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a b s t r a c t

Eddy currents are generated when low frequency magnetic fields interact with conducting

components and this, in turn, generates Lorentz forces, which can cause these metallic com-

ponents to deform and vibrate. An important application of this magneto–mechanical cou-

pling is in coil design for magnetic resonance imaging scanners, where such vibrations can

have unwanted effects such as ghosting of images, reduction of the life span of devices and

discomfort for the patient. This work is aimed at developing an accurate computational tool

for better understanding these deformations by considering a benchmark problem proposed

by Siemens plc (Kruip, personal communication, 2013) on an idealised axisymmetric geometry.

We present a new fixed point algorithm and develop new weak variational statements, which

use a stress tensor approach for force calculation and permit discretisation using H1 conform-

ing hp-version finite elements. Numerical results are included, which show the importance of

high order finite elements for predicting the eddy currents and the associated coupling in the

resonance region.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Magnetic resonance imaging (MRI) scanners essentially consist of a main magnet, which produces a strong uniform magnetic

field across the bore cross-section and a second set of gradient coils, which produce pulsed field gradients in order to generate

an image. The X-, Y-, and Z-gradient coils produce gradients fields in the appropriate specified direction and, by activating com-

binations of these coils, gradient fields can be generated in any specified direction [1]. The main magnet is the largest and most

expensive part of an MRI scanner. Three types of magnet could be used. A first option would consist of a permanent magnet

made from ferromagnetic materials. A second option would be a resistive magnet consisting of a solenoid made from wound

copper wire, whilst the third option would be a superconducting magnet, typically cooled by liquid helium. Permanent magnets

are expensive and bulky, difficult to install and have issues as they cannot be turned off. Resistive magnets are cheaper, but their
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Fig. 1. Radial cross-section of a simple MRI scanner.
field strength and stability are limited. Superconducting electro-magnets allow for very high fields strengths, are very stable and,

therefore, despite their high construction costs, they remain the most common type of magnet found in MRI scanners today.

The superconducting magnet consists of coils of superconducting wire immersed in liquid helium contained within a vessel

called the cryostat. The cryostat itself consists of a series of metallic shields and the outer vacuum container, as shown in Fig. 1.

Being metallic, the shields and outer vacuum container can support eddy currents in the presence of changing magnetic fields.

These eddy currents can cause the magnetic field to perturb. In addition, eddy currents give rise to Lorentz forces, which exert

magneto–mechanical stresses on the conducting components and cause them to deform and vibrate. Changes in the geometry

of the conductors cause further perturbations in the magnetic field and further eddy currents are thus developed.

Mechanical vibrations and deformations are undesirable in MRI scanners for several reasons. Firstly, they can lead to un-

desired artefacts and ghosting in medical images, which can potentially cause problems in medical diagnosis. Secondly, the

vibrations can cause noise which can be disconcerting for the patient whilst inside the MRI scanner and, thirdly, they can reduce

the life span of the device. Thus, in order to improve the design of the main magnet, there exists a strong motivation to be able

to quantify the mechanical vibrations and deformations generated within the magnet and the surrounding cryostat.

Computational simulation offers great promise for this, as it enables different designs to be tested in a virtual environment

in an efficient manner with low risk. Indeed the coupled simulation of magneto–mechanical problems is a very hot topic with a

large number of articles recently been published in journals and international conferences e.g. [2–9] as a small sample. Commer-

cial finite element packages are now widely available for the single field solution of mechanical and electromagnetic problems in

isolation. More recently, commercial packages for the solution of coupled electro–magneto–mechanical problems, such as ANSYS

[10], COMSOL Multiphysics [11] and Numerical analysis of Coupled Systems (NACS) [12], have become available. Nevertheless,

the challenging nature of some industrial problems often means that commercial software requires additional customised rou-

tines to be capable of aiding in the design process. This is certainly the case when considering the analysis of the coupled effects

in MRI scanners, since unless careful consideration is given to the coupling mechanisms involved, the software will be incapable

of delivering accurate results in an industrially relevant turnaround time.

