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Abstract The paper presents a unified approach for the
a posteriori generation of arbitrary high-order curvilinear
meshes via a solid mechanics analogy. The approach encom-
passes a variety of methodologies, ranging from the popular
incremental linear elastic approach to very sophisticated
non-linear elasticity. In addition, an intermediate consis-
tent incrementally linearised approach is also presented and
applied for the first time in this context. Utilising a consistent
derivation from energy principles, a theoretical compari-
son of the various approaches is presented which enables
a detailed discussion regarding the material characterisation
(calibration) employed for the different solid mechanics for-
mulations. Five independent quality measures are proposed
and their relations with existing quality indicators, used in
the context of a posteriori mesh generation, are discussed.
Finally, a comprehensive range of numerical examples, both
in two and three dimensions, including challenging geome-
tries of interest to the solids, fluids and electromagnetics
communities, are shown in order to illustrate and thoroughly
compare the performance of the different methodologies.
This comparison considers the influence of material para-
meters and number of load increments on the quality of the
generated high-order mesh, overall computational cost and,
crucially, the approximation properties of the resulting mesh
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when considering an isoparametric finite element formula-
tion.
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1 Introduction

The performance of high-order discretisation methods for
the simulation of various problems in science and engineer-
ing has been the object of intensive research during the last
twodecades [32,41,44,67]. Thesemethods have the potential
to offer an increased level of accuracy with a reduced num-
ber of degrees of freedom and, more importantly, a reduced
computational cost [16,35,63].

The potential of high-order unstructured methods has
been intensively studied by the computational fluid dynamics
(CFD) community in the last decade due to their inher-
ent ability to accurately predict the behaviour of complex
high Reynolds number flows [37,45,48,74]. It is also well
known that low-order methods are highly dissipative and
extremely refined meshes are required to properly resolve
the propagation of vortices over long distances. The advan-
tages of high-order methods have also attracted the attention
of researchers working in wave propagation problems (e.g.
acoustics and electromagnetics) due to their low dispersion
and dissipation compared to low-order methods [2,7,31,46,
47,64]. In particular, the high-order discontinuous Galerkin
method has become popular in this area due to its ability to
propagate waves over long periods of time with a reduced
computational cost compared to alternative low-order meth-
ods [13,15,38,40,42].

The use of curved elements is nowadays accepted to be
crucial in order to fully exploit the advantages of high-
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order discretisation methods [5,19,43,49,61,62,70,78], but
until relatively recently, the challenge of automatically gen-
erating high-order curvilinear meshes has been an obstacle
for the widespread application of high-order methods [73].
Methods to produce high-order curvilinear meshes are tra-
ditionally classified into direct methods and a posteriori
methods [20,21]. Direct methods build the curvilinear high-
order mesh directly from the CAD boundary representation
of the domain whereas a posteriori approaches rely on
mature low-order mesh generation algorithms to produce
an initial mesh that is subsequently curved using different
techniques, such as local modification of geometric enti-
ties [20,21,50,65,66], solid mechanics analogies [58,77] or
optimisation [26,71].

Within the category of a posteriori approaches, the solid
mechanics analogyfirst proposed in [58] has become increas-
ingly popular. The main idea is to consider the initial, low-
order, mesh as the undeformed configuration of an elastic
solid. High-order nodal distributions are then inserted into all
of the elements and then the nodes over element edges/faces
in contact with the curved parts of the boundary are projected
onto the true CAD boundary. The displacement required to
move the nodes onto the true boundary is interpreted as
an essential boundary condition within the solid mechan-
ics analogy. The solution of the elastic problem provides
the desired curvilinear mesh as the deformed configuration.
The initial approach proposed in [58] used a non-linear neo-
Hookean constitutive model. Several attempts to reduce the
computational cost of this approach have been proposed
based on a linear elastic analogy, see [1,77]. It is clear
that when large deformations are induced to produce the
deformed curvilinear high-order mesh, a linear elastic model
can result in non-valid elements due to the violation of the
hypothesis of small deformations. In order to alleviate this
problem, it is possible to split the desired (potentially large)
displacement of boundary nodes into smaller load incre-
ments. Other approaches to increase the robustness of the
linear elastic analogy have been recently introduced, see for
instance [56], where pseudo thermal effects are introduced. It
is worth noting that meshmoving strategies based on an elas-
tic analogy have also been proposed and successfully used
with a proven track record of robustness in the low-order
context [39,68,69].

Although some approaches have been demonstrated to be
capable of producing curvilinear high-ordermeshes of highly
complex geometrical configurations, including anisotropic
boundary layer meshes around a full aircraft configura-
tion [77], a comparison of the proposed solid mechanics
analogies has not been investigated. With this comparison
in mind, in this paper a unified theoretical and computational
solid mechanics approach is proposed. This formulation
encompasses the linear andnon-linear formulations proposed
in [58] and [77], respectively. In addition, a new incremen-

tally linearised elasticity formulation, not previously applied
to generate curvilinear high-ordermeshes, is proposedwithin
this unified approach. Different distortion measures are con-
sidered in order to evaluate the quality of the generated
meshes for the different formulations, analysing the effect
of material parameters, load increments, computational cost
and, more importantly, the approximation properties of the
resulting high-order mesh.

The paper is organised as follows. In Sect. 2, the fun-
damentals of non-linear continuum mechanics are briefly
revisited by following some recent developments in [11,12],
where the kinematics of the non-linear continua and the prin-
ciple of virtualwork for a displacement-based formulation, in
material and spatial settings, are presented. The new consis-
tent incrementally linearised approach is detailed in Sect. 3
and the material characterisation for all the different formu-
lations is described in detail in Sect. 4. Using the derivation
of all the formulations from an energy principle, a range of
quality measures are proposed in Sect. 5 and their relations
with existing quality indicators is briefly discussed. Finally,
Sect. 6 presents a number of numerical examples both in
two and three dimensions and an extensive comparison of
performances of the different formulations is presented. The
examples include geometries appearing in a range of areas of
computational mechanics, e.g. computational solid mechan-
ics, CFD and computational eletromagnetics. Meshes are
produced for a variety of degrees of approximation and for
interior and exterior domains, illustrating the potential of the
proposed approach.

2 Non-linear continuum mechanics

2.1 Kinematics

Let us consider the motion of a continuum from its ini-
tial undeformed (or material) configuration Ω0 ⊂ R

d , with
boundary ∂Ω0 and outward unit normal n0, into its final
deformed (or spatial) configuration Ω ⊂ R

d , with bound-
ary ∂Ω and outward unit normal n, where d represents
the number of spatial dimensions. In the context of curved
mesh generation, the initial (undeformed) configuration Ω0

represents a linear mesh with planar faces (edges in two
dimensions) and the final (deformed) configuration Ω rep-
resents the final curved high-order mesh, as illustrated in
Fig. 1. The motion is described by a mapping φ which links
a material particle from material configuration X to spatial
configuration x according to x = φ(X).

The following well-known strain measures can be intro-
duced. Firstly, the two-point deformation gradient tensor or
fibre-map F, which relates a fibre of differential length from
thematerial configuration dX to the spatial configuration dx,
namely
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x1, X1

x3, X3

x2, X2

dA

da = HdA

dX

dx = F dX

dΩ0

dΩ = JdΩ0

x = φ(X)

Fig. 1 Deformation map of a continuum and illustration of the strain
measures F, H and J

dx = FdX, F = ∇0φ = ∂φ

∂X
, (1)

where ∇0 denotes the gradient with respect to material coor-
dinates. Secondly, the two-point co-factor or adjoint tensor
or area map H which relates an element of differential area
frommaterial configuration dA (co-linear with n0) to spatial
configuration da (co-linear with n), namely

da = HdA, H = 1

2
F F, (2)

where denotes the tensor cross product between two second
order tensors, introduced in [18] and recently brought into
the context of solid mechanics in [10–12,30].1 Finally, the
Jacobian J or volume-map of the deformation which relates
differential volume elements in the material configuration
dΩ0 and the spatial configuration dΩ , is introduced as

dΩ = J dΩ0, J = 1

3
H : F. (3)

The fundamental strain measures {F, H, J }, also illus-
trated in Fig. 1, encode the essential modes of deformation.

2.2 The principle of virtual work in material and spatial
settings

While a myriad of methodologies can be applied to solve for
the deformation of a continuum described by themotionmap
φ, such as optimisation and projection techniques [20,21,25,

1 The cross product ( ) between two tensors is defined as

[A B]i j = ξiklξ jmn Akm B jn,

where ξ is the third order permutation tensor, see [11,12] for a list of
properties.

