ae
1 Se1 Se2 Ie1

Im Smg2 Img Se3 Ie2 Ie3 Ge
1

Ag Sg Age Sge1 Sge2 Ige1

Ig Sge3 Ige2 Ige3 Gge
1

´Ae
2 ´Se4 ´Se5 ´Ie4
´Ie5 ´Ie6 ´Ge

2

´Ie7 ´Ge
3

sym ´J e

fi
ffiffiffiffiffiffiffiffiffiffifl

$
’’’’’’’’’’&
’’’’’’’’’’%

εm

κm

εg

κg

εe

κe

: γ
: ςe

,
//////////.
//////////-

(97)

This resulting Hessian operator is symmetric indefinite since it emanates from the enthalpy density
of the system. In case of dealing with a homogeneous material across the section of the beam,
namely constant mechanical and electrical properties within the area section A, if the origin of
the reference triad te1, e2, e3u is chosen as the centre of mass of the section, then the tensors Sm,
Sek pk “ 1 . . . 5q and Ge

k pk “ 1 . . . 3q vanish (e.g. their integrand is of odd order in the position
vector p). Finally, the initial boundary value problem representing the behaviour of a flexoelectric
three-dimensional beam is defined by equations (110), (111), (112) and (97).

5Notice that the entries in columns one to four correspond to second order tensors whereas the entries in columns
five and six correspond to third order tensors. Also note that for a third order tensor rAsijk, we have defined a

transpose operator A˚T “ rAskij
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5.5. The penalty formulation for flexoelectric beams

So far in the development of flexoelectric beam theory, we have assumed a strong enforcement
of the couple stress constraint in order to be able to find the area resultants and balance equations
governing the physics of flexoelectric beams. However, similar to the continuum formulation, the
couple stress constraint can be imposed weakly through a penalty formulation. This essentially
implies that the vorticity vector must be treated as an independent field and must have a description
compatible with the rest of beam kinematic and electrostatic measures. In essence, ω can be
described through the mapping

px, tq ÞÑ ωpx, tq “ ωcpx3, tq ` ωppx3, tq ˆ ppx1, x2q, (98)

where wc and wp characterise the vorticity of the beam along the axis and across the cross section
of the beam, respectively. The curvature vector can now be written as

χ “ 1

2
e3 ˆ

ˆ
εg ` κg ˆ p

˙
“ 1

2
Î

ˆ
εg ` κg ˆ p

˙
, (99)

where

εg “ BωcBx3

, κg “ BωpBx3

ˆ p, (100)

If we assume a slight abuse of notation in order not to rename the variables, interestingly, the
variational formulation for the penalty approach in the beam setting remains the same as the
displacement-potential formulation presented in (75). The changes that will have to be reflected
are minor and in the area resultants emanating from (32) taking into account the total stress tensor
(34). In principle, this also means substituting the new value of χ which entails exchanging the
term 1

4
Ī with 1

2
Î. Furthermore, the contribution of geometric stiffness in Am and Sm in (80) and

in Im in (82) disappear, as these contribution now explicitly perform work against δwc and δwp,
respectively (the third term in square brackets in (102b)). Under this settings we can write the
variational form as

δW :“ δWiner ` δWint ´ δWext “ 0, (101)

δWiner “
ż

l

”
δw ¨

´
AD :w ` SD :θ

¯
` δθ ¨

´
STD :w ` ID :θ

¯ı
dx3, (102a)

δWint “
ż

l

rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gs ` rδωc ¨ Q̄m ` δωp ¨ M̄msdx3

`
ż

l

rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oes dx3, (102b)

δWext “ rδw ¨Qm ` δθ ¨Mmsl0 `
ż

l

rδw ¨ qm ` δθ ¨mms dx3

` rδωc ¨Qg ` δωp ¨M gsl0 `
ż

l

rδωc ¨ qg ` δωp ¨mgs dx3

` rδφpQe ¨ e3q ` δβ ¨M e ` δγ : Oesl0 `
ż

l

rδφ qe ` δβ ¨me ` δγ : oes dx3. (102c)

where

Q̄m :“
ż

A

σ̂ge3 dA, M̄m :“
ż

A

pˆ pσ̂ge3q dA. (103)
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5.6. The Lagrange multiplier and augmented Lagrangian formulations for flexoelectric beams

In case of beams, the variational form of the Lagrange multiplier and augmented Lagrangian
formulations remain sufficiently similar to that of a penalty formulation. However, the Lagrange
multiplier itself is treated as an independent quantity and should be described to have a description
compatible to the vorticity vector. This implies that the Lagrange multiplier must the vorticity
along the axis as well as across the cross-section of the beam. In other words the Lagrange
multiplier s can be prescribed through the following mapping

px, tq ÞÑ spx, tq “ scpx3, tq ` sppx3, tq ˆ ppx1, x2q, (104)

where sc and sp characterise the variation of Lagrange multiplier along the axis and across the
cross section of the beam, respectively. The variational form of the problem now takes the form

δW :“ δWiner ` δWint ´ δWext “ 0, (105)

δWiner “
ż

l

”
δw ¨

´
AD :w ` SD :θ

¯
` δθ ¨

´
STD :w ` ID :θ

¯ı
dx3, (106a)

δWint “
ż

l

rδεm ¨Qm ` δκm ¨Mms ` rδεg ¨Qg ` δκg ¨M gs
` rδωc ¨ Q̄g ` δωp ¨ M̄ gs ` rδsc ¨Qs ` δsp ¨M ssdx3

`
ż

l

rδεe ¨Qe ` δκe ¨M e ` δςe : P e ` δγ : Oes dx3, (106b)

δWext “ rδw ¨Qm ` δθ ¨Mmsl0 `
ż

l

rδw ¨ qm ` δθ ¨mms dx3

` rδωc ¨Qg ` δωp ¨M gsl0 `
ż

l

rδωc ¨ qg ` δωp ¨mgs dx3

` rδsc ¨Qs ` δsp ¨M ssl0 `
ż

l

rδsc ¨ qs ` δsp ¨mss dx3

` rδφpQe ¨ e3q ` δβ ¨M e ` δγ : Oesl0 `
ż

l

rδφ qe ` δβ ¨me ` δγ : oes dx3. (106c)

where

Q̄m :“ ´
ż

A

σ̂ge3 dA, M̄m :“ ´
ż

A

pˆ pσ̂ge3q dA, (107)

and for Lagrange multiplier approach we have

Qs :“
ż

A

p∇skewu´ ω̂qe3 dA, M s :“
ż

A

pˆ pp∇skewu´ ω̂qe3q dA, (108a)

qs :“
ż

A

p∇skewu´ ω̂qn dA, ms :“
ż

A

pˆ pp∇skewu´ ω̂qnq dA. (108b)

whereas for augmented Lagrangian we obtain

Qs :“
ż

A

rp∇skewu´ ω̂q ` 1

κ
s Ise3 dA, M s :“

ż

A

pˆ prp∇skewu´ ω̂q ` 1

κ
s Ise3q dA,

(109a)

qs :“
ż

A

rp∇skewu´ ω̂q ` 1

κ
s Isn dA, ms :“

ż

A

pˆ prp∇skewu´ ω̂q ` 1

κ
s Isnq dA.