In the context of magneto–mechanical coupling in MRI scanners, Rausch et al. [5] proposed a temporal solution algorithm

using low order finite elements, which was later extended to also include acoustic effects [6]. More recently, the mechanical

vibrations for ultra high frequency MRI scanners have been investigated [9] and a modal analysis has been presented, which is

quoted to give a 20–100 factor reduction in computational time compared to a transient computation [8]. An important aspect

of the simulation of magneto–mechanical problems is the calculation of the forces exerted on the mechanical body, due to the

presence of magnetic fields. Typically, a local force calculation is required and common approaches include obtaining local forces

by evaluating the divergence of a stress tensor or using the virtual work principle. These approaches have been reviewed in

[13]. The evaluation of local forces using the electromotive stress tensor tends not to be pursued since the application of the

divergence operator can lead to loss in accuracy (e.g. in the context of fluid structure interaction [14–16]). For further details

on the virtual work approach we refer to [17]. In the context of problems in electrostriction and magnetostriction in solids and

fluids we have adopted an alternative approach for the calculation of electro– magneto–mechanical forces [18,19], which recalls

that the electromotive force can instead be expressed as the divergence of a stress tensor plus the addition of a momentum term

[20,21]. However, our approach has an important and subtle difference. Rather than first evaluating the local force, from the

divergence of the stress tensor, and then applying this as a nodal force in the mechanical problem, we instead work directly with

the electromotive stress tensor and by-pass the need to calculate local forces, thereby avoiding the associated loss of accuracy.

Such an approach allows for natural calculation of stresses resulting from the presence of electromagnetic fields and fits naturally

into the finite element framework.

We investigate a benchmark problem proposed by Siemens plc based on an experiment, which they have recently conducted.

The experiment consists of the main components of the cryostat for a simplified rotational symmetric geometry. Despite its
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simplifications, it bears considerable similarity to the geometries used in previous simulations of magneto–mechanical responses

from MRI scanners [5,6] and therefore provides an extremely useful benchmark. In order to ensure the small skin depths are

well-resolved across a range of frequencies, we employ an hp finite element approach, which allows for the possibility of using

arbitrary high element order as well as local mesh refinements (e.g. [22–25] and references therein). Although the work of Rausch

et al. [5,6] has already considered a full three dimensional MRI geometry, we feel there is still considerable scope for considering

the axisymmetric case in order to ensure that fields are correctly resolved, eddy current layers are accurately predicted and that

the resulting magneto–mechanical coupling gives an accurate prediction of resonance behaviour.

The novel contributions of this work are as follows: first, rather than the moving mesh and direct force calculation strategy

previously employed in [5,6], we adopt a stress tensor approach, similar to that described in [18,19], which by-passes the need to

calculate local forces and provides a natural framework for the coupling. Second, inspired by the work of Lacoste [26], we provide

a rigorous treatment of the weak forms of the coupled eddy current and linear elastic problems in axisymmetric coordinates,

which allows us to overcome frequently adopted approximations at the radial axis e.g. [27–30]. Furthermore, in these new weak

variational statements, we adopt an hp–finite element discretisation, ensuring accurate mechanical and electromagnetic field

computation, which is important for resolving the fields in the thin skin depths of the conductors and resolve the nonlinearity

by applying a fixed point algorithm.

The paper is organised as follows: in Section 2 we introduce some mathematical notation that will be employed throughout

the paper and present the set of governing equations. In Section 3 we describe the industrial model problem and a series of sim-

plifying assumptions, which allow the problem to be solved in the frequency domain. We describe our computational treatment

of axisymmetric domains in Section 4 and present a series of numerical results in Section 5. We close with concluding remarks

in Section 6.

2. Governing equations

Throughout the paper, the symbol (·) is used to indicate the scalar product or contraction of a single index a · b = aibi; the

symbol (: ) is used to indicate double contraction of two indices A : B = Ai jBi j; the symbol (×) is used to indicate the cross product

[a × b]i = εi jka jbk via the third order permutation tensor εijk and the symbol (⊗) is used to indicate the outer or dyadic product

[a ⊗ b]i j = aib j .

In order to describe small deformations of conducting elastic bodies, due to the presence of electromagnetic forces exerted in

an electro–magneto–mechanical system, the coupled set of time-dependent Maxwell equations

∇ × H = J + ∂D
∂t

= J s + γ

(
∂U
∂t

× B
)

+ J o + ∂D
∂t

, (1a)

∇ × E = −∂B
∂t

, (1b)

∇ · B = 0, (1c)

∇ · D = ρe, (1d)

and elasticity equation

∇ · σm(U) + b(E,H) = ∇ · σm(U) + ρeE + J × B = ρ
∂2U
∂t2

, (2)

must be solved e.g. [17]. In the above, calligraphic symbols are used to denote time dependent quantities, E(t) is the electric

field vector, H(t) is the magnetic field vector, B(t) is the magnetic flux density vector, D(t) is the electric displacement, and