28,50,51,57,65,66], in the context of solid mechanics, the
deformation of a continuum from its undeformed configura-
tion to its deformed configuration can be posed as a problem
of minimisation of the total potential energy Π , subjected
to certain desired constraints [9,34,52]. In other words, the
displacement of a deformable body can be obtained by find-
ing the stationary condition of the total potential energy, also
called the principle of virtual work (or variational principle),
of an assumed strain energy density.

A valid expression for strain energy density must fulfill
certain requirements to guarantee the existence of minimis-
ers [4,14]. In addition, to satisfy objectivity (i.e. invariance
with respect to rotations or coordinate transformation), the
strain energy densitymust be constructed in terms of the right
Cauchy–Green strain tensor C = FT F [9].2 Hence, in our
setting, we can write

Π(φ�) = inf
φ∈V

{∫
Ω0

Ψ (C) dΩ0

}
, (4)

where V = {
φ ∈ [H1(Ω0)

]d : φ(X) = x̄ on ∂Ω0
}
. It

is worth noting that, as usual in the context of a posteriori
curved mesh generation, no external forces are considered
and Dirichlet boundary conditions are imposed on the whole
boundary, corresponding to the displacement needed to place
the high-order nodes on the CAD boundary entities, at posi-
tion x̄.

The stationary condition of the total potential energy in (4)
obtained after linearisation with respect to virtual displace-
ments v, leads to the principle of virtual work in the material
configuration

DΠ(φ�)[v] =
∫

Ω0

DΨ (C)[v] dΩ0

=
∫

Ω0

S : 1
2
DC[v] dΩ0 = 0,

S = 2
∂Ψ

∂C
, (5)

where S is the symmetric secondorder Piola–Kirchhoff stress
tensor and DC[v] denotes the first directional derivative of
the right Cauchy–Green strain tensor along the direction
of virtual displacements v. Equation (5) results in a sys-
tem of non-linear equations that need to be solved through
an iterative scheme. The tangent operator required to facil-
itate convergence of the non-linear iterative scheme (e.g.
Newton–Rapshon) can be determined by computing the sec-
ond directional derivative of the total potential energy

2 A more general and useful requirement is polyconvexity with respect
to the set of kinematicmeasures {F, H, J }, which guarantees ellipticity
for the entire range of deformation [11,12,60].
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D2Π(φ�)[v; w] =
∫
Ω0

D2Ψ (C)[v;w] dΩ0

=
∫
Ω0

(
1

2
DC[v] : C : 1

2
DC[w] + S : 1

2
D2C[v; w]

)
dΩ0,

(6)

where the material fourth order tangent elasticity tensor is
defined as

C = 2
∂S
∂C

= 4
∂2Ψ

∂C∂C
(7)

and D2C[v;w] denotes the second directional derivatives of
the right Cauchy–Green strain tensor.

In order to establish a unified approach for various solid
mechanics approaches discussed in thiswork, it is convenient
to re-express (5) in the spatial configuration

DΠ(φ�)[v] =
∫

Ω

σ : ε(v) dΩ = 0, σ = J−1FSFT ,

(8)

where σ is the Cauchy stress tensor, ε(a) is the small
strain tensor given by ε(a) = 1

2 (∇a + (∇a)T ) and ∇ is
the gradient operator in the spatial configuration such that
∇0(a) = ∇(a)F. Analogously, the second directional deriv-
ative of the total potential energy (6) can be re-expressed in
the spatial configuration as

D2Π(φ�)[v;w]
=

∫
Ω

(
ε(v) : c : ε(w) + σ : [(∇v)T∇w]

)
dΩ (9)

where c is the spatial fourth order tangent elasticity tensor
obtained as

[c]i jkl = J−1[C]I J K L [F]i I [F] j J [F]kK [F]l L . (10)

In this setting, the first and second terms in the right hand side
of (9) yield the constitutive and the geometric/initial stiffness
components, respectively.

3 A consistent incrementally linearised solid
mechanics approach

The standard non-linear solid mechanics methodology
described in the previous section can be proven costly (due
to the iterative nature of the solution finding process) when
the ultimate goal is solely to deform a mesh in order to
conform to the exact geometry. Alternative solid mechan-
ics methodologies have been developed in the past, based
on a variety of linearised elasticity approaches [1,56,77].

xn = φn(X)

xn+1 = φn(X) + u

xn+1 = φn+1(X)

Fig. 2 Schematic representation of an incrementally linearised solid
mechanics approach

It is worth emphasising that, to guarantee and/or maintain
previously mentioned mathematical requirements for the
linearised strain energy density, a linearised solid mechan-
ics approach must emanate from an underlying non-linear
variational principle, as the notion of objectivity and poly-
convexity cannot be invoked in small strains. This is typically
achieved by consistent linearisation of the total potential
energy (4) through a Taylor series expansion. To illustrate
this, let us consider the total potential energy in (4), cast in
the form of an iterative (Newton–Raphson) scheme

Π(φ�
n+1) = inf

φn+1∈Vn+1

{∫
Ω0

Ψ (Cn+1) dΩ0

}
(11)

where Vn+1 = {
φn+1 ∈ [H1(Ω0)

]d : φn+1(X) =
x̄n+1 on ∂Ω0

}
and xn+1 = φn+1(X) is the position vector of

thematerial points at increment n+1, which can be evaluated
through an incremental displacement u superimposed on the
deformed configuration at increment n, i.e. xn+1 = xn + u,
as illustrated in Fig. 2. At increment n, the current position
vector xn , the state of deformation gradient Fn and, sub-
sequently, the Cauchy–Green strain Cn are fully known. In
a non-linear regime, the motion of the continuum from n to
n+1 is solved iteratively, as the amount of displacements, the
state of deformation gradient Fn+1 and the Cauchy–Green
strain Cn+1 cannot be determined explicitly.

However, in the context of high-order curved mesh gener-
ation, it is convenient to approximate (11) through a Taylor
series expansion of the form

Π(φ�
n+1) ≈ Πlin(x�

n + u�)

= inf
u∈U

{∫
Ω0

(
Ψ (Cn) + DΨ (Cn)[u] + 1

2
D2Ψ (Cn)[u; u]

)
dΩ0

}

(12)
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Table 1 Computational requirement of different solid mechanics formulations for curved mesh generation

Formulation\computational requirement Requires increments Requires iteration Accounts for stresses Tangent operator evaluation

Non-linear elasticity ✓ ✓ ✓ Per iteration

Consistent Incrementally Linearised (CIL) ✓ ✗ ✓ Per increment

Inconsistent Incrementally Linearised ✓ ✗ ✓ Once at the origin

Incremental Linear Elasticity (ILE) ✓ ✗ ✗ Once at the origin

Classical linear elasticity ✗ ✗ ✗ Once at the origin

where U = {
u ∈ [H1(Ωn)

]d : u = ū on ∂Ωn
}
. Certainly,

embedded in the definition of the new total potential energy
(Πlin) in (12) are the first and second directional derivatives
of the non-linear total potential energy (4), where the vir-
tual and incremental variations, namely v and w, are now
replaced with u. Hence, unlike (5), (12) is fully and consis-
tently linearised in u. Furthermore, notice that the first term
in the integrand in (12) is a constant term describing the state
of strain energy density at increment n, which vanishes at the
moment of computing the stationary point of (12). In fact, the
stationary condition of the linearised total potential energy
(12) is identical to the stationary condition of the following
potential energy

Πu(u�) = inf
u∈U

{∫
Ω0

(DΨ (Cn)[u]

+ 1

2
D2Ψ (Cn)[u; u]

)
dΩ0

}
. (13)

Substituting for (8–9) in (13), we obtain the spatial form of
the linearised total potential energy as

Πu(u�) = inf
u∈U

{∫
Ωn

(
σ n : εn(u) + 1

2
εn(u) : cn : εn(u)

+ 1

2
σ n :

(
(∇nu)T (∇nu)

))
dΩn

}
(14)

where the subscript n denotes the state of deformation,
stresses, tangent elasticity and the volume at increment n,
namely εn , σ n , cn and Ωn . In addition, ∇n represents the
spatial gradient operator at increment n. The stationary con-
dition of (14), obtained after the linearisation with respect to
the virtual displacement v, leads to the principle of virtual
work

DΠu(u�)[v]

=
∫

Ωn

⎛
⎜⎝σ n : εn(v)︸ ︷︷ ︸

Rn

+ εn(u) : cn : εn(v)︸ ︷︷ ︸
Cn

+ σ n : ((∇nu)T (∇nv))︸ ︷︷ ︸
Gn

⎞
⎟⎠ dΩn = 0.