(109b)
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5.7. Governing equations of three-dimensional flexoelectric beams

As it is well known in standard beam theory, further manipulation of the displacement-potential
variational form (74)-(75) can lead to the so-called beam balance equations Hjelmstad [2005], which
are written as

ˆB2Qg

Bx2
3

˙
` BQ

m

Bx3

` qm “ AD :w ` SD :θ, in l ˆ r0, T s, (110a)

ˆB2M g

Bx2
3

´ e3 ˆ BQ
g

Bx3

˙
` BM

m

Bx3

´Qm ˆ e3 `mm “ STD :w ` ID :θ, in l ˆ r0, T s, (110b)

BpQe ¨ e3q
Bx3

` qe “ 0, in l ˆ r0, T s, (110c)

BM e

Bx3

` ĪQe `me “ 0, in l ˆ r0, T s, (110d)

BOe

Bx3

´ P e ` oe “ 0, in l ˆ r0, T s, (110e)

The above set of equations represent a set of balance equations in terms of internal area resultants
Qg, M g, Qm, Mm, Qe, M e, P e and Oe. If we drop the terms in the bracket, the piezoelectric
beam model of Poya et al. [2015] is recovered. Initial conditions in (4), boundary conditions (2-
4-6), strains measures (43-44), strain gradient measures (48-49) and the electrical counterparts
(53-54) complement the above system of partial differential equations (110) to form the initial
boundary value problem of the three-dimensional flexoelectric beam. Specifically, compatible initial
conditions can be defined in terms of axis varying functions w0, 9w0,θ0, 9θ0 : r0, ls Ñ R3 as

upx1, x2, x3, tq “ w0px3q ` θ0px3q ˆ ppx1, x2q in Ωˆ 0, (111a)

9upx1, x2, x3, tq “ 9w0px3q ` 9θ0px3q ˆ ppx1, x2q in Ωˆ 0, (111b)

Dirichlet (and corresponding Neumann) boundary conditions can be defined at either end of the
beam x3 “ 0 or x3 “ l by

w “ w̄, θ “ θ̄, φ “ φ̄, β “ β̄, γ “ γ̄, (112a)

Qm “ Q̄m, Mm “ M̄m, Qe ¨ e3 “ Q̄e, M e “ M̄ e, Oe “ Ōe, (112b)

Qg “ Q̄g, M g “ M̄ g. (112c)

If we consider a purely mechanical couple stress beam model, equations (110) and (112) can be
reduced to those of Ma et al. [2008](Eqs. 21-22) and Park and Gao [2006](Eqs. 22-23) for planar
beams, by dropping the torsional term B2Mg

Bx23 from (110b). Thus, the present beam model (110) is a

fourth order differential equation in both w and θ ¨ e3. It should be emphasised however, that the
kinematics and constitutive relations of the present beam model are different. Due to the effect
of couple stress quantities, namely moment-tractions and body couples having been merged with
force-tractions and body forces, complicated boundary conditions (especially the body couple) of
Ma et al. [2008]; Reddy [2011]; Şişmek and Reddy [2012] do not appear in our formulation.
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6. Numerical experiments

6.1. A detailed comparison of couple stress based and strain gradient based flexoelectric models:
vanishing volumetric strain gradients, the presence of reverse coupling modes and material
characterisation for BaTio3

The objective of this first study is to qualitatively and quantitatively compare the present
couple stress based flexoelectric model with the standard strain gradient based flexoelectric mod-
els in terms of their effectiveness in predicting size-dependent electric polarisation produced from
non-uniform strain distribution. The point of departure is to study the fundamental theoretical dif-
ferences in kinematics and governing equations of these two theories and their subsequent physical
impact, as a similar study is not reported elsewhere in the literature. The study primarily focusses
on BaTio3 whose piezoelectric and flexoelectric material properties are known from Berlincourt
and Jaffe [1958] and Maranganti and Sharma [2009], respectively as

Elastic constants Dielectric constants Piezoelectric constants Flexoelectric constants
C11 “ 275 GPa ε11 = 12.5 nC/Vm e31 = -2.7 C/m2 f̄11 = 0.15 nC/m
C12 “ 179 GPa ε33 = 14.4 nC/Vm e33 = 3.65 C/m2 f̄12 = 100 nC/m
C13 “ 152 GPa e15 = 21.3 C/m2 f̄44 = -1.9 nC/m
C33 “ 165 GPa
C44 “ 54 GPa

Table 1: Material constants for BaTio3

where these constitutive tensors can be spherically parametrised to form the so-called indicatory
surfaces of BaTio3, as shown in Figure 4. Indicatory surface is a convenient way to visualise
the major axes of material symmetry as can be clearly seen in the case of piezoelectric tensor
in Figure 4c. As an essential part of the comparison, this parametrisation is also used later to
compare the flexoelectric tensors of couple stress based and standard strain gradient based models.

For the purpose of clarity, let us consider only the flexoelectric coupling mechanisms under both
(couple stress and standard strain gradient) theories, in a two dimensional setting. The point of
departure, is the flexoelectric enthalpy of the system which under standard strain gradient theories
is given in terms of the gradient of strains χ̄ “ ∇sym∇symu and the electric field E as

ΨsgpE, χ̄q “ ´E ¨ f̄ ... χ̄ “ ´Eifijklχ̄jkl, (113)

where f̄ is the fourth order flexoelectric tensor with one symmetry i.e. f̄ijkl “ f̄ikjl and in the gen-
eral three-dimensional case can be characterised with 54 material constants, as shown in Figure 5a
(for the case of BaTio3). Under a two-dimensional setting, only 12 material constants are required
to fully characterise the flexoelectric tensor. The strain gradient tensor χ̄ and the flexoelectric
tensor under Voigt notations can be written as Abdollahi et al. [2015]; Nanthakumar et al. [2017]

χ̄ “ ∇sym∇symu “ rB
2ux
Bx2

,
B2uy
ByBx,

B2ux
ByBx `

B2uy
Bx2

,
B2ux
BxBy ,

B2uy
By2

,
B2ux
By2

` B2uy
BxBy s

T , (114)

f̄ “
„
f̄11 f̄12 0 0 0 f̄44

0 0 f̄44 f̄12 f̄11 0


, (115)

where (114) is the so-called mean or engineering strain gradients, wherein the multiplication factor
(1

4
) is omitted for simplicity. This in general implies that the produced electric displacement must
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(c)
Figure 4: Indicatory surfaces of BaTio3 constitutive tensors namely, a) the elasticity tensor C, b) the dielectric
tensor ε and, c) the piezoelectric tensor e

take the form

Dsg “ ´BΨsg

BE “
«
f̄11

B2ux
Bx2 ` f̄12

B2uy
ByBx ` f̄44pB2uxBy2 ` B2uy

BxBy q
f̄11

B2uy
By2 ` f̄12

B2ux
BxBy ` f̄44pB2uxByBx ` B2uy

Bx2 q

ff
. (116)