U(t) is the mechanical displacement, all of which are time-dependent. In addition, ∂D/∂t is the displacement current, J s(t) is

the applied current from the coil, J o(t) is the Ohmic or eddy current, ρe is the volume charge density, and the electromagnetic

constitutive relations are

J o := γE, D := εE, B := μH, (3)

where γ is electric conductivity tensor, ε is dielectric permittivity tensor, and μ is electromagnetic permeability tensor. In the

elasticity equation, ρ denotes the mass density

σm(U) := λtr(ε(U))I + 2Gε(U), (4)

is the Cauchy stress tensor, λ, G are the Lamé parameters, ε(U) := 1
2 (∇U+ (∇U)T

)
is the linearised strain tensor and I is the

identity tensor. The underlined terms in (1) and (2) reveal the challenging nature of the coupling, since the highlighted Lorentz

current depends on U , which itself, through the highlighted body force, depends nonlinearly on J . Thus, we see that (1)–(4)

form a highly nonlinear system of partial differential equations in E, H, and U .
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3. The industrial problem and simplifying assumptions

In the context of developing a better understanding of the deformations caused by the presence of eddy currents in the con-

ducting components of the cryostat, an appropriately scaled experiment was proposed by Siemens Magnet Technology, Siemens

plc [31]. This experiment consists of a simplified and idealised geometry consisting only of the Z-gradient coil, the main coil,

the stainless steel oxygen vacuum chamber (OVC), and aluminium alloy 77K and 4K shields, the latter shields and OVC being

modelled as solid cylinders. The actual dimensions and material parameters cannot be stated in order to maintain the company’s

competitive advantage. We remark that a similar setup has been employed in [5,6] for the simulations of magneto–mechanical

vibrations from MRI scanners. But, (the confidential) actual measurement data for the geometry considered here does allow us

to further verify our model.

3.1. Simplifying assumptions

We now briefly summarise the main key assumptions made in the model, which, in part, have similarities to earlier work

[4–6,8], but are nonetheless recalled here in order to provide a rigorous justification for each stage of the model.

3.1.1. Constitutive behaviour of materials

In addition to assuming that the materials will each behave elastically, we choose to neglect strictive effects, which cause the

material’s permittivity and permeability to change under the influence of mechanical strains (or fluid strain rates). Instead, we

consider homogeneous isotropic materials such that ε = εI, μ = μI, and γ = γ I, where ε, μ, and γ are assumed constant for

each material and ρe = 0.

3.1.2. Coils

The gradient and main coils are assumed to carry volume current densities with uniform amplitudes, neglecting inductance

effects. Furthermore, the Z-gradient coils are assumed to be supplied with a harmonic time varying current source rather than

pulsed currents, as they would be in an actual scanner. This means that the current source J s is comprised of two parts (with

different supports), such that,

J s(t) = Js
DC + J s

AC(t), (5)

where Js
DC is the static (time-independent) divergence free volume current density associated with the main coils and J s

AC(t) is

the sinusoidal time varying divergence free current density associated with the Z-gradient coils.

3.1.3. Eddy current approximation

The free space region has been truncated a finite distance away from the conductor on the basis that the eddy current approx-

imation applies, due to the high conductivity of the conducting components and the (relatively) low frequencies of operation that

will be considered [32]. This means that wave propagation effects will be ignored by neglecting the displacement currents ∂D
∂t

in

(1) and reduces the electro–magneto–mechanical problem in (1)–(4) to a magneto–mechanical coupled problem. Furthermore,

for the eddy current model, the electromagnetic fields decay away from the coils and conducting components according to [33]

E = O

(
1

|x|
)

, H = O

(
1

|x|
)

as |x| → ∞,

which, in turn, allows us to truncate the domain a finite distance away from the conducting components and coils and apply, as

an approximation, zero tangential conditions on the fields at the outer boundary.

3.1.4. Stress tensor formulation

In a departure from [4–6,8], and following [21], we note that b can be written as the divergence of a stress tensor plus a

momentum term ∂
∂t

(D × B). On the basis of the constitutive behaviour of the materials, this simplifies to

b(E,H) = ∇ · σe(μ,H) + ∇ · σe(ε,E) + ∂

∂t
(D × B) ≈ ∇ · σe(μ,H), (6a)

σe(μ,H) = μ
(
H ⊗ H − 1

2
(H · H)I

)
, (6b)

where the terms ∇ · σe(ε,E) + ∂
∂t

(D × B) have been neglected in order to be consistent with the aforementioned approaches

and the eddy current approximation. We assume them to be approximately zero for the materials under consideration, which,

in turn, means that we will not be required to explicitly evaluate b.
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Fig. 2. Geometrical description of coupled magneto–mechanical model: (a) a fully coupled problem and (b) algorithmic idealisation.
3.2. Time dependent mathematical model

For future reference, we set � = �n ∪ �c ⊂ R
3 where �n is a suitably truncated region of free space (where ε = ε0 ≈ 8.854 ×

10−12F/m, μ = μ0 = 4π × 10−7H/m and γ = 0S/m) and �c = �4K
c ∪ �77K

c ∪ �OVC
c denotes the conducting components.