(15)

It is worth noting that, in the right hand side of (15), the
first termRn corresponds to the residual stresses, the second

term Cn to the linearised constitutive stiffness term and the
last term Gn to the geometric stiffness term. The emergence
of the geometric stiffness term is due to consistent lineari-
sation of the non-linear total potential energy, which would
not have appeared, had the starting point not been chosen
to correspond to a non-linear total potential energy, as also
described in [36], p. 104 and in [52]. As will be seen in
the numerical examples, in the context of high-order curved
mesh generation, the geometric stiffness term, stiffens the
interior elements of the computational mesh against severe
distortion, hence producing meshes with better quality. Note
that unlike in the non-linear analysis, since (15) is linear in
u, a further linearisation is not required.

It is evident that, if a single increment is used to reach the
final configuration, i.e. when n = 0, the equations of classical
linear elasticity are recovered. It should be emphasised, that
in the context of linearised approaches there are a multitude
of heuristic formulationswhich do not necessarily come from
a variational principle. In fact, apart from the case when all
the terms {Rn, Cn,Gn} are present in the principle of virtual
work, all the other formulations based on the combinations of
these terms lead to non-consistent formulations. For the sake
of completeness, the four distinct linearised cases used in
the literature of curved mesh generation are identified in the
following; [see also Table 1 for a schematic comparison of
these cases and their associated computational requirement]:

1. When the state of deformation at increment n + 1 is
obtained by computing the residual stresses, the consti-
tutive stiffness and the geometric stiffness at the previ-
ous deformed configuration i.e. based on {Rn, Cn,Gn}.
This consistent incrementally linearisedmethodology for
high-order curved mesh generation, is presented in this
paper for the first time.

2. When the residual stresses at increment n+1 are obtained
from the previous deformed configuration based on Rn ,
but the constitutive stiffness is evaluated at the initial
undeformed (or stress-free) configuration i.e. C0 and the
geometric stiffness term is absent from the formulation.
The technique developed by [56] falls into this category.

3. When both the residual stresses and constitutive stiffness
at increment n + 1 are computed based on the initial
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undeformed configuration i.e. R0 and C0 and the geo-
metric stiffness term is absent from the formulation, but
the geometry itself is updated incrementally such that
xn+1 = xn+u. This approach has been pursued in [1,77]
and from here onwards we will refer to this approach as
the incremental linear elastic approach.

4. When n = 0 or in other words, when the residual
stresses, constitutive stiffness and geometric stiffness are
evaluated once at the initial undeformed configuration
{R0, C0,G0} i.e. particularisation to the case of classical
linear elasticity.

4 Hyperelasticity and material characterisation
for different solid mechanics formulations

In the previous section, the principle of virtual work was
introduced in terms of the stresses in the body. These stresses
result from the deformation of the body expressed in terms
of the fundamental kinematic measures {F, H, J }. To close
the system of equations, introducing a relationship between
stresses and the kinematic measures is necessary. Known as
the constitutive relations, these relations depend on the type
of material under consideration (i.e. isotropic, anisotropic,
compressible, nearly incompressible and so on). Typically,
these constitutive relations are obtained from the linearisa-
tion of the strain energy density of the material. Apart from
satisfying the requirements of existence ofminimisers, objec-
tivity (and favourably polyconvexity), the choice of material
generally imposes further physical requirements on the strain
energy density. For an isotropic material, the strain energy
density can be written as a function of three independent
invariants as

Ψ (C) = Ψiso(I1, I2, I3), I1 = I : C,

I2 = detC (I : C−1), I3 = detC, (16)

where the three isotropic invariants I1, I2 and I3 are indeed
further related to the fundamental kinematic measures as3

I1 = F : F, I2 = H : H, I3 = J 2. (17)

Furthermore, for a transversely isotropic material, the strain
energy density can be expressed as

Ψ (C) = Ψaniso(I1, I2, I3, I4, I5), I4 = N · CN,

I5 = N · C2N, (18)

3 Note that for plane strain problems, the first two isotropic invariants
are identical i.e. I1 = I2.

where the two transversely isotropic invariants I4 and I5 are
indeed related to the fundamental kinematic measure F as

I4 = FN · FN, I5 = FT FN · FT FN, (19)

where N is the unit Lagrangian vector characterising the
direction of transverse isotropy. It is worth emphasising that
(17) and (19) represent a set of independent invariants that
can be used to construct isotropic and transversely isotropic
strain energy density expressions, respectively.4 Any other
invariant used to construct the strain energy density, would
be a combination of the aforementioned invariants. Aswill be
discussed later, these invariants play a key role in quantifying
the quality of generated curvilinear meshes.

To establish a unified approach for the different solid
mechanics formulations presented in the previous section and
to further facilitate a comparison among them, it is essential
that material parameters are calibrated such that the strain
energies (and consequently the stresses and the constitutive
tensors) for the different formulations are identical in the ini-
tial undeformed configuration. To this end, in this section,
we discuss characterisation of material constants through an
example of a hyperelastic neo-Hookeanmodel.More sophis-
ticated strain energies accounting for near incompressibility
and transverse isotropy are also considered, which for the
purpose of brevity are only listed in Table 2.

4.1 The nonlinear hyperelastic case

Let us consider a compressible neo-Hookean model which
is also considered, for instance in [58] in the context of
high-order curvilinear mesh deformation. The strain energy
density of the material is given by

Ψ neo(C) = μ

2
I1 + f (I3) − μ

2
,

f (I3) = λ

2
(
√
I3 − 1)2 − μln(

√
I3), (20)

where μ and λ are two material constants. Note that this
model can be obtained by setting β = 0 and α = μ

2 in
the more sophisticated compressible Mooney–Rivlin model
presented in Table 2. Following the procedure outlined in the
previous section, the Cauchy stress tensor and the tangent
elasticity tensor can be obtained as

4 To satisfy polyconvexity in a transversely isotropic material, the inde-
pendent invariant I5 is instead given by

I5 = HN · HN = (detC)(N · C−1N).
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Table 2 Alternative strain
energies and their corresponding
stresses, tangent operator and
calibrated material parameters

Alternative internal energies

Compressible Mooney–Rivlin

Ψ (C) α I1 + β I2 − 4β
√
I3 − 2αln

√
I3 + λ

2 (
√
I3 − 1)2 − (3α − β)

σ 2
J

(
α + β (b I)

)
b +

(
λ(J − 1) − 4β − 2α

J

)
I

[c]i jkl 2β
J

(
2 [b]i j [b]kl − [b]ik [b] jl − [b]il [b] jk

)
+

(
λ(2J − 1) − 4β

)
δi j δkl −

(
λ(J − 1) − 4β − 2α

J

) (
δikδ jl + δilδ jk

)

↔ λ = λlin, α + β = μlin
2

a

Nearly incompressible Mooney–Rivlin (NI-MR)

Ψ (C) α I3−1/3 I1 + β I3−1 I23/2 + κ
2 (

√
I3 − 1)2 − (3α + 3

√
3β)

σ 2α J−5/3b +
(

κ(J − 1) − 2α
3 J−5/3trb + β J−3trg3/2

)
I − 3β J−3trg1/2g

[c]i jkl − 4α
3 J−5/3

(
[b]i j δkl + δi j [b]kl

)
+

(
4α
9 J−5/3[b]mm + β J−3([g]mm)3/2 + κ(2 J −

1)

)
δi j δkl +

(
2α
3 J−5/3[b]mm − β J−3([g]mm)3/2 − κ(J − 1)

)(
δikδ jl + δilδ jk

)
−

3β J−3([g]mm)1/2
(

δi j [g]kl + [g]i j δkl
)

+ 6β J−3([g]mm)1/2
(

δik [g] jl + [g]ilδ jk
)

+
3β J−3([g]mm)−1/2[g]i j [g]kl

↔ 2α + 3
√
3β = μlin, κ − 4

3α − 2
√
3β = λblin

Transversely Isotropic Hyperelastic (TI)

Ψ (C) α(I1 − 3) + β(I2 − 3) − μ̃ln
√
I3 + λ

2 (
√
I3 − 1)2 + η1(I4 − 1) + η2(I1 − 3)(I4 − 1) +

γ (I4 − 1)2 − η1
2 (I5 − 1)

σ 2
J

(
α + β (b I)

)
b +

(
λ(J − 1) − μ̃

J

)
I + 2η1

J FN ⊗ FN + 2η2
J (FN · FN − 1)b +

2η2
J (trb−3)FN⊗FN+ 4γ

J (FN ·FN−1)FN⊗FN− η1
J

(
FN⊗bFN+bFN⊗FN

)

[c]i jkl 2β
J

(
2 [b]i j [b]kl −[b]ik [b] jl −[b]il [b] jk

)
+λ(2J −1)δi j δkl +

(
μ̃−λ(J −1)

)(
δikδ jl +

δilδ jk

)
+ 4η2

J ([b]i j [FN]k [FN]l+[FN]i [FN] j [b]kl )+ 8γ
J [FN]i [FN] j [FN]k [FN]l−

2η1
J

(
[b] jk [FN]i [FN]l + [b]ik [FN] j [FN]l

)

↔ μ̃ = 2α + 4β, α + β = E
4(1+ν)

, η1 = 4α − GA, 12α + λ = C11,
4η2 = C13 − 4α − λ, 8γ = C33 − 12α + 4η1 − 8η2 − λc

a For all the analyses we fix α = β
b For all the analyses we fix α = μlin

2
c C11, C13, C33, GA, E and ν are the components of transversely isotropic linear elastic material, where the
subscript A denotes the direction of anisotropy. For all the analyses we fix α = β

↔ implies relationship between non-linear and linear material constants after calibration. Also note that
g = HHT

σ neo = μ

J
b +

(
λ(J − 1) − μ

J

)
I (21)

cneo = λ(2J − 1)I ⊗ I +
(

μ

J
− λ(J − 1)

)
I (22)

where b = FFT is the left Cauchy–Green strain tensor and
I is the symmetric fourth order identity tensor [I]i jkl =
δikδ jl + δilδ jk , where δmn denotes the Kronecker delta.