On the other hand, in the case of couple stress based flexoelectric model, as presented earlier the
flexoelectric enthalpy can be written as

ΨcspE,χq “ ´E ¨ f ¨ χ “ ´Eifijχj, (117)

where f is the second order flexoelectric tensor with no general symmetries. It is characterised by
9 constants in the three-dimensional case and 4 constants in the two-dimensional case. Comparing
(113) and (117) their number of material constants and indicatory surfaces in Figure 5 it is evident
that, certain modes of deformations are inevitably combined in the couple stress flexoelectric
theory. The explicit forms of χ and f are given as

χ “ ∇ˆ∇ˆ u “ r B
2uy
ByBx ´

B2ux
By2

,
B2ux
BxBy ´

B2uy
Bx2

sT , (118)

f “
„
f11 f12

f21 f22


, (119)

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where χ is the mean or engineering curvature vector presented earlier, wherein the multiplication
factor (1

4
) is omitted for simplicity. Note that no correspondence is established between the tensors

f and f̄ yet. This in general implies that the produced electric displacement must take the form

Dcs “ ´BΨcs

BE “
«
f11pB2uyByBx ´ B2ux

By2 q ` f12pB2uxBxBy ´ B2uy
Bx2 q

f21pB2uyByBx ´ B2ux
By2 q ` f22pB2uxBxBy ´ B2uy

Bx2 q

ff
. (120)

Comparing Dsg in (116) and Dcs in (120), one can observe that, in the case of couple stress
flexoelectric theory, the variation of volumetric strains (volumetric strain gradients namely the

components B2ux
Bx2 and B2uy

By2 ) do not generate electric polarisation, as they are fundamentally non-

existent. This is true for all variants of couple stress theories (i.e. classical, modified, conformal
and skew-symmetric couple stress theories) as the spherical part of strain always vanishes. In other
words, the f̄11 coupling mode cannot be characterised under this theory. In the case of BaTio3,
we observe that f̄11 parameter corresponds to the weakest coupling mode which can be up to
three orders of magnitude smaller than the flexural mode and can be neglected even in the case
of standard strain gradient flexoelectricity. Moreover, it can be noticed that, if present, the f12

and f21 give rise to a completely reversed coupling mode in comparison to strain gradient theory.
Further comparison of (116) and (120) for BaTio3 constants shown in Table 1, reveals that the
flexoelectric coupling modes is in fact dominant in f̄12 and one can consequently write

Dsg «
«
f̄12

B2uy
ByBx

f̄12
B2ux
BxBy

ff
. (121)

If we were to establish a correspondence between f and f̄ , then the most plausible relationship
would be to assume f11 “ f22 “ f̄12 and f12 “ f21 “ 0 in which case we can write

f « f̄12I “
„
f̄12 0
0 f̄12


, Dcs «

«
f̄12pB2uyByBx ´ B2ux

By2 q
f̄12pB2uxBxBy ´ B2uy

Bx2 q

ff
. (122)

Equation (122) establishes the closest possible algebraic relationships between flexoelectric con-
stants of couple stress based and strain gradient based flexoelectric theories, without the need for
a nonlinear optimisation process to characterise the constants of one theory with respect to the
other. The need for this optimisation can also be negated by noting the significant discrepancies
present between atomistic simulations and experimental observations in determining flexoelectric
constants Ma and Cross [2006]; Maranganti and Sharma [2009]; Zubko et al. [2013], as result of
which most authors assume the flexural constant f̄12 in the wide range of 1nC/m-100µC/m. Under
this setting, the indicatory surfaces of flexoelectric tensors f̄ and f can be represented as shown
in Figure 5 where the axes of symmetry for both tensors can be clearly seen. Figure 5, once
again confirms that characterising the flexoelectric constants of f with respect to f̄ is in general
impractical owing to the fact that the tensors belong to two different vector spaces.

In what follows, we consider simplified cases of flexoelectric coupling of nano-specimen under
different coupling modes with various boundary conditions and present simple analytical solutions
in order to quantify the electromechanical coupling efficiency of couple stress based and standard
strain gradient based flexoelectric theories. The analytical solutions are not derived but rather
designed (in terms of beam displacements and hence strains and strain gradients) such that the
specimen will experience a non-uniform strain distribution, assumed to be enough to break the
inversion symmetry of BaTio3 to produce electric polarisation. While inspired by simple analytical
solutions of beams these studies are performed at a continuum level. The studies here are in line
with and complement the ones reported in Abdollahi et al. [2014, 2015].
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(a) (b)
Figure 5: Indicatory surface of BaTio3 flexoelectric constitutive tensor under, a) standard strain gradient based
flexoelectric theory (i.e. f̄), b) couple stress based flexoelectric theory (i.e. f)

6.1.1. Case 1. Simply supported nanobeam under uniformly distributed load

As a first case, let us consider a nanobeam shown in Figure 6. Under the action of uniformly
distributed load the beam undergoes bending and as a result, a non-uniform distribution of strains
across the cross section of the beam is observed. A simple analytical solution for the bending of

q

l

(a) (b)
Figure 6: Original and deformed shape of nanobeam

the nanobeam shown in Figure 6b can be simply computed using the beam kinematics presented
in (44), as

ux “ ´αpl3 ´ 6lx2 ` 4x3qy, (123a)

uy “ βpl3x´ 2lx3 ` x4q ` γxpl ´ xq, (123b)

where the parameters α “ 1.25 ˆ 1020, β “ 1.25 ˆ 1020 and γ “ 1330 are chosen for convenience.
This in fact corresponds to a load of 100µN/m. l denotes the length of the beam which is chosen
to be 10nm and the thickness of the beam is retained as t “ 1nm. The material constants of
BaTio3 shown in Table 1 are chosen for the study. The electric displacement vectors Dsg and Dcs

can now be computed using equations (116) and (120), respectively.
Figure 7 compares the generated electric displacement of the couple stress model computed

using (122) with that of the standard strain gradient model computed using (116) (i.e. the fully
coupled electric displacement vector), along the length of the beam (i.e. for all x such that y
coincides with the neutral axis). The figures also compares the electric displacements generated
with the standard strain gradient model ignoring the f̄11 parameter which is not present in the
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couple stress model. Notice that when f̄11 parameter is discarded both couple stress and strain
gradient models generate the same (zero) electric displacement component Dx, in this case. The
electric displacement Dx is zero in the latter two cases, due to the fact the corresponding second
derivatives vanish. This generated electric displacement is extremely small owing the fact that f̄11

is significantly weaker in BaTio3. On the other hand, extremely high electric displacement Dy is
generated. Under this coupling mode, it can be observed that the couple stress model generates
approximately twice (200%) more the amount of electric displacement as compared to the strain
gradient model and the contribution of f̄11 and f̄44 parameters while present are small enough,
that they can be neglected. Given the discrepancies in theoretical and experimental findings in
flexoelectric theory, we can say that this result provides yet another significantly positive physical
insight in to this field. However, the profile of generated electric displacement along the beam is
in general similar for both models.