On consideration of the assumptions made above, the time-dependent model for coupled magneto–mechanical problems can

be stated as: Find (E,H,U) ∈ (R3 × [0, T ])3 such that

∇ × H = J s + γμ

(
∂U
∂t

× H
)

+ γ E in �, (7a)

∇ × E = −∂(μH)

∂t
in �, (7b)

∇ · (μH) = ∇ · (εE) = ∇ · J = ∇ · J s = 0 in �, (7c)

∇ · (σm(U) + σe(μ,H)) = ρ
∂2U
∂t2

in �c, (7d)

σm(U) = λtr(ε(U))I + 2Gε(U) in �c, (7e)

σe(μ,H) = μ
(
H ⊗ H − 1

2
(H · H)I

)
in �c, (7f)

H(t = 0) = H0, E(t = 0) = E0 in �, (7g)

U(t = 0) = U0 in �c, (7h)

n × E = 0, n × H = 0 on ∂�, (7i)

U = UD on 
D
c (7j)

(σm(U) + σe(μ,H))n = t on 
T
c , (7k)

where initial and boundary conditions must be supplied for the fields. We set UD = 0 on 
D
c in order to fix the shields in space

and have that ∂�c := 
D
c ∪ 
T

c . In addition, appropriate interface conditions should be supplied for each of the fields in a similar

manner to [18]. Computational approaches to the solution of this equation system in three dimensions, using low-order finite

elements, have been presented in [3,5,7,17].

3.3. Simplified time-harmonic model

From a design point of view, one would like to solve the coupled system (7) in the frequency rather than the time domain

(Fig. 2). This is because the former is better placed to give the computational speed that engineers and physicists require in order

to ensure the fast turnaround of computational results and keep costs to a minimum. Moreover, in principle, this is better suited

to sweep quickly over input frequencies for the Z-gradient coil and obtain the dissipated power as a function of this input.
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In the conference presentation [8] a time harmonic model for analysis of (7) has been presented, where the body force is

not expressed as the divergence of a stress tensor. We remark that a naive introduction of the complex amplitudes (E, H, J, u) ∈
((C)3)4 and setting

E = Re(Eeiωt), J s = Re(Jseiωt),

H = Re(Heiωt), U = Re(ueiωt),

fails for the following reasons. Firstly, recalling (5), prevents us from representing J s in terms of a complex amplitude vector Js

and a complex phasor with a single frequency ω. Secondly, the cross product term in (7a) yields a complex phasor e2iωt that does

not cancel with eiωt associated with the other terms. Thirdly, and similarly, the quadratic terms in H in (7g) yields a complex

phasor e2iωt that does not cancel with the other terms in (7e).

The approach pursued in [8] is based on the ansatz

H(t) ≈ HDC + Re(HACeiωt), (8)

and neglecting terms involving products of temporal derivatives in (7), where b is not expressed in stress tensor form. These

are naturally approximations, which neglect non-linearity in the system. In the following, we state fully the boundary value

problems for HDC and HAC implied by [8] and present a new stress–tensor approach for handling b.

3.3.1. Electromagnetic fields associated with the DC coil

In the absence of the Z-gradient coils and conducting components, the main coil, with volume current density Js
DC, generates

a static magnetic field. Let �DC be the configuration of � in which the components of �c are treated as free space, then, the

resulting static magnetic field HDC is associated with the solution of the problem: Find ADC ∈ R
3 such that

∇ × μ−1
0 ∇ × ADC = Js

DC in �DC, (9a)

∇ · ADC = 0 in �DC, (9b)

n × ADC = 0 on ∂�DC, (9c)

where BDC := μ0HDC = ∇ × ADC . In the above, ADC is a static magnetic vector potential, the Coulomb gauge (9b) is used to ensure

uniqueness of the solution (e.g. [25]) and the far field boundary condition follows from the previous approximation of the far

field decay of the fields used in (7).

3.3.2. Electromagnetic fields associated with the AC coil

In the absence of the main coils, but in presence of the conducting components, the (AC) Z-gradient coils generate a time

dependent magnetic field. Introducing a simplification of the Lorentz current, which depends on a time harmonic displacement

u ∈ C
3 of the conducting components in �c and the static HDC ∈ R

3, the time harmonic problem is introduced as: Find AAC(u) ∈
C

3 such that

∇ × μ−1∇ × AAC + iωγ AAC = γ iωμu × HDC in �c, (10a)

∇ × μ−1
0 ∇ × AAC = Js

AC in �n, (10b)

∇ · AAC = 0 in �n, (10c)

n × AAC = 0 on ∂�n, (10d)

where BAC := μHAC = ∇ × AAC and the Coulomb gauge as well as the approximate far field conditions have been applied in a

similar manner to (9).