4.2 The classical linear elastic case

For the classical compressible linear elastic constitutive
model, the strain energy is defined as

Ψlin(ε) = λlin

2
(trε)2 + μlinε : ε, (23)

where λlin and μlin represent the well-known Lamé para-
meters. The Cauchy stress tensor and the tangent elasticity
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tensor are then obtained as

σ lin = λlintrε I + 2μlinε (24)

clin = λlin I ⊗ I + μlinI. (25)

It is worth noting that the approach pursued in [56,77] cor-
responds to a linear elastic approach with only the geometry
being updated at each increment x = xn .

Comparison of the tangent elasticity tensor of the neo-
Hookean model (22) evaluated at the origin (i.e. J = 1)
to its linear elastic counterpart (25), a relationship between
material constants can be defined as

μ = μlin, λ = λlin.

In the case of the neo-Hookean material model the rela-
tionship between material constants is one-to-one, whereas
formore complexmaterialmodels dependent uponmore than
two constants, one can arrive at correlations between those
and the Lamé constants, preferably having to fix some of
those constants. The calibration of material constants of a
nonlinear or linearised energy functional against the linear
elastic model is key to the comparison of the approaches. In
practice, normally the Young’s modulus (E) and Poisson’s
ratio (ν) of the material are provided, which for the three-
dimensional and plane strain isotropic cases are related to
the Lamé constants as

λlin = Eν

(1 + ν)(1 − 2ν)
, μlin = E

2(1 + ν)
. (26)

To facilitate a comparison between material models for
producing the higher-order curvilinear meshes, all isotropic
materials described in Table 2 can be expressed in terms of
the Poisson’s ratio ν using (26). For transversely isotropic
material, the relationship between material constants and ν

is given in Table 2, cf. [8].

5 Mesh quality measures

Quality or distortion measures are traditionally used both in
a low and high-order finite element context in order to quan-
tify the approximation properties induced by a computational
mesh. In a standard high-order finite element formulation,
measures involving the Jacobian of the isoparametric map-
ping have been extensively used [29,77], in particular the
so-called scaled Jacobian. This measure only quantifies vol-
umetric deformations and alternative measures that exploit
different modes of deformation and account for shape, skew-
ness and degeneracy of elements have only been recently
considered [27,28]. However, it is worth noting that not all

of these quality measures can be regarded as independent
quantities.

In the unified solid mechanics approach proposed here,
due to the derivation of all the approaches from an energy
principle, we propose five quality measures that are defined
in terms of the invariants of (17) and (19), used to construct
the strain energy. The quality measures for a generic element
e are

Qe
j =

√
minξ∈ R {I j }
maxξ∈ R {I j } for j = 1, . . . , 5, (27)

where R denotes the reference element employed in the
isoparametric formulation, with local coordinates ξ . If nec-
essary, further quality measures can be obtained through a
linear combination of the invariants I j which will be inde-
pendent of the geometrical parametrisation.

In practice, the invariants are evaluated at a discrete set of
points within the reference element, usually the quadrature
points that will be employed during a computational simula-
tion. For the numerical examples presented here, a quadrature
rule is used that integrates polynomials of degree up to 2p,
where p is the order of approximation.

In order to obtain a representative quality measure for a
given computational mesh, a variety of statistical data can be
reported, such as the mean quality or the standard deviation.
However, in the numerical examples presented here, themesh
quality is defined by computing the minimum over all the
elements, namely Q j = mine {Qe

j }. Despite this being the
least favourable choice, it iswell known that a few lowquality
elements can substantially deteriorate the overall quality of a
finite element simulation, specially if these elements are near
a curved boundary. Several numerical examples in two and
three dimensions are used in the next section to evaluate the
performance of different approaches for a posteriori mesh
generation. The objective is to produce meshes where the
minimumquality is as high as possible as thiswill provide the
better approximation properties of a high-order finite element
solver.

From the mesh distortion point of view, the first qual-
ity measure Q1, quantifies fibre deformation (for instance,
distortion of the edges of an element), the second quality
measure Q2, quantifies surface deformation (for instance,
distortion of the faces of an element) and the third quality
measure Q3, quantifies volumetric deformation (distortion
of the element itself). In fact, it is worth noting that the scaled
Jacobian corresponds to the quality measure Q3. For simpli-
cial elements (i.e. triangles and tetrahedra), this measure is
identical to the Jacobian of the deformation gradient tensor J
because the isoparametric mapping for a simplicial elements
with planar faces (or edges in two dimensions) is affine.
This result is valid because, in the context of a posteriori
high-order mesh generation, the undeformed configuration
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typically corresponds to a mesh formed by elements with
planar faces (or edges).

The quality measures Q4 and Q5, based on the two
anisotropic invariants, quantify the distortion in the direc-
tion of anisotropy. These measures can only be utilised when
the internal energy of the material is anisotropic and, since
in the context of curved mesh generation this is not often
the case, their usage remains limited. Moreover, anisotropic
quality measures are typically dependent on the geometrical
parametrisation.

Finally, it should be emphasised that, in contrast to
the non-linear approach, the solution of the incrementally
linearised problem in (13), does not correspond to the min-
imisation of the total potential energy (11) with respect to
the fundamental strain measures {F, H, J } per se, but rather
with respect to the incrementally linearised versions of these
quantities. Furthermore, it is easy to identify that for plane
strain problems, the first and the second invariants are indeed
identical i.e. I1 = I2 which in turn translates into the corre-
sponding quality measures being identical Q1 = Q2. This is
only true for two-dimensional plane strain problems.

6 Examples

This section presents a detailed comparison of the various
solid mechanics formulations considered in this work (refer
to Table 1) for the a posteriori generation of high-order curvi-
linear meshes. The comparison focuses on the advantages
and disadvantages of the various formulations, the influ-
ence of the material parameters, the degree of approximation
obtained by using two and three dimensional examples and
themonitoring of different qualitymeasures. In thiswork, the
only material parameter that is varied is the Poisson’s ratio
(ν). Notice that as detailed in [77], the Young’s modulus has
no real effect on the resulting high-order meshes because
only Dirichlet boundary conditions are considered. There-
fore, in all the examples we consider E = 105, EA = 5E

2
and GA = E

2 and the Poisson’s ratio is selected within the
interval [0.001,0.495].

To simplify the presentation, the following acronyms are
utilised:

– Incremental Linear Elastic (ILE)
– Consistent Incrementally Linearised (CIL)

for incremental linear elastic and consistent incrementally
linearised formulations, respectively. When these acronyms
are not used in conjunction with amaterial model, the formu-
lation should be assumed to correspond to a fully non-linear
analysis. For the sake of brevity the names of the following
two material models are also shortened to

– Nearly Incompressible Mooney–Rivlin (NI-MR)
– Transversely Isotropic (TI)

In all the examples, the linear system of equations result-
ing from the finite element discretisation, is solved using
UMFPACK [17] and the Multi-frontal Massively Parallel
Solver (MUMPS) [3] for the systems that result in two-
dimensional and three-dimensional examples, respectively.
The non-linear systems are solved using a standard Newton–
Raphson algorithmwhere the tolerance is set to 10−5. Finally,
it is worth noting that a standard isoparametric finite ele-
ment formulation is considered throughout this work, using
Lagrange polynomials with optimal distribution of nodes for
interpolation [77] and also the optimal quadrature points for
triangles and tetrahedra reported in [75] are considered for
numerical integration.

The developed code, called PostMesh, has been released
as an open-source software under MIT license and is
available through the repository https://github.com/romeric/
PostMesh.