(a) (b)

(c) (d)

Figure 7: Comparison of couple stress based and strain gradient based flexoelectric models for the case of (123),
when material constants are fitted according to (122)

6.1.2. Cantilever nanobeam undergoing bending and complex cross sectional thinning

Let us next consider a nanobeam undergoing complex cross sectional thinning and bending, as
shown in Figure 8. The analytical formula describing this morphology is given by

ux “ ´αp3l2x´ 3lx2 ` x3qy, (124a)

uy “ βp3l2x2 ´ 4lx3 ` x4q ` γxp2l ´ xq, (124b)
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where the parameter α “ 5.21 ˆ 1018 is now chosen. Under this setting, the beam experiences
nonuniform distribution of strains across the cross section and along the length and as a result the
flexoelectric coupling mechanism is more complex now. Note that the form of loading q must be
coordinate dependent and not generally uniform, in order to produce the aforementioned analytical
formula.

q

l

(a) (b)
Figure 8: Original and deformed shape of nanobeam

Figure 9 compares the generated electric displacement of the couple stress model with that of
the standard strain gradient model with and without consideration of the f̄11 coupling modes. A
similar conclusion can be drawn in this case in that, when f̄11 parameter is discarded both couple
stress and strain gradient models generate the same (zero) electric displacement component Dx,
which is negligible regardless. However an extremely high electric displacement Dy is generated
with the couple stress model, which in this case is up to two orders higher than that of strain
gradient model. This is due to the strong presence of second derivatives (curvature effect) in the
couple stress model, which gives rise to extremely high bending coupling mode. However, the
profile of generated electric displacement is in general similar for both models.

6.1.3. Cantilever nanobeam undergoing extension and thinning

The third and final case considers an even more complex deformation scenario under extension
to ensure that there are no vanishing component in the strain gradient tensor/curvature vector.
This study also considers the extension coupling mechanism in flexoelectricity. To this effect a
nanobeam undergoing complex cross sectional thinning and extension is considered, as shown in
Figure 10. The analytical formula describing this morphology is given by

ux “ αx2py ´ l

20
q2, (125a)

uy “ β
?
x` 2lpy ´ l

20
q3, (125b)

where the parameters α “ 5 ˆ 1021 and β “ 1.5 ˆ 1019 are chosen. Under this setting, the beam
experiences nonuniform distribution of strains across the cross section and along the length giving
rise to electric polarisation.

Figure 10: Original and deformed shape of nanobeam
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Figure 9: Comparison of couple stress based and strain gradient based flexoelectric models for the case of (124),
when material constants are fitted according to (122)

Figure 11 compares the generated electric displacement of the couple stress model with that of
the standard strain gradient model with and without consideration of the f̄11 constant. As expected
in this case the electric displacement component Dx is more pronounced compared to Dy, unlike
the previous cases. The couple stress model generates up to an order of magnitude higher electric
polarisation under this coupling mode and the profile of electric displacement is also very different
from that of strain gradient model. The polarisation in the vertical y direction remains weak and
f̄11 parameter is discarded both couple stress and strain gradient models generate the same electric
displacement component Dy. In general, although non-intuitive, it can be observed that in the
case of extension the parameter f̄11 plays no significant role.

From the analysis of three flexoelectric coupling cases in this section it can be concluded that,
for both couple stress and strain gradient theories the bending/shear coupling mode is typically
activated by the action of transverse electric field and the extension coupling mode is activated by
the action of electric field aligned in parallel to the axis of extension. Under both these coupling
modes the driving parameter is the flexoelectric constant f̄12. This is in contrast to piezoelectricity
where different modes of coupling are typically driven by different material constants. If the same
flexoelectric constant is chosen to simulate strain gradient and couple stress theory, the couple
stress model will in general produce a higher electric polarisation that in some cases could be up to
two orders of magnitude higher. It must be believed that for most problems of practical relevance
analysed under such settings the couple stress flexoelectric model in general will produce a higher
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electric polarisation. It is also worth noting that, simplified analytical solutions of strain gradient
flexoelectricity overestimate the flexoelectric response in comparison to fully three-dimensional
computational simulation as noted by Abdollahi et al. [2014, 2015]. In the later sections we will
see if this is the case for couple stress based flexoelectric models.

(a) (b)

(c) (d)

Figure 11: Comparison of couple stress based and strain gradient based flexoelectric models for the case of (125),
when material constants are fitted according to (122)

6.2. Nanocompression of a flexoelectric conical pyramid

In this section, the nanocompression of a complex flexoelectric conical pyramid is chosen for
numerical study. The objective is to examine the capability of the developed finite element frame-
work in predicting the flexoelectric response when the geometrical representation of the problem
is complex and when an analytical solution cannot be obtained. The numerical framework is
thoroughly benchmarked against simple analytical solutions in Appendix C.1. The analysis of
flexoelectric pyramidal structures have been carried by many other authors in the past as the
differential thickness along the height of the pyramid produces a significant flexoelectric response
Abdollahi et al. [2014, 2015]; Ghasemi et al. [2017]; Deng et al. [2018]. Furthermore, flexoelectric
material constants are also typically experimentally characterised through either nanoindentation
or bending experiments, using similar geometries. Abdollahi et al. [2014] has analysed the problem
of nanocompression of the flexoelectric pyramid in depth showing that simplified solutions can in
general overestimate the flexoelectric response and relying on computational methodologies can
help provide better physical insight in to the design of such flexoelectric transducers.
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To this end, a rather more complex flexoelectric conical pyramid is chosen for our study.
The additional complexity of the problem emanates from the fact that the edges and facets of
the pyramid are not straight sided but are rather described through NURBS functions. The
geometry and the three-dimensional curved p “ 4 tetrahedral mesh of the flexoelectric structure
is shown in Figure 12. To represent the geometry of the problem accurately, we employ the high
order curvilinear finite elements recently developed by Poya et al. [2018] which uses a posteriori
mesh morphing technique presented in Poya et al. [2016] to represent the CAD boundaries of
the flexoelectric structure accurately (notice the curved elements representing the circle in the top
conical frustum) without requiring a change in the mixed finite element functional spaces presented
in Appendix C.

x

y

z

(a) (b)

(c)
Figure 12: Geometry and quartic (p “ 4) order curved mesh of the flexoelectric conical pyramid. The conical
pyramid is being held by a plate-like support of size 100 ˆ 100µm2 and the total height of the pyramid is 130µm.
The thickness of pyramid is 150nm throughout the structure. The circle in top conical frustum represents the region
where the compressive load is applied
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Once again, we choose the Barium Titanate as the flexoelectric material of choice by neglecting
the piezoelectric effect and only considering f̄12 flexoelectric constant. A compressive load of 3mPa
is applied as pressure on the circle in top conical frustum and the base of the plate-like support is
mechanically fixed. The system has an open circuit configuration in that, only zero electric poten-
tial is applied at the base of the plate-like support. The problem consists of approximately 3.4M
degrees of freedom excluding the condensed variables and approximately another 2.8M degrees of
freedom are condensed out during each run of the analysis. The Lagrange multiplier formulation
is used for this analysis and the simulation is performed dynamically using the Newmark’s beta
method with the density of the Barium Titanate given as ρ “ 6.02 g/cm3. The total load is applied
over a period of 30 seconds at a rate of 0.1mPa/sec.