3.3.3. Mechanical displacement field associated with conductors

Next, we introduce our new time-harmonic formulation of the mechanical problem as follows: Find u(HDC , HAC) ∈ C
3 such

that

∇ · (σm(u) + T(HDC, HAC)) = −ρω2u in �c, (11a)

u = uD on 
D
c , (11b)

(σm(u) + T(HDC, HAC)n = t on 
N
c , (11c)

where ∂�c = 
D
c ∪ 
N

c , σe(μ,H) ≈ Re(T eiωt) and T = T c − iT s = Re(T) + iIm(T) with

T c = μ(HDC ⊗ Hc
AC + Hc

AC ⊗ HDC − HDC · Hc
ACI), (12a)

T s = μ(HDC ⊗ Hs
AC + Hs

AC ⊗ HDC − HDC · Hs
ACI), (12b)

and HAC = Hc
AC − iHs

AC = Re(HAC) + iIm(HAC). This result stems from the ansatz (8), the formula (6b) and gathering only those

terms associated with frequency ω.

In reality, the application of the ansatz will lead to the additional term stress tensors T 0 and T 2 = T c
2 − iT s

2 = Re(T 2) +
iIm(T 2), which are associated with a static mechanical problem and a time harmonic mechanical problem with phasor e2iωt,

respectively, where
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T 0 = μ
(

HDC ⊗ HDC + 1

2
Hc

AC ⊗ Hc
AC + 1

2
Hs

AC ⊗ Hs
AC − 1

2

(
HDC · HDC + 1

2
Hc

AC · Hc
AC + 1

2
Hs

AC · Hs
AC

)
I

)
, (13)

T c
2 = μ

(
1

2

(
Hc

AC ⊗ Hc
AC − Hs

AC ⊗ Hs
AC

)
− 1

4

(
Hc

AC · Hc
AC − Hs

AC · Hs
AC

)
I

)
, (14)

T s
2 = μ

(
1

2

(
Hc

AC ⊗ Hs
AC + Hs

AC ⊗ Hc
AC

)
− 1

2
(Hc

AC · Hs
AC)I

)
. (15)

The stress tensors T 0 and T 2, and their associated mechanical problems, will be neglected in our formulation.

3.3.4. Output of interest

The output of interest is the dissipated (Ohmic) power as a function of the input angular frequency ω in the Z-gradient coil. If

the fields can be represented as complex amplitudes, the (average) Ohmic power (or dissipated power), as a function of the drive

frequency, can be computed according to [34]

Po
�(ω, AAC) = 1

2

∫
�

γ −1|Jo|2d� = 1

2

∫
�

γ |EAC|2d� = 1

2

∫
�

γ |iωAAC|2d�. (16)

3.3.5. Fixed point algorithm

The approach presented in [8] has been reported to give a 20–100 factor reduction in computational time compared to a

previous transient formulation [5] and, along similar lines, we present a fixed point algorithm for the solution of (9)–(11) in

Algorithm 1.

Algorithm 1: Fixed point algorithm.

Compute HDC = μ−1
0

∇ × AAC by solving (9);

Compute H
[0]
AC

= HAC(0) = μ−1
0

∇ × AAC(0) by solving (10);

for k = 0, 1, 2, · · · or until convergence reached do

Compute u[k+1] = u(HDC, H
[k]
AC

) by solving (11);

Compute H
[k+1]
AC

= HAC(u[k+1]) = μ−1
0

∇ × AAC(u[k+1]) by solving (10);

end

The output of interest is the (average) Ohmic power (or dissipated power) as a function of the drive frequency for the Z-

gradient coil, which can be computed, for some converged iteration M, as Po
�
(ω, A

[M]
AC

) using (16). The stopping criteria for the

fixed point algorithm is chosen to be associated with the dissipated power. Introducing the notation

Po
(
ω, A[M]

AC

)
=

(
Po
�4K

c

(
ω, A[M]

AC

)
Po
�77K

c

(
ω, A[M]

AC

)
Po
�OVC

c

(
ω, A[M]

AC

)
,

)
, (17)

for the vector of dissipated power associated with the 4K shield, 77K shield and the OVC our stopping criteria is

η[k] = ‖Po(ω, A[k+1]
AC

) − Po(ω, A[k]
AC

)‖
‖Po(ω, A[k+1]

AC
)‖ ≤ TOL. (18)