6.1 Mesh of a mechanical component

The first example considers an isotropic mesh of a mechani-
cal component. The geometry is given by 28 NURBS curves
describing the boundary of the domain as depicted in Fig. 3.

The initial linear triangular mesh is shown in Fig. 4a,
having 192 elements, 129 nodes and 68 boundary edges.
The produced mesh using the ILE approach for a degree
of approximation p = 5 is shown in Fig. 4b, having 2569
nodes.

A detailed view of four high-order meshes produced using
the same ILE approach is shown in Fig. 5, showing the large
distortion that is induced by the projection of the boundary
nodes over the true boundary. In addition, the better approxi-
mation of the true boundary shown in Fig. 3 as the polynomial
order is increased, can be clearly observed.

Figure 6 shows a comparison of the quality of the gener-
ated curvilinearmeshes using linear, incrementally linearised
and non-linear approaches. In all cases, the deformation of
the boundary has been imposed using five increments and
the minimum scaled Jacobian is used as a quality measure.

Fig. 3 Geometry of mechanical component
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Fig. 4 Isotropic mesh of mechanical component. a Linear mesh. b High-order mesh with p = 5

Fig. 5 Detailed view of the high-order isotropic meshes of mechanical component. a p = 2. b p = 3. c p = 4. d p = 5

Fig. 6 Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s ratio and the polynomial degree. a ILE isotropic. b CIL
neo-Hookean. c (Non-linear) neo-Hookean

It can be observed that the quality of the meshes produced
with the ILE isotropic and CIL neo-Hookean approaches is
almost identical, although the CIL neo-Hookean approach
seems to provide better quality for high-order (e.g. p =
5) approximations and for values of the Poisson’s ratio
near the incompressible limit. Despite this difference, both
approaches are able to produce high quality meshes for
any degree of approximation tested. In contrast, the (non-
linear) neo-Hookean approach fails to produce a high-order
mesh for high-order approximations, except for a few cases
where a low-quality mesh for p = 4 is produced. The qual-
ity of the produced meshes for lower order approximations
(i.e., p = 3,4) is similar to the quality produced by the
ILE isotropic and CIL neo-Hookean approaches, but it is
worth noting that the (non-linear) neo-Hookean approach
also fails in the nearly incompressible region, whereas the

ILE isotropic and CIL neo-Hookean approaches produce the
best quality meshes in this scenario.

It should also be noted that, unlike the linearised
approaches wherein the internal nodes of themeshmove pro-
portionally to the boundary nodes, in the non-linear approach
the internal nodes can move arbitrarily within the element,
and this can in turn affect the quality and approximation prop-
erty of the produced meshes. In a purely displacement-based
formulation, it is not feasible to restrain the movement of
internal nodes to a desired proportion. In this context, higher
order gradient theories [6,23,55] and more elaborate mixed
formulations [11,60], offer a potential future research direc-
tion.

Next, we compare the effect of material models pre-
sented in Table 2 on the quality of generated meshes, for
all the three approaches. Figure 7 shows the quality (min-
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(a) (b)

(c) (d)

Fig. 7 Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s ratio for p = 2 using the ILE isotropic, CIL and non-linear
approaches with different material models. a Neo-Hookean. bMooney–Rivlin. c NI-MR. d TI

imum scaled Jacobian) as a function of the Poisson’s ratio
for all the different models considered in this work, when
a polynomial approximation of degree p = 2 is employed.
For the transversely isotropic model, the negative x-axis is
chosen as the direction of anisotropy for the interior ele-
ments. For the elements in the boundary, the direction of
anisotropy is computed to be perpendicular to the unit nor-
mal to boundary edge. This technique is customary in the
field of fibre-reinforced composites.

The results show that the quality displayed with neo-
Hookean, Mooney–Rivlin and nearly incompressible mate-
rials is almost identical for any value of the Poisson’s ratio,
whereas a different behaviour is obtained for the transversely
isotropic model. The best quality is obtained with the ILE TI
model and with a Poisson’s ratio near 0.5. However, it is
worth emphasising that a small variability of the quality is
obtained in all cases as all simulations provide a high-order
mesh with quality belonging to [0.67,0.77].

Next, the same comparison is performed for higher order
approximations, but the results with a Mooney–Rivlin and

nearly incompressible models are omitted because, in all
cases, the results are almost identical to those obtained with
a neo-Hookean model. Figure 8 shows the quality (minimum
scaled Jacobian) as a function of the Poisson’s ratio when a
polynomial approximation of degree p = 3 is considered.

A different trend is observed, when comparing the results
with p = 3 to the results with p = 2 displayed in Fig. 7.
With p = 3 the quality of the mesh improves as the Pois-
son’s ratio is increased, providing the best results always
when the incompressible limit is approached. This behav-
iour is expected in general because when the Poisson’s ratio
is taken near 0.5, the imposed displacement on the boundary
induces a larger displacement of the interior nodes. In con-
trast, when a value of the Poisson’s ratio near 0 is considered,
the imposed displacement on the boundary induces small dis-
placement on the interior nodes, resulting in more distorted
elements (i.e. reduced quality elements). The reasonwhy this
expected behaviour was not obtainedwith p = 2 is attributed
to the lack of resolution of the displacement field when the
coarse mesh considered here, see Fig. 4, is employed with
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(a) (b)

Fig. 8 Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s ratio for p = 3 using the ILE isotropic, CIL and non-linear
approaches with different material models. a Neo-Hookean. b TI

a quadratic approximation. In fact, further simulations not
reported here for brevity confirm that with a finer mesh the
expected trend is obtained even with a degree of approxima-
tion p = 2.

In addition, the results show that the quality of the meshes
produced with ILE isotropic, CIL and non-linear approaches
is almost identical if a neo-Hookean model is considered,
whereas the use of a transversely isotropic model reveals
some differences between the three approaches. The results
demonstrate the significance of chosing a well-defined mate-
rial model like neo-Hookean (with a quality reported near
0.85), in contrast with a transversely isotropic model (qual-
ity reported below 0.6 for any value of the Poisson’s ratio),
whose limitations would be discussed shortly. It is worth
emphasising that the quality obtained with the Mooney–
Rivlin and the NI-MR models is almost identical to that
produced by the neo-Hookean model, so that any of the three
models is equally suitable to produce high quality meshes in
this example, since all these material models are mathemat-
ically well-defined.

Finally, Fig. 9 shows the quality (minimum scaled Jaco-
bian) as a function of the Poisson’s ratio when a polynomial
approximation of degree p = 6 is considered. The con-
clusions that are implied by the results are similar to those
obtained from the simulation with p = 3. First, the qual-
ity obtained with the neo-Hookean model is similar for
the ILE and CIL approaches whereas some differences are
observed for the transversely isotropic model. However, in
this case the non-linear approach is not able to converge,
as already mentioned and shown in Fig. 6. The quality
of the produced meshes increases as the Poisson’s ratio
approaches 0.47 and the best results are obtained when a
neo-Hookean (equivalently compressible or nearly incom-
pressible Mooney–Rivlin) model is considered. It is worth

mentioning that this example shows a slight drop in the qual-
ity of the mesh as the Poisson’s ratio increases from 0.47
to 0.49. It should be noted that imposing the material to
be incompressible in this example is not physically pos-
sible because the initial and deformed configuration have
a pre-defined (and non-equal) volume as shown in Fig. 6.
Therefore, the results suggest that the Poisson’s ratio should
be carefully selected near the incompressible limit, but
preferably of a value to ensure that some level of compress-
ibility is allowed, for instance 0.45. This behaviour is only
observed with p = 6 because for lower order approxima-
tions there is a lack of resolution to capture the displacement
field.

The analysis for the different approaches and material
models is summarised in Fig. 10. This figure shows the mean
and standard deviation of the scaled Jacobian for the ILE
isotropic,CIL andnon-linear approacheswith differentmate-
rials and degrees of approximation.

It can be concluded that the choice of material model does
not play a major role, as long as the model is well-defined.
As hinted before, unlike the other material models, the
transversely isotropic (TI) material defined in Table 2, does
not correspond to a polyconvex energy functional, or more
specifically, the invariant N · C2N = (FT FN) · (FT FN),
is not convex with respect to F, and hence under highly large
deformations, the model experiences instabilities in the form
of loss of ellipticity which canmanifest through shear-bands,
fibre kinking if under compression or fibre de-bonding if
under stretch; cf. [53] and [54], for an intensive study on the
loss of ellipticity for this invariant. The latter two phenomena
(fibre kinking and de-bonding) also hold true for the trans-
versely isotropic linear materials. As a consequence, it can
be observed that the mean quality of the high-order meshes
generated with a transversely isotropic material deteriorates
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(a) (b)

Fig. 9 Minimum scaled Jacobian of the generated meshes as a function of the Poisson’s ratio for p = 6 using the ILE isotropic, CIL and non-linear
models with different material models. a Neo-Hookean. b TI

(a) (b)

Fig. 10 Mean value and standard deviation of the minimum scaled Jacobian of the generated meshes as a function of the Poisson’s ratio for
different materials and degrees of approximation. a ILE and CIL approaches. b ILE and non-linear approaches

as the order of approximation is increased, compared to the
other material models.