Figure 14 summarises various representative results of the analysis. First, a mesh refinement
study has been performed to ensure that the results of the analysis are accurate. As can be
observed the electromechanical coupling efficiency asymptotically approaches towards a reference
solution with mesh refinement, confirming the stable approximation property of the developed
finite element scheme. All the analyses are performed using the second finest mesh corresponding
to Figure 14a, where the number of elements in the computational mesh is kept fixed at 63794.
Keeping the mesh size fixed a p refinement is then carried out from p “ 2 to p “ 5 respectively as
shown in Figure 14b. It can be observed that under p-refinement the convergence is much quicker
and at p “ 3 the reference solution is already obtained. As mentioned before, further analysis of
the flexoelectric pyramid are however performed with keeping the polynomial refinement fixed at
p “ 4. Figure 14c shows the satisfaction of the couple stress constraint throughout the dynamic
simulation time. As can be observed the constraint is numerically satisfied for the whole duration
of the simulation. Finally, Figure 14d shows the effective electromechanical coupling efficiency
(ECF) throughout the simulation time. Due to the linear nature of the problem, a constant ECF
is obtained for the whole duration of simulation.

A common way to characterise size-dependent effect in flexoelectric theory is to measure the
normalised effective piezoelectric constant. For complex problems such as the current one the
approximate analytical solution for this constant reported in Majdoub et al. [2008] cannot be used
and the more generic formula given below should be used

ē “
ş
Ω
Ec ¨ εEcş

Ω
Ee ¨ εEe

, (126)

where Ec represents the electric field when both piezoelectricity and flexoelectricity are present and
Ee represents the electric field when flexoelectricity is ignored. It is also established phenomenon
that flexoelectricity modifies the inherent mechanical properties specially the bending modulus of
the material Sharma et al. [2007]; Krichen and Sharma [2016]. The normalised effective stiffness
of the system can be computed similarly as

Ȳ “
ş
Ω
εc : C : εcş

Ω
εm : C : εm

, (127)

where εc represents the small strain tensor when flexoelectricity is present and εm represents the
small strain tensor when flexoelectricity is ignored. Figure 14e shows the evolution of strain energy
of the system with and without consideration of flexoelectricity characterising normalised effective
stiffness of the system. We notice a rather constant normalised effective stiffness in the range of
2.2˘0.2 for the conical pyramid throughout the dynamic simulation due to the linear nature of
the problem. Interestingly, the standard strain gradient models also produce a similar normalised
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Figure 13: Various representative results of the analysis on conical pyramid, a) convergence of the solution
with mesh refinement, b) satisfaction of couple stress constraint, c) evolution of strain energy with and without
consideration of flexoelectricity characterising evolution of normalised effective stiffness, d) evolution of electrical
energy and, e) evolution of effective electromechanical coupling coefficient, f) evolution of normalised effective
stiffness

effective stiffness Abdollahi et al. [2014]. Similarly, Figure 14f shows the evolution of electrical
energy with and without consideration of flexoelectricity characterising the normalised effective
piezoelectric constant of the system. Note that all the piezoelectric material constants shown in
Table 1 are now activated and deformation of the system is much more complex now as all coupling
modes are active. A modest 4-6% increase in electrical energy is observed when flexoelectricity is
activated. This is in contrast with respect to the results presented in Abdollahi et al. [2014, 2015];
Nanthakumar et al. [2017]; Ghasemi et al. [2017] wherein the flexoelectric constant is assumed to
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(a) (b) (c)
Figure 14: The final deformed conical pyramid configuration showing, a) electric potential ψ, b) strain component
εxy and b) strain component εyz. 355M cells have been used to process a detailed resolution of the results.
Deformations (not magnitudes) are magnified by a factor of 10 for aesthetics and clarity

be more than an order of magnitude higher than its actual value used here.
Figure 14 shows the final deformed configuration of the conical pyramid for p “ 4 tetrahedral

elements with an extremely detailed resolution wherein the results are extrapolated over 355M
cells using high order finite element interpolation functions. It can be observed that both electric
potential (primary variable) and strain components (derived variables) are well resolved at this
level of detail. The deformation initially starts at the circular region in the top frustum of the
pyramid. As the compressive pressure is increased the frustum is pushed inwards and the pyramid
experiences necking right around the frustum. With further compression, a completely dipped and
grooved region starts to form around the frustum while the region immediately around the circle
where the load is applied starts to bulge outwards. As shown in Figure 15 the base of the pyramid
is severely pushed towards the plate support. Figure 15 further shows strain gradient measures,
namely the vorticity vector and the curvature vector component. Interestingly, it can be observed
in Figure 15c that the curvature evolves as a spin around the generated sink and starts to disperse
near the grooved region. This is because the certain of the sink (y-axis) corresponds to the axis of
rotation.

From the analyses performed in this section it can be concluded that, advanced computational
tools help resolve the problem of flexoelectricity to an unprecedented detail beyond the realm of
approximate closed form solutions. Certainly, the inclusion of anisotropy, necking and vortex for-
mation is too complex to be handled otherwise. The use of high performance tensor contraction
framework for coupled electromechanical problems developed by the authors Poya et al. [2017],
make the developed finite element technique a viable candidate for solving extremely large scale
problems on complicated geometries. Given that the normalised effective piezoelectric constant
shows only a 4-6% increase due to flexoelectricity for this problem, we can assume that the compu-
tational model given its accuracy has modest estimations in comparison to analytical solutions (if
available), an issue also present in standard strain gradient models Abdollahi et al. [2014]. How-
ever, as mentioned before, the major discrepancy in results of normalised effective piezoelectric
constants between the current study and those of Abdollahi et al. [2014, 2015] is due to an order
of magnitude higher flexoelectric constant chosen by the latter authors.
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spin formation around the sink

(a) (b)

(c)
Figure 15: The final deformed conical pyramid configuration showing, a,b) axial vorticity vector component ωy
and, c) axial curvature vector component χy. The curvature forms a spin around the deformed sink. 355M cells
have been used to process a detailed resolution of the results. Deformations (not magnitudes) are magnified by a
factor of 10 for aesthetics and clarity

7. Conclusion

In this manuscript, a family of numerical models for the phenomenological linear flexoelectric
theory for continua and their particularisation to the case of three-dimensional Timoshenko beams
based on a skew-symmetric couple stress theory is presented. In contrast to the traditional flexo-
electric models based on standard strain gradient wherein coupling between electric polarisation
and strain gradients is assumed, we postulate an electric enthalpy in terms of linear invariants
of curvature and electric field. This is achieved by introducing the axial or what is also called
the mean curvature vector as a strain gradient measure. We have shown that this assumption has
many important physical implications. Firstly, similar to the standard strain gradient models,
for isotropic (non-piezoelectric) materials this approach allows constructing flexoelectric energies
without breaking material’s centrosymmetry. Secondly, unlike the standard strain gradient models,
nonuniform distribution of volumetric part of strains (volumetric strain gradients) do not generate
electric polarisation. We have shown that volumetric strain gradients have negligible contribution
in generating electric polarisation. Thirdly, a state of plane strain generates out of plane deforma-
tion through strain gradient effects. Finally, under this theory, extension and shear coupling modes
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cannot be characterised individually as they contribute to the generation of electric polarisation
as a whole.