4. Computational treatment of axisymmetric problems

Being rotationally symmetric, the aforementioned industrial problem described in Section 3 lends itself to being treated as an

axisymmetric problem, which offers considerable computational advantages over its solution in three dimensions. Introducing

the cylindrical coordinates (r, φ, z), and the unit vectors (er, eφ, ez) associated with the coordinate axes, the domain becomes the

r, z plane as illustrated in Fig. 3. As the currents are angular Js = Js
φ
(r, z)eφ, Jl = Jl

φ
(r, z)eφ and Jo = Jo

φ
(r, z)eφ then the fields for

the axisymmetric problem become

H(r, φ, z) = H(r, z) = Hrer + Hzez, (19)

E(r, φ, z) = E(r, z) = Eφeφ, (20)

A(r, φ, z) = A(r, z) = Aφeφ, (21)

u(r, φ, z) = u(r, z) = urer + uzez. (22)
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a b

Fig. 3. Simplistic MRI scanner in an axisymmetric geometry; (a) is a longitudinal sectional cut of (b).
4.1. Weak form of the magneto-static problem (9)

Considering first the three-dimensional domain �DC, the weak form associated with (9) is: Find ADC ∈ XDC such that∫
�DC

μ−1∇ × ADC · ∇ × w d� =
∫
�DC

Js
DC · w d� ∀w ∈ XDC, (23)

where

XDC := {ADC ∈ H(curl,�DC) : ∇ · ADC = 0 in �DC, n × ADC = 0 on ∂�DC}.
In an axisymmetric domain, this reduces to: Find AφDC ∈ X

cyl
DC

such that∫
�p

DC

μ−1

(
∂AφDC

∂z

∂wφ

∂z
+ 1

r2

∂(rAφDC)

∂r

∂(rwφ)

∂r

)
r drdz =

∫
�p

DC

Js
φDCwφr drdz ∀wφ ∈ Xcyl

DC
, (24)

where �p
DC

is the rotationally symmetric (r, z) plane of �DC and

Xcyl
DC

:=
{

AφDC : AφDC ∈ L2
1(�

p
DC

),

(
− ∂AφDC

∂z

1
r

∂(rAφDC)

∂r

)
∈ (L2

1(�
p
DC

))2, AφDC = 0 on 
∞

}
,

L2
1(�

p
DC

) :=
{

u : u ∈ L2(�p
DC

),
√

ru ∈ L2(�p
DC

)
}
,

are suitable weighted spaces [26], ∂�DC = 
∞ ∪ 
0 and 
0 is the r = 0 axis. Note that the Coulomb gauge is automatically

satisfied in this case.

With a finite element approach in mind, one could consider trying to derive suitable finite element basis functions for X
cyl
DC

(e.g. in a similar way to [26]) or, alternatively, choose to treat the unbounded integrations by regularising through numerical

integration [29]. However, an alternative approach, which allows standard basis functions to be used, is to introduce AφDC =
rÂφDC, wφ = rŵφ and the modified weak form: Find ÂφDC ∈ X̂

cyl
DC

such that∫
�p

DC

μ−1

r
∇p(r2ÂφDC) · ∇p(r2ŵφ) drdz =

∫
�p

DC

Js
φDCŵφr2 drdz ∀ŵφ ∈ X̂cyl

DC
, (25)

where ∇p(·) is the gradient operator applied in the (r, z) plane and

X̂cyl
DC

:=
{

ÂφDC : ÂφDC ∈ L2(�p
DC

), ∇pÂφDC ∈ (L2(�p
DC

))2, ÂφDC = 0 on 
∞
}
, (26)

Note that on expansion of the terms in (25) the integrands now become well-behaved as r → 0 and the solution space X̂
cyl
DC

allows

standard H1 conforming finite element discretisations to be employed. The discrete weak form is: Find Â
hp

φDC
∈ X̂

cyl
DC

∩ Xhp such

that ∫
�p

DC

μ−1

r
∇p(r2Âhp

φDC
) · ∇p(r2ŵhp

φ
) drdz =

∫
�p

DC

Js
φDCŵhp

φ
r2 drdz (27)

for all ∀ŵ
hp

φ
∈ X̂

cyl
DC

∩ Xhp where Xhp ⊂ H1(�p) is a suitable set of hierarchic basis functions e.g. [35].

4.2. Weak form of the quasi-static problem (10)

The computational treatment of (10), which involves setting up the weak form on the (r, z) plane of �, �p, is analogous to

that of (9) and is therefore omitted.
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4.3. Weak form of the elasticity equation (11)

Considering first the three-dimensional domain �, the weak form associated with (11) is: Find u ∈ Y (uD) such that∫
�c

(
(σm(u) + T) : ∇w − ρω2u · w

)
d� =

∫

N

c

t · w ds ∀w ∈ Y (0), (28)

where

Y (uD) :=
{

u ∈ (H1(�c))
3 : u = uD on 
D

c

}
.