Overall, the ILE isotropic approach is found to be the
most robust, providing the best or near the best mean quality
for all orders of approximation. Also, it is worth noting that
for all material models the standard deviation grows as the
order of approximation is increased, implying that a good
choice of the Poisson’s ratio is more important as the order
of approximation is increased.

Next, the effect of the Poisson’s ratio, the different
approaches and material models on the condition number
of the system matrix is illustrated in Fig. 11. The condition
number is computed using the lower bound one-norm esti-
mate of Higham [33].

Again, the results show that the condition number with
neo-Hookean, Mooney–Rivlin and NI-MR is almost identi-
cal for any value of the Poisson’s ratio, whereas a different
behaviour is obtained for the transversely isotropic model.
In all cases the condition number increases as the Poisson’s
ratio approaches the incompressible limit but it is worth not-
ing that a slightly lower condition number is obtained when
the transversely isotropicmodel is considered, irrespective of
the use of ILE isotropic, CIL and non-linear approaches. This
is inherently due to anisotropic nature of the model, as the
deformation is not homogenous in every direction and hence
the effect of Poisson’s ratio is not equally pronounced for
this model. The results with other degrees of approximation
are omitted, as exactly the same behaviour is observed.
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(a) (b)

(c) (d)

Fig. 11 Condition number of the systemmatrix as a function of the Poisson’s ratio for p = 4 using the ILE isotropic, CIL and non-linear approaches
with different material models. a Neo-Hookean. b Mooney–Rivlin. c Nearly incompressible. d Hyperelastic

The last analysis is aimed to compare the computational
cost of each formulation with different material models and
different orders of approximation p. As it is not feasible
to a priori know the number of iterations required by the
non-linear approach to converge, a comparison of the actual
computing time is considered here.

The computational code is written in Python using Python
scientific stack such as NumPy and SciPy, with the core rou-
tines implemented in C, C++ and Cython.With the compiled
code, we utilise X86-64 explicit vectorisation by dispatch-
ing most of the computation at quadrature points to SIMD
intrinsic calls. A parallel mapmodel is used for compu-
tation of local elemental matrices andmulti-core assembly of
the system of equations, as the interprocess communication,
at this stage is minimal. A similar strategy for assembling
the elemental matrices is adopted and discussed in detail
in [72]. The code is linked against the optimised Open-
BLAS library. For the purpose of comparison, we exclude
the pre-processing and post-processing and only measure the
run-time of the assembly of tangent stiffness, application of

Dirichlet boundary conditions and the solution of the system
of equations.

Whilst theoretically, the non-linear approach should
cost number of iterations × number of
increments times more than the linear model, in practice,
due to differences in the sparsity pattern and condition num-
ber of the systemaswell asCPUwarm-up and pipelining, this
is not often the case. In fact, comparison of non-linear against
linear approaches is analogous to cold versus hot benchmark-
ing, in that with a higher number of iterations, the processor
becomes progressively more accurate with branch predic-
tion and guessing jmp operations, which helps improve
processor pipelining.On the other hand, for highly non-linear
problems, with every iteration of the non-linear analysis the
condition number increases, hence impacting the run-time.
With this inmind,we report the geometricalmean of 100 run-
times, excluding the timing for the first 10 runs. An in-house
tool similar to Google Benchmark is used for time measure-
ments. For all time measurements, parallelisation has been
turned off. Material data and p are deliberately chosen such
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Fig. 12 Computational cost of various material models using three different formulations with p = 2 (902 degrees of freedom) and p = 3 (1930
degrees of freedom)

that the non-linear analysis would converge. The analysis
corresponds to ν = 0.4 with other parameters remaining
constant as before.

Figure 12 shows the CPU time using the three formu-
lations and different material models when the boundary
displacement is imposed using five load increments using a
polynomial approximation of degree p = 2 and p = 3. The
CPU time has been normalised with respect to that of clas-
sical linear elasticity (i.e. one increment). It is important to
note that, due to the small size of the problem, all systems are
solved using UMFPACK, the cost of solver is negligible and
the condition number of the system does not adversely affect
quadratic convergence of Newton–Raphson. Furthermore,
for a problem of this size, a portion of the computational
time corresponds to the overhead of function calls i.e. argu-
ment parsing at interpreted level and push/pop operations
at compiled level, even after some aggressive inlining.

The computational cost associatedwith the differentmate-
rial models is clearly related to their tangent operator. In
the case of linear elasticity, the tangent operator can be
computed at the pre-processing stage. For a neo-Hookean
model the two fourth order identity tensors I ⊗ I (δi jδkl)

and I (δikδ jl + δilδ jk), appearing in the tangent opera-
tor, are compile time constants. For Mooney–Rivlin, nearly
incompressible Mooney–Rivlin and transversely isotropic
hyperelastic models, the dyadic products in the tangent
operators [see Table 2] are run-time variables and their com-
putation is not always cache-friendly due to unavoidable
strided indexing. In fact for complex material models identi-
fying the optimal networks of tensor contraction is not trivial

[24,59]. UsingVoigt notation and further permutations, these
dyadic products can be transformed to further gemm calls,
which eventuallymayormaynot be beneficial.Moreover, the
nearly incompressible and transversely isotropic hyperelas-
ticmodels require computation of co-factors H and HHT , at
every quadrature point which are all O(n3) in computational
complexity.

In this example, ILE isotropic approach is found to be
the most competitive. This allows to conclude that, for this
example, the ILE isotropic approach provides both the best
quality and the lowest computational cost compared to other
approaches and material models. Furthermore, one should
note that the mesh qualities reported here are not indicative
of the maximum quality that can be obtained, as the number
of load increments is rather kept fixed to facilitate an impar-
tial comparison between different approaches. Finally, it is
worth mentioning that although CPU timemeasurements are
always dependent on the implementation, the results reported
here provide a qualitative indication of the higher cost associ-
ated to a non-linear approach. The CPU timing, together with
the already discussed convergence difficulties of non-linear
approaches for high-order approximations, clearly provides
an indication of the limited scope of such an approach for a
posteriori high-order mesh generation.

6.2 Mesh around the SD7003 aerofoil

The second example considers anisotropic boundary layer
meshes around the SD7003 aerofoil with different levels of
stretching in the boundary layer. The detailed view near the
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Fig. 13 Boundary layer mesh around an aerofoil. a Linear mesh. b High-order mesh with p = 5

Fig. 14 Minimum scaled Jacobian of the generated meshes with p = 2 as a function of the Poisson’s ratio and the number of load increments. a
ILE isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean

leading edge of the initial linear triangular mesh shown in
Fig. 13 (a) corresponds to a stretching factor of 25 (mea-
sured as the length of the largest edge divided by the shortest
edge for an element in the boundary layer), having 2171 ele-
ments, 1140 nodes and 85 edges on the curved boundary.
The produced mesh using the ILE approach for a degree of
approximation p = 5 is shown in Fig. 13 (b), having 27,410
nodes.

It should be mentioned that, similar to the previous exam-
ple, it was found that the choice of material model does not
have an effect on the quality of the curved meshes and that
the transversely isotropic material shows a similar pattern of
loss of ellipticity. In the light of these findings, we abandon
the comparison of material models for the present example
and unless otherwise stated, we only utilise the neo-Hookean
model with its linearised version. In contrast, due to high
level of stretching of the meshes considered here, the effect

of the number of load increments on the quality of generated
meshes will be investigated.

Figure 14 shows the quality of the high-order meshes,
measured as the minimum scaled Jacobian, as a function of
the Poisson’s ratio and the number of load increments for
the ILE isotropic, CIL neo-Hookean and (non-linear) neo-
Hookean approaches.