For the case of three-dimensional beams, we have shown that the skew-symmetric couple stress
model in general, generate stresses spanned over the cross section rather than aligned with the
longitudinal axis of the beam and as a result special care must be taken to integrate them over
the cross section.

Four distinct variational principles are presented for both continuum and three-dimensional
beam models namely, a displacement-potential formulation, a penalty formulation, a Lagrange-
multiplier formulation and an augmented Lagrangian formulation. The three later formulations
facilitate incorporation of strain gradient measures in to a standard finite element scheme while
maintaining the C0 continuity. To this end, the efficacy of high order finite elements along with
the computational efficiency of mixed finite elements have been utilised to develop a series of low
and high order mixed finite element schemes for couple stress based flexoelectricity and their corre-
sponding results are benchmarked against available closed form solutions where good agreements
have been found with the reference results. Furthermore, a detailed comparison of the developed
couple stress based flexoelectric model with the standard strain gradient flexoelectric models has
been performed for the case of Barium Titanate where a myriad of simple analytical solutions have
been proposed in order to quantitatively describe the similarities and dissimilarities in effective
electromechanical coupling under these two theories. As a physically insightful observation, it is
observed that, if the same experimental flexoelectric constants are fitted in to both theories, the
current couple stress theory in general, reports a much stronger electromechanical conversion effi-
ciency of up to 200% under bending and up to two orders of magnitude under axial tension. This is
mainly due to the fact that, most flexoelectric problems involve bending and flexural deformation
and since in the present couple stress model multiple modes of deformations are combined, as
a result, the axial curvature vector responsible for generating electric polarisation is much more
pronounced for most of these cases. Finally, nanocompression of a complex flexoelectric conical
pyramid for which analytical solution cannot be established has been numerically studied at an
unprecedented level of detail to pinpoint the robustness and computational scalability of the frame-
work. Under this experiment, the structure experiences necking and the curvature effect forms a
vortex around the generated sink in the frustum. The geometry and the nature of the deformation
certainly implies that studying flexoelectricity in these structures is not feasible without resorting
to computational tools. We observe a modest normalised effective piezoelectric coefficient for this
study while the normalised effective stiffness of the system reported by the couple stress model is
similar to the ones reported by standard strain gradient models.

Appendix A. The indeterminate couple stress theory and its relation to the classical
Cosserat theory

The theory in this section is a reiteration of the classical couple stress model briefly discussed
here for the convenience of the reader. In classical linear elasticity due to symmetry of strains (ε)
an isotropic material is fully described with only two strain invariants. However, when the strain
tensor is non-symmetric (ε̃), at least three invariants are needed to describe an isotropic solid,
Hence, the free energy takes the form, Neff and Jeong [2009]; Jeong and Neff [2010]

W isopε̃, χ̃q “ W iso
ε̃ pε̃q `W iso

χ̃ pχ̃q
“ µ` µc

2
ε̃ : ε̃` µ´ µc

2
ε̃ : ε̃T ` λ

2
ptrε̃q2
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` ζ ` η
2

χ̃ : χ̃` ζ ´ η
2

χ̃ : χ̃T ` α

2
ptrχ̃q2, (A.1)

where µ and λ are Lamé constants and µc, ζ, η and α are four additional material parameters
known as Cosserat constants. The constant µc is called the Cosserat’s coupled modulus. If we
additively decompose ∇u and ∇ω into their symmetric and skew-symmetric parts

∇u “ ∇symu`∇skewu, ∇ω “ ∇symω `∇skewω, (A.2)

and substitute in (A.1), we obtain

W iso
ce pε̃, χ̃q “ µ||∇symu||2 ` µc||ω̂ ´∇skewu||2 ` λ

2
||∇ ¨ u

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

` ζ||∇symω||2 ` η||∇skewω||2 ` α

2
||∇ ¨ ω||2. (A.3)

At the limit when the Cosserat couple modulus µc ÞÑ 8, the effect of microstructure would be too
rigid to be incorporated in the strain energy W iso

ε̃ pε̃q and one can constrain the rotations as

ω̂ ´∇skewu “ 0 ñ ω “ 1

2
∇ˆ u, (A.4)

which renders

∇ ¨ ω “ 1

2
∇ ¨ p∇ˆ uq “ 0, (A.5)

leaving the parameter α indeterminate. Also called the Cosserat theory of constrained rotations,
this model was first introduced by Mindlin and Tiersten [1962], discussed in Toupin [1962], and
elaborated lucidly by Koiter [1964]; hence it is also referred to as the Mindlin-Toupin-Koiter theory.
The strain and curvature tensors now become

ε̃ “ ∇u´∇skewu “ ∇symu “ ε, (A.6)

χ̃ “ ∇ω “ 1

2
∇p∇ˆ uq (A.7)

Hence, in couple stress theory, the strain tensor is symmetric and the curvature tensor as seen
in (A.5) is solenoidal. Also note that in the modified couple stress theory Yang et al. [2002],
the curvature tensor is symmetric, meaning that the parameter η in (A.1) also vanishes and the
curvature energy considered is then the weakest possible in Neff and Jeong [2009]; Jeong et al.
[2009] sense.

Appendix B. Constitutive equations for isotropic and anisotropic couple stress flex-
oelectric materials

In this section, the constitutive equations for isotropic and anisotropic couple stress based linear
flexoelectric material models are presented, based on Hadjesfandiari [2013]. For the anisotropic case
the constitutive equations are given both in terms of the curvature vector and its dual, Table B.2.
Note that the following relationships exist between material tensors and their duals

B̂ijkl “ 1

4
ξijmξklnBmn, Bmn “ ξijmξklnB̂ijkl,
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Description Isotropic Anisotropic

Enthalpy Ψ isopεij , χi, Eiq “
µ εijεij ` λ

2 εkkεll ` 8η χiχi ´
4f̄ χiEi ´ 1

2εij EiEj

Ψanispεij , χ̂ij , Eiq “ 1
2Cijklεijεkl `

1
2 B̂ijklχ̂ijχ̂kl ` D̂ijklεijχ̂kl ´

eijkEiεjk ´ f̂ijkEiχ̂jk ´ 1
2εijEiEj

or

Ψ˚anispεij , χi, Eiq “ 1
2Cijklεijεkl `

1
2Bijχiχj ´Dijkεijχk ´

eijkEiεjk ´ fijχiEj ´ 1
2εijEiEj

Force stress σij “ 2µεij ` λεkkδij σij “ Cijklεkl ` D̂ijklχ̂kl ´ ekijEk
or

σij “ Cijklεkl `Dijkχk ´ ekijEk
Couple stress µi “ 8ηχi ´ 2f̄Ei µ̂ij “ B̂ijklχ̂kl ` D̂klijεkl ´ f̂kijEk

or

µi “ 1
2 pBijχj `Djkiεjk ´ fjiEjq

Electric Displacement Di “ εEi ` 4f̄χi Di “ εijEj ` eijkεjk ` fijkχ̂jk, or

Di “ εijEj ` eijkεjk ` fijχj
Table B.2: Constitutive equations for isotropic and anisotropic couple stress based linear flexoelectric materials

D̂ijkl “ 1

2
ξmlkDijm Dijm “ ξlkmD̂ijkl,

f̂ijk “ 1

2
filξkjl, fil “ f̂ijkξkjl,

with the following restrictions on material tensors

Cijkl “ Cklij “ Cjikl, B̂ijkl “ B̂klij “ ´B̂jikl, D̂ijkl “ D̂jikl “ ´D̂ijlk,

eijk “ eikj, f̂ijk “ ´f̂ikj, εij “ εji,

or equivalently in their vector form

Bij “ Bji,
Dijk “ Djik.