In cylindrical coordinates the linearised strain tensor for u = urer + uzez becomes

ε =
[
εrr εrφ εrz

εφr εφφ εφz

εzr εzφ εzz

]
=

⎡
⎢⎢⎢⎢⎣

∂ur

∂r
0

1

2

(
∂ur

∂z
+ ∂uz

∂r

)
0

ur

r
0

1

2

(
∂ur

∂z
+ ∂uz

∂r

)
0

∂uz

∂z

⎤
⎥⎥⎥⎥⎦,

which is also the form quoted by Zienkiewicz [30] as well as Timoshenko and Goodier [36]. By following a similar approach to

that outlined in Section 4.1 and introducing the new displacement field and weight as

ũ := rûrer + uzez, w̃ := rŵrer + wzez,

and also defining

û := ûrer + uzez, ŵ := ŵrer + wzez,

it is possible to show that the weak form becomes: Find û ∈ Ŷ
cyl

(ûD) such that∫
�p

c

(λ∇ · ũ ∇ · w̃ + 2G ∇sũ : ∇sw̃ − ρω2
mũ · w̃)r drdz

= −
∫
�p

c

T : ∇sw̃r drdz +
∫

Np

c

w̃ · ((σm(u) + T)n)r ds ∀ w̃ ∈ Ŷ
cyl

(0), (29)

where �p
c is the rotationally symmetric (r, z) plane of �c, ∂�p

c = 
Dp
c ∪ 
Np

c , note there is no r = 0 component to ∂�p
c as we have

chosen our conducting components to be placed away from this axis. Also note that

Ŷ
cyl

(ûD) :=
{

û : û ∈
(

H1(�p
c )

2

)
, û = ûD on 
Dp

c

}
,

and in cylindrical coordinates

∇ · ũ = 1

r

∂(r2ûr)

∂r
+ ∂uz

∂z
= ∂(rûr)

∂r
+ (rûr)

r
+ ∂uz

∂z
,

∇sũ = ∂(rûr)

∂r
er ⊗ er + (rûr)

r
eφ ⊗ eφ + ∂uz

∂z
ez ⊗ ez

+ 1

2

(
∂(rûr)

∂z
+ ∂uz

∂r

)
er ⊗ ez + 1

2

(
∂(rûr)

∂z
+ ∂uz

∂r

)
ez ⊗ er.

As previously, on expansion of the terms the integrands in (29) remain well behaved as r → 0 and the solution space Ŷ
cyl

(ûD)
allows standard H1 conforming finite elements discretisations to be employed. The corresponding discrete weak form is: Find

û
hp ∈ Ŷ

cyl
(ûD) ∩ Y hp such that∫
�p

c

(λ∇ · ũ
hp ∇ · w̃

hp + 2G ∇sũ
hp

: ∇sw̃
hp − ρω2

mũ
hp · w̃

hp)r drdz

= −
∫
�p

c

T : ∇sw̃
hp

r drdz +
∫

Np

c

w̃
hp · ((σm(u) + T)n)r ds (30)

for all ŵ
hp ∈ Ŷ

cyl
(0) ∩ Y hp where Y hp := {û : ûr ∈ Xhp, ûz ∈ Xhp}.

5. Numerical results

As an illustration of the numerical results for this problem, we consider an application of p-refinement on a finite element

mesh consisting of 6820 unstructured triangular elements which represents the complete configuration, including the main

coils, the Z-gradient coils, the 4K and 77K shields as well as the OVC. The mesh density has been chosen so that the features of
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a b

Fig. 4. (a) Mesh of 6820 unstructured triangular elements for �p for the eddy current problem and (b) a close-up showing the details of the coils, shields, and

OVC.

Fig. 5. Comparison of the Ohmic power in the 4K shield, 77K shield, and OVC obtained using our fixed point algorithm using a discretisation with uniform p = 1

elements and that obtained with NACS.
the problem, including edges and sharp corners are well described. Results obtained on other meshes of similar construction are

in close agreement. The complete configuration for the (r, z) plane of �, namely �p is shown in Fig. 4. In addition, the region

corresponding to the key conducting components, namely the shields and OVC, can be better identified in the zoom of the central

region. These subdomains make up �p
c in which the mechanical problem is to be solved.