Once more, the non-linear approach is not able to provide
a solution in all cases (i.e. for all values of the Poisson’s ratio
and number of load increments). In fact, when it converges,
the quality of the non-linear approach is generally lower than
the quality of the ILE isotropic and the CIL neo-Hookean
approaches. It can also be observed that the quality of the
meshes produced with the ILE isotropic and the CIL neo-
Hookean approaches is almost identical, for any value of
the Poisson’s ratio and for any number of load increments.
Finally, the results show that the best quality is obtained for
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Fig. 15 Minimum scaled Jacobian of generated meshes with p = 2
as a function of the Poisson’s ratio and the number of load increments
with a stretching of 100 in (a–c) and with a stretching of 800 in (d–f).

a ILE isotropic. b CIL neo-Hookea.n c (Non-linear) neo-Hookean. d
ILE isotropic. e CIL neo-Hookean. f (Non-linear) neo-Hookean

value of the Poisson’s ratio near the incompressible limit and
ten load increments approximately. A further increase of the
number of load increments does not improve substantially
the quality of the meshes but it enables to obtain high quality
meshes for slightly lower values of the Poisson’s ratio.

Figure 15 shows the same analysis for meshes with sig-
nificantly higher level of stretching, namely 100 and 800, for
the same degree of approximation, p = 2.

For these meshes, the non-linear approach is only able
to provide a result in a few cases. In fact, further numer-
ical experiments show that the higher the stretching, the
more cases would display no convergence of the non-linear
approach. In addition, the quality of the meshes produced
with the ILE isotropic and the CIL neo-Hookean approaches
is, again, almost identical, for any value of the Poisson’s
ratio and for any number of load increments, showing that
the conclusions presented do not strongly depend on the level
of stretching within the boundary layer.

For the incremental linear elastic and the consistent
incrementally linearised approaches, the number of load
increments generally improves the mesh quality but the same

is not true for the non-linear approach. If phenomena such
as buckling, snap-back and snap through are not expected,
the non-linear approach provides the same mesh quality
irrespective of the number of increments. However, in the
presence of buckling, it is possible to jump through snap-
back/snap-through region with fewer load increments, but
as the number of load increments is increased the buck-
ling (i.e. snap-back/snap-through regions) cannot be avoided,
which in the absence of an arc-length technique leads to non-
convergence of the Newton–Raphson method. Furthermore,
it is possible for the Newton–Rapshon scheme to converge
just prior to the onset of buckling, at the cost of losing
quadratic rate of convergence due to ill-conditioning of the
system which essentially emanates from nearly zero Jaco-
bian(s).

Next, the same analysis is performed for higher orders of
approximation. Figures 16 and 17 show the quality of the
high-order meshes as a function of the Poisson’s ratio and
the number of load increments for the ILE isotropic, CIL
neo-Hookean and (non-linear) neo-Hookean approaches, for
a degree of approximation p = 4 and p = 6 respectively.
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Fig. 16 Minimum scaled Jacobian of the generatedmesheswith p = 4
as a function of the Poisson’s ratio and the number of load increments
with a stretching of 50 in (a–c) and with a stretching of 400 in (d–f). a

ILE isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean. d ILE
isotropic. e CIL neo-Hookean. f (Non-linear) neo-Hookean

For p = 4 the non-linear approach is unable to converge
in the majority of cases. Only for a relatively low stretching,
such as 50, and using one load increment, this approach pro-
vides a solution for any value of the Poisson’s. ratio. When
the stretching is increased to 400, this approach fails to con-
verge evenwhenone increment is used if the Poisson’s ratio is
selected near the incompressible limit. For the ILE isotropic
andCILneo-Hookean approaches the quality of the produced
meshes is, once more, almost identical for any value of the
Poisson’s ratio, number of increments and stretching. Itworth
noting that for this order of approximation, the increase in
stretching translates into a significant decrease in the maxi-
mum quality that can be obtained with the ILE isotropic and
CIL neo-Hookean approaches.

If the order of approximation is further increased to p = 6,
the problem becomes substantially more challenging and the
quality of the produced meshes with either the ILE isotropic
and CIL neo-Hookean approaches is significantly lower, as
observed in Fig. 17. For a stretching factor of 100, a higher
number of load increments is required (approximately 40)

compared to previous examples and a value of the Poisson’s
ratio near the incompressible limit is mandatory to obtain the
best quality meshes. It is also worth noting that this exam-
ple shows, for the first time, a subtle difference between the
ILE isotropic and CIL neo-Hookean approaches. For a value
of the Poisson’s ratio near the incompressible limit, the CIL
neo-Hookean approach requires more load increments than
the ILE isotropic approach to obtain similar quality. The con-
clusions for a stretching factor of 800 are similar but, as it
can be observed in Fig. 17, both the ILE isotropic and CIL
neo-Hookean approaches can only provide amaximum qual-
ity near 0.3. In this example, the non-linear approach shows
once more the inability to converge in the majority of simu-
lations.

To summarise, Fig. 18 shows the ratio of the scaled
Jacobian with 50 load increments over the classical linear
elasticity (i.e. single increment), in a logarithmic scale. Note
that, due to the logarithmic nature of this measure, a factor
of zero implies no improvement and, furthermore, a slight
improvement in terms of this factor can imply a significant

123



Comput Mech (2016) 58:457–490 475

Fig. 17 Minimum scaled Jacobian of the generatedmesheswith p = 6
as a function of the Poisson’s ratio and the number of load increments
with a stretching of 100 in (a–c) and with a stretching of 800 in (d–f).

a ILE isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean. d
ILE isotropic. e CIL neo-Hookean. f (Non-linear) neo-Hookean

(a) (b) (c)

Fig. 18 Ratio of the scaled Jacobian with 50 load increments over a single load increment (i.e. classical linear elasticity) for ν = 0.495. The
x-label indicates the level of stretching. a p = 2. b p = 4. c p = 6

change in terms of percentage value. For instance, for p = 6,
and stretching of 1600, the scaled Jacobian improves from
0.0011 for a single increment to 0.3382 for 50 increments.
It can be observed, that at high p, it is crucial to increase the
number of load increments to obtain good quality meshes,
specially if the stretching is also high. In contrast, for low-

order approximations the gain obtained by increasing the
number of load increments is marginal.

To further illustrate the improvement induced by an
increase on the number of load increments in the quality
of the generated meshes, Fig. 19 shows a histogram of the
quality for two different values of the Poisson’s ratio, namely
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(a) (b)

(c) (d)

Fig. 19 Distribution of scaled Jacobian throughout the mesh for p = 4 and stretch level of 200. a ν = 0.11 and one load increment. b ν = 0.11
and 50 load increments. c ν = 0.44 and one load increment. d ν = 0.44 and 50 load increments

ν = 0.11 and ν = 0.44, and for an increasing number of load
increments. The simulations correspond to the mesh with
stretching factor of 200 and with a degree of approximation
p = 4.

A marginal difference is observed between the ILE
isotropic and CIL neo-Hookean approaches both at lower
values of Poisson’s ratio as well as for values near the incom-
pressible limit. As discussed earlier, this figure shows that the
non-linear model is only able to converge when a few load
increments are considered. However, note that due to the
presence of the geometric stiffness term in the CIL approach,
the interior elements are stiffened against heavy distortion
and hence the CIL approach typically produces meshes with
a slightly better distribution of the quality over the compu-
tational mesh, irrespective of the minimum value for quality
measures. The results also show the improvement induced
by an increase of the Poisson’s ratio. For instance, Fig. 19
(a) shows that the mesh contains a significant number of ele-
ments of quality 0.45when thePoisson’s ratio is 0.11whereas

the minimum quality of the mesh associated to Fig. 19 (c),
with a Poisson’s ratio of 0.44, the minimum quality is near
0.75.

Next, the quality of the generated meshes in terms of dif-
ferent measures is studied, namely the measures defined in
Equation (27) that are defined in terms of the invariants in
Equation (17). The two anisotropic mesh quality measures
Q4 and Q5 are dropped from the comparison because they
are only valid for the transversely isotropic material model,
which has been shown to produce low quality meshes in the
examples considered. It is worth emphasising that the quali-
ties Q1 and Q2 are the same for two-dimensional plane strain
problems.

Figure 20 shows the quality Q1 as a function of the Pois-
son’s ratio and the number of load increments for the mesh
with a stretching factor 100 and p = 6.

The results show that the quality is substantially improved
when the number of load increments is increased, as previ-
ously observed with the minimum scaled Jacobian as quality
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Fig. 20 Quality Q1 of the generated meshes with p = 6 as a function of the Poisson’s ratio and the number of load increments with a stretching
of 100. a ILE isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean

measure. However, in this example, increasing the Poisson’s
ratio near the incompressible limit induces a lower quality
except if a large number of load increments is considered.
As shown in previous examples, the ILE isotropic approach
performs slightly better than theCIL approachwhen thePois-
son’s ratio is selected near the incompressible limit and the
non-linear approach fails to converge in themajority of cases.
Finally, by comparing Figs. 20 and 17, it is clearly observed
that a value closer to one is obtained when using Q1 instead
of the minimum scaled Jacobian. This behaviour is expected
because, for this problem, the deformation is primarily vol-
umetric and the deviatoric contribution is minimal.