Note that in general there is no restriction on flexoelectric tensor f and for the most general
case, there are 78 distinct material parameters. For isotropic materials, the number of distinct
component reduces to 4 material constants and one characteristic length scale. These are the two
Lamé constants pλ, µq, one permittivity coefficient pεq, one flexoelectric coefficient pf̄q and the
curvature coefficient η is related to µ through the characteristic length scale ls, such that

Bij “ 16ηδij, η “ µl2s , fij “ f̄ δij, εij “ ε δij.

Appendix C. Finite element discretisation of the variational forms

In this section we present a family of mixed finite element discretisation schemes for the couple
stress flexoelectric theory of continua and beams. The point of departure is the respective varia-
tional formulations presented in the previous two sections in particular, the penalty formulation
for continuum (32), the penalty formulation for beams (102), the Lagrange multiplier for contin-
uum (36), the Lagrange multiplier for beams (106), the augmented Lagrangian formulation for
continuum (40) and the augmented Lagrangian formulation for beams (106). The finite element
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discretisation follows naturally by introducing a non-overlapping partition of the domain Ω into a
series of one-dimensional (for beams) or two and/or three-dimensional (for continuum) elements,
as shown in Figure C.17 and Figure C.16, respectively. Owing to the nature of the aforementioned
variational formulations, C0 continuity can be retained for all variables by choosing the standard
p-version of the finite element method Suri [1996]; Chilton and Suri [1997] for discretisation. For
the penalty formulation this entails employing piece-wise continuous Pn interpolation functions
for displacements u while piece-wise discontinuous PD

n´1 interpolation functions for rotations ω
(where n ě 2 P N represents any arbitrary polynomial degree and D represents the discontinuous
nature of the interpolation functions), subjected to the satisfaction of the inf-sup condition Brezzi
[1974]; Chapelle and Bathe [1993]. Similarly, for Lagrange multiplier and augmented Lagrangian
formulations piece-wise continuous Pn interpolation functions for displacements u and electric po-
tential ψ and piece-wise discontinuous PD

n´1 interpolation functions for the rotations ω and the
Lagrange multiplier s can be employed. These arrangements are shown in Figure C.16 for trian-
gles, quadrilaterals, tetrahedra and hexahedra, where the standard terminology in finite element
is used (i.e. P representing the polynomial degree of interpolation bases for triangles and tetrahe-
dral elements and Q denoting the polynomial degree of interpolation bases for quadrilateral and
hexahedral elements). Similar discretisation methodology can be followed in the case of beams.
While tw,θ, ψ,β,γu can be discretised using piece-wise continuous Pn interpolation functions,
tωc,ωp, sc, spu can be discretised using piece-wise discontinuous PD

n´1 interpolation functions, sub-
jected to the satisfaction of the inf-sup condition. These arrangements are shown in Figure C.17.

To keep the presentation succinct, the details of finite element implementations are not dis-
cussed here. Finite element implementations of couple stress models for purely mechanical con-
tinuum elements are discussed in Chakravarty et al. [2017]; Garg and Han [2015] for penalty
formulation and in Deng et al. [2018]; Kwon and Lee [2017] for Lagrange multiplier formulation
(see also Hajesfandiari et al. [2016, 2017] for boundary element treatment of the problem). The
previous work of the authors also describe computational implementation of a series of mixed and
high order finite element disretisations based on an enhanced set of variables in electromechanics
for continuum and beam elements Ortigosa and Gil [2016a]; Poya et al. [2018]; Ortigosa et al.
[2016]; Poya et al. [2015]. It is worth noting that, due to the discontinuous nature of couple stress
related variables, their corresponding contributions can be locally condensed out using static con-
densation leading to an extremely efficient implementation of couple stress flexoelectricity that
can be easily incorporated in to an existing piezoelectric finite element software Poya et al. [2017].
Furthermore, since at least a quadratic interpolation is used for displacements, the geometry of
flexoelectric structures can be represented accurately using the recently developed isoparametric
curvilinear finite element technology presented in Poya et al. [2016, 2018].

Appendix C.1. Convergence study and further quantification of curvature-induced electromechan-
ical coupling efficiency

In this section, the electromechanical coupling efficiency of the couple stress flexoelectric for-
mulation is investigated using all the developed finite element techniques. The study albeit simple
in nature, tests both the convergence properties of the finite element schemes and the quantifica-
tion of flexoelectric based electric polarisation using the skew-symmetric couple stress theory. The
problem involves mechanically loading a cantilever beam and monitoring the generated electric
polarisation using the electromechanical coupling efficiency as a measure, as shown in Figure C.18.
This problem is analysed under strain gradient elasticity by Nanthakumar et al. [2017] and an
analytical solution for the Electromechanical Coupling Efficiency (ECF) is given in Majdoub et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

u, φ ω, s [only ω for penalty]

Figure C.16: A non-exhaustive list of the developed mixed finite elements for triangules: (a) P2-P2-P1D-
P1D/P2-P2-P1D, (b) P3-P3-P2D-P2D/P3-P3-P2D, (c) P4-P4-P3D-P3D/P4-P4-P3D; quadrilaterals: (d) Q2-Q1D-
Q1D/Q2-Q1D, (e) Q3-Q3-Q2D-Q2D/Q3-Q3-Q2D, (f) Q4-Q4-Q3D-Q3D/Q4-Q4-Q3D; tetrahedra: (g) P2-P2-P1D-
P1D/P2-P2-P1D, (h) P3-P3-P2D-P2D/P3-P3-P2D, (i) P4-P4-P3D-P3D/P4-P4-P3D and hexahedra: (j) Q2-Q2-
Q1D-Q1D/Q2-Q2-Q1D, (k) Q3-Q3-Q2D-Q2D/Q3-Q3-Q2D, (l) Q4-Q4-Q3D-Q3D/Q4-Q4-Q3D. The developed
framework encompasses Pn-Pn-PDn´1-PDn´1, Pn-Pn-PDn´1, Qn-Qn-QD

n´1-QD
n´1, Qn-Qn-QD

n´1 for any interpolation
degree n.