We consider elements of order p = 1, 2, 3, 4, 5, in turn, and apply these throughout the domains �p and �p
c , on the afore-

mentioned meshes, to discretise the problem with one exception: Due to the high degree of nonlinearity of σen|∂�c , we perform

under integration of this term by restricting its evaluation to using p = 1 elements. We then apply the fixed point algorithm

described in Section 3.3 where we set the tolerance for the convergence criteria established in (18) as TOL = 10−2. We per-

form a sweep through frequencies ranging from f = ω/(2π) = 10 Hz to f = 4200 Hz and consider the Ohmic power Po
�4K

c
(ω),

Po
�77K

c
(ω), Po

�OVC
c

(ω) obtained in the 4K and 77K shields as well as the OVC as a function of frequency. The results of this inves-

tigation are shown in Figs. 5–9 for p = 1, 2, 3, 4, 5, respectively. In each of these figures, we also make comparisons with the

results obtained from the commercial NACS software [12] developed by SIMetris GmbH using low order p = 1 elements and a

mesh of 7857 elements. For the case of p = 5 we also include the results for the uncoupled problem, in which the right hand

side in equation (10a) is set to zero. As p is increased the results of simulations converge and exhibit similarities to those ob-

tained with NACS. Moreover, for low frequencies, the Lorentz force is negligible and the Ohmic power is essentially identical to

that obtained from solving the eddy current problem for the Z-gradient coils (10) with the right hand side in (10a) set to zero,

as illustrated in the results for p = 5 elements. However, at higher frequencies (above 3 KHz), the Lorentz force increases and

the effects of the coupling between electromagnetic problem(s) and the mechanical problems become stronger. In particular, in

order to properly understand the behaviour of the fields in this region, an accurate discretisation is required particularly in the

frequency range 3–4 KHz, which is also known to be associated with the free vibration resonant frequencies of the screens and

OVC if treated as thin cylindrical shells [37] (see equation (2.26)). We observe that for lower frequencies, using p = 1 is already

sufficient to generate good agreement with the NACS software, however, for higher frequencies, elements with p ≥ 4 are required

to achieve mesh/discretisation convergence. This is particularly evident close to the resonance region. It is worth remarking that

the peak values in Po
�4K(ω), Po

�77K(ω) at resonance are larger than those obtained by NACS and this is in part due to the additional

c c
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Fig. 6. As Fig. 5 but with uniform p = 2 elements.

Fig. 7. As Fig. 5 but with uniform p = 3 elements.

Fig. 8. As Fig. 5 but with uniform p = 4 elements.

Fig. 9. As Fig. 5 but with uniform p = 5 elements.
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Fig. 10. Convergence of the fixed-point iteration for the frequency of 3925 Hz in the resonance region for discretisations consisting of uniform p = 1, 2, 3, 4, 5

elements.
numerical dissipation added by the NACS software. At resonance, we expect the Ohmic power to tend towards infinity in the

absence of numerical dissipation.

The number of iterations required to reach convergence depends on the frequency. Away from the resonance region, 2–3

iterations or less are typically sufficient in order to ensure convergence of the scheme. However, close to the resonance region,

the number of iterations required to reach the desired tolerance can increase. In Fig. 10, we show the convergence of η[k] for the

frequency of 3925Hz in the resonance region. As our primary concern in this work is to deliver high levels of numerical accuracy,

we have chosen not to present computational timings. Moreover, we believe that a significant computational gain could be

obtained by implementation of our computational approach in an alternative language such as Fortran and utilising parallel

processing for the trivially parallelisable frequency sweep rather than the serial vectorised MATLAB [38] implementation used

here. This will be part of our future work.

In order to explain the need for higher fidelity discretisations as the frequency increases one should consider the skin depth

δ :=
√

2/(ωμ0γ ) [32]. Recall that the skin depth measures the depth to which the current density has fallen to 1/e of its surface

value and that at higher frequencies smaller skin depths are to be expected [25]. Then, in order to resolve the sharp field gradi-

ents that occur in the layer close to the surface of the conductor, finer fidelity of the discretisation is required. For example, at

frequency of f = 4100Hz, the skin depth is O(10−4)m, which is approximately one-tenth of the width of the shields.

6. Concluding remarks

This paper has presented a fixed point algorithm for the solution of magneto–mechanical coupling associated with gener-

ation of Lorentz forces in axisymmetric conductors as a result of eddy currents generated by low frequency magnetic fields.

The solution strategy is based on computing these forces using a stress tensor approach and new weak variational statements

have been developed that can be discretised by the hp-version of H1 conforming finite elements without the need to regularise

singular integrals by numerical integration. The approach has been applied to a benchmark problem proposed by Siemens plc

where the importance of using high order elements for accurately predicting the eddy currents and the associated coupling in

the resonance region has been illustrated.
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