Figure 21 shows the three qualitymeasuresQ1,Q2 andQ3

as a function of the Poisson’s ratio for the mesh with p = 2,
a stretching factor of 25 and using five load increments. The
results confirm, numerically, that the quality measures Q1

and Q2 are the same for two-dimensional plane strain prob-
lems. It can also be observed that the ILE andCIL approaches
produce meshes of the same quality, irrespectively of the
measure used. In addition, the results illustrate that the qual-
ity measure Q1 (and Q2) is less influenced by changes on the
Poisson’s ratio, compared to Q3. Finally, the results confirm,
once more, the lower quality obtained with the non-linear
approach compared to the ILE and CIL approaches, irre-
spective of the measure used.

In Fig. 22, the effect of the stretching factor on the different
quality measures is illustrated for the ILE isotropic approach
using the mesh with p = 4 and by introducing five load
increments. Almost identical results are obtained with the
CIL neo-Hookean approachwhereas the non-linear approach
fails to converge in the majority of the cases.

The results show that the quality measure Q1 (and Q2)
are less influenced by an increase in the stretching factor,
compared to the minimum scaled Jacobian Q3. In all cases,
and for all values of the Poisson’s ratio, the value of Q1

(and Q2) is approximately 0.9, whereas the quality Q3 can
vary from 0.4 to 0.9 depending on the value of the Poisson’s
ratio and the level of stretching. When the quality Q3 is con-
sidered, the optimal value of the Poisson’s ratio is clearly
dependent on the level of stretching. For low to moderate
stretching factors, a Poisson’s ratio near the incompress-
ible limit provides the highest quality whereas for very high
stretching factors it is better to consider values in between 0.3
and 0.4.

Finally, Fig. 23 shows the three quality measures Q1, Q2

and Q3 as a function of the Poisson’s ratio for the mesh with
p = 6, a stretching factor of 200 and using five load incre-
ments. The results correspond to the ILE isotropic and CIL
neo-Hookean approaches because the non-linear approach
fails to converge in all cases due to the high stretching and
high-order considered in this example.

This example, shows a different behaviour of the ILE
isotropic and CIL neo-Hookean approaches. The CIL app-
roach shows a significant deterioration of the qualitymeasure
Q1 (and Q2) near the incompressible limit, whereas the ILE
isotropic approach maintains a high quality for all values of
the Poisson’s ratio.

Next, under the same setting as in the previous problem,
the computational time is analysed, for different formulations
and using different material models. Figure 24 shows the
CPU time using the three formulations and different mater-
ial models when the boundary displacement is imposed using
five load increments. The Poisson’s ratio is ν = 0.4 and the
order of approximation is p = 2. These values are deliber-
ately chosen such that the non-linear analysis converges for
most material models.

Compared to the previous problem, there is a significant
increase in the degrees of freedom and hence the overhead
of function calls is insignificant compared to the actual cost
of computation.
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(a) (b) (c)

Fig. 21 Different quality measures of the generated meshes with p = 2 as a function of the Poisson’s ratio for the mesh with a stretching of 25
and using five load increments. a ILE isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean

(a) (b) (c)

Fig. 22 Different quality measures of the generated meshes with p = 4 as a function of the Poisson’s ratio for the ILE isotropic approach and
using five load increments. a Stretching 25. b Stretching 200. c Stretching 1600

Fig. 23 Different quality
measures of the generated
meshes with p = 6 as a function
of the Poisson’s ratio for the
mesh with a stretching of 200
and using five load increments.
a ILE isotropic. b CIL
neo-Hookean

(a) (b)
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Fig. 24 Computational cost of various material models using three different formulations and with different levels of stretching

For highly stretched meshes, the Newton–Raphson sch-
eme loses quadratic convergence. The increased number of
iterations required and the higher cost of each iteration, due
to ill-conditioning, makes the cost of the non-linear approach
significantly higher. The ILE (isotropic and TI) approaches
are found to be the most competitive. This allows to con-
clude that, as in the previous example, the ILE approaches
provide both the best quality and the lowest computational
cost compared to other approacher and material models.

The last study for this example, involves a p-convergence
analysis in order to illustrate the optimal approximation
properties of the produced meshes. Given a smooth func-
tion defined in Cartesian coordinates, the strategy consists
on computing the exact value of the solution at the mesh
nodes. Then, the error between the approximated solution,
interpolated from the nodal values, and the exact solution is
computed at each integration point to compute the error in
the L2(Ω) norm.

Figure 25 shows the approximation error in the L2(Ω)

norm as a function of the square root of the number of degrees
of freedom for two different levels of stretching and for a
degree of approximation ranging from p = 2 up to p = 9.

The results show the expected exponential convergence
in the approximation of a smooth function. In addition, it is
interesting to observe that the error is almost identical for
the ILE and CIL approaches. This conclusion is in line with
the previous analysis where it was shown that the quality of
the meshes produced with the ILE and CIL approaches is
almost identical, except in some extreme cases considering

Fig. 25 Approximation error in the L2(Ω) norm as a function of the
square root of the number of degrees of freedom for a stretching of 200

highly stretched meshes, high-orders of approximation and
values of the Poisson’s ratio near the incompressible limit.
In contrast, the CIL TI approach, which was shown to pro-
duce lower quality for high-order approximation shows a
deterioration in the convergence rate, which illustrates the
importance of producing high quality meshes for finite ele-
ment analysis. Finally, the results also show the ability to
preserve the approximation properties independently on the
level of stretching.
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Fig. 26 Isotropic mesh around
the NASA almond. a Linear
surface mesh. b High-order
surface mesh with p = 6. c Cut
of the high-order volume mesh
with p = 6

6.3 Mesh around the NASA almond

The next example considers a tetrahedral mesh around the
NASA almond, a popular geometry for benchmarking 3D
radar cross section computations in computational electro-
magnetics [22,76]. Figure 26 shows the linear surface mesh
of the almond, the high-order surface mesh corresponding
to a degree of approximation p = 4 and a cut of the high-
order volumemesh. The linearmesh contains 6247 elements,
1288 nodes and 688 faces on the almond. The corresponding
high-order mesh with p = 6 contains 233,205 nodes and
16,420 nodes to be projected over the true almond geome-
try to obtain the Dirichlet boundary conditions of the solid
mechanics problem.

Similar to the previous examples, the effect of the Pois-
son’s ratio on the quality of the generated meshes is investi-
gated first, for different degrees of approximation. Figure 27
shows the quality measure Q1 for the linear, incrementally
linear and non-linear approaches. In all cases the imposed
displacement on the boundary has been introduced using 10
load increments.

Compared to the two-dimensional results of the isotropic
meshes in Sect. 6.1, similar conclusions are derived here.
First, the quality of both the meshes produced with the

ILE isotropic and CIL neo-Hookean approaches is similar,
although the ILE isotropic provides better quality near the
incompressible limit and, for some particular choices of the
approximation degree, for the whole range of values of the
Poisson’s ratio (e.g., for p = 5). As shown in previous exam-
ples, the non-linear approach produces good quality meshes
for low-order approximations (i.e., p = 2,3). For p = 4 a
valid mesh is only obtained for values of the Poisson’s ratio
between 0.1 and 0.4, and no convergence is obtained if the
order of approximation is further increased.

Similar conclusions are obtained if other quality measures
are utilised. For instance, Figs. 28 and 29 show the same
analysis in terms of the quality measures Q2 and Q3 respec-
tively.

Although the actual value of the quality is different,
depending on the selected measure, the qualitative behaviour
is the same compared to the quality Q1. As reported earlier
with the two dimensional examples, the quality measure that
produces a lower absolute value is the scaled Jacobian, Q3,
traditionally used by the high-order mesh generation com-
munity. This is attributed to the motion resulting from an
imposed boundary displacement that results from project-
ing the high-order nodes to the true CAD surface. In this
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Fig. 27 Quality measure Q1 of the generated meshes as a function of the Poisson’s ratio and the polynomial degree. a ILE isotropic. b CIL
neo-Hookean. c (Non-linear) neo-Hookean

Fig. 28 Quality measure Q2 of the generated meshes as a function of the Poisson’s ratio and the polynomial degree. a ILE isotropic. b CIL
neo-Hookean. c (Non-linear) neo-Hookean

Fig. 29 Quality measure Q3 of the generated meshes as a function of the Poisson’s ratio and the polynomial degree. a ILE isotropic. b CIL
neo-Hookean. c (Non-linear) neo-Hookean

scenario, the volumetric deformation related to Q3, is much
more important than the deformations related to Q1 and Q2.

Figure 30 shows the three quality measures Q1, Q2 and
Q3