(a) (b) (c)

w, θ, φ, β, γ ωc, ωp, sc, sp [only ωc and ωp for penalty]

Figure C.17: A non-exhaustive list of the developed mixed finite elements for one-dimensional beam ele-
ments: (a) P2-P2-P2-P2-P2-P1D-P1D-P1D-P1D/P2-P2-P2-P2-P2-P1D-P1D, (b) P3-P3-P3-P3-P3-P2D-P2D-P2D-
P2D/P3-P3-P3-P3-P3-P2D-P2D, (c) P4-P4-P4-P4-P4-P3D-P3D-P3D-P3D/P4-P4-P4-P4-P4-P3D-P3D. The devel-
oped framework encompasses Pn-Pn-Pn-Pn-Pn-PDn´1-PDn´1-PDn´1-PDn´1, Pn-Pn-Pn-Pn-Pn-PDn´1-PDn´1 for any inter-
polation degree n.
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[2008] as

keffa “ $

1`$

d
ε

E

ˆ
e2 ` 12pf

h
q2
˙
, (C.1)

where $ is the electrical susceptibility of the material (where $ “ 1408 for the case of BaTio3),
E the Young’s modulus and ε, e and f the dielectric, piezoelectric and flexoelectric coupling
coefficients of the material, respectively. L and h represent the length and the height of the
beam, respectively; see also Figure C.18. In the context of finite elements, the electromechanical
conversion efficiency can be computed as the norm of the ratio of electrical energy to mechanical
energy i.e.

1

keffn
2 “

ˇ̌
ˇ̌
ˇ̌
ˇ̌Wmech

Welect

ˇ̌
ˇ̌
ˇ̌
ˇ̌

F

Flexoelectric Layerh

Electrode

Electrode

L
Figure C.18: Cantilever beam chosen for convergence study of the developed finite element discretisation tech-
niques

However, given that the analytical solution for this problem was derived from the strain gradient
model, for convergence studies, we choose to work with a reference solution obtained from an
extremely fine discretisation. For the purpose of convergence studies, once again BaTio3 is chosen
with material properties shown in Table 1 by neglecting the piezoelectric effects i.e. setting e31 “
e33 “ e15 “ e “ 0. Only f̄12 effect is considered i.e. f “ f̄12. The length of the beam is kept at
0.8µm and the aspect ratio of the beam is varied from 10 to 50, while a constant load of F “ 100µN
is applied on the free end of the beam.

Figure C.19: Triangular and quadrilateral meshes (only aspect ratio 10 shown here) chosen for convergence study
of the developed finite element discretisation techniques. Both meshes possess the same number of nodes

First a series of convergence studies are performed by using the quadratic mixed finite elements
i.e. P2-P2-P1D-P1D/P2-P2-P1D and Q2-Q2-Q1D-Q1D/Q2-Q2-Q1D elements in a two-dimensional
setting by successively refining the meshes, i.e. by performing the so-called h-refinement. To
this end, two set of meshes are chosen namely a triangular mesh and a quadrilateral mesh, as
shown in Figure C.19 and the ECF is computed using the mixed finite elements and compared
to the reference solution. The convergence properties of the mixed finite elements for the three
variational formulations namely the penalty formulation, the Lagrange multiplier formulation and
the augmented Lagrangian formulation is subsequently studied, by choosing the penalty parameter
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to coincide with the Cosserat modulus κ “ µl2s “ 5ˆ 10´7GPa, where ls “ 1nm is the length scale
parameter. The chosen value of ls is well within the range of the thickness chosen for epitaxial
ferroelectric thin films.

Figure C.20 shows the h-convergence results of the different finite element discretisation tech-
niques for penalty, Lagrange multiplier and augmented Lagrangian formulations for triangular and
quadrilateral meshes, when the quadratic interpolation is used for displacements i.e. P2-P2-P1D-
P1D/P2-P2-P1D and Q2-Q2-Q1D-Q1D/Q2-Q2-Q1D discretisations. It can be observed that the
expected rate of convergence for electromechanical energy is achieved for all formulations with
both triangular and quadrilateral elements Szabó and Babuška [1991]. Expectedly, the Lagrange
multiplier approach performs the best, while the error incurred using the penalty approach is the
highest. The augmented Lagrangian approach converges at the same rate, but the error incurred
lies in between the penalty and the Lagrange multiplier approach. As the aspect ratio of the beam
increases the incurred error typically increases. The performance of triangular and quadrilateral
elements in general similar due the fact that both meshes have the same number of nodes and
the triangular mesh is generated by a symmetric tessellation of the quadrilateral mesh. It should
be noted that, since the couple stress theory imposes a constraint on the rotation part of the
displacement gradients, bending locking becomes an apparent issue. The use of high order mixed
finite elements in general resolves such bending problems Poya et al. [2018].

slope “ 1 slope “ 1 slope “ 1

slope “ 1 slope “ 1 slope “ 1

(a) (b) (c)

(d) (e) (f)
Figure C.20: Convergence of error in Electromechanical Coupling Efficiency (ECF) for different finite element
discretisation techniques on triangular elements, a) aspect ratio 10, b) aspect ratio 25, c) aspect ratio 50, and
quadrilateral elements, d) aspect ratio 10, e) aspect ratio 25, f) aspect ratio 50

Having confirmed the convergence of the quadratic mixed finite element for the two-dimensional
case for triangular and quadrilateral meshes, the same problem is then analysed by fixing the
refinement level (h) and successively increasing the order of finite element interpolation functions
i.e. by performing the so-called p-refinement. In this context, we refer to p or q as the highest
polynomial degree used for any variable (i.e. displacements and electric potential). This allows us
to study the performance of higher order mixed finite elements shown in Figure C.16. To this end,
two three-dimensional meshes are considered namely a tetrahedral mesh and hexahedral mesh, as
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shown in Figure C.21.

Figure C.21: Tetrahedral and hexahedral meshes (only aspect ratio 10 shown here) chosen for convergence study
of the developed finite element discretisation techniques. Both meshes possess the same number of nodes

Figure C.22 shows the p-convergence results of the different finite element discretisation tech-
niques for penalty, Lagrange multiplier and augmented Lagrangian formulations for triangular
and quadrilateral meshes for aspect ratio 10. Once again, the expected rate of convergence for
electromechanical energy is achieved for all formulations with both tetrahedral and hexahedral ele-
ments Szabó and Babuška [1991]. The Lagrange multiplier approach performs the best, followed by
the augmented Lagrangian approach and the penalty, respectively. The performance of tetrahedral
and hexahedral elements in general similar due the fact that both meshes have the same number
of nodes and the tetrahedral mesh is generated by further tessellation of the hexahedral mesh.
Note that this study confirms the rate of convergence for different choices of polynomial functional
spaces for mixed finite elements up to p “ q “ 6, confirming their suitability for discretising the
three aforementioned couple stress variational formulation.

(a) (b)
Figure C.22: Convergence of error in Electromechanical Coupling Efficiency (ECF) for different finite element
discretisation techniques on tetrahedral and hexahedral elements for aspect ratio 10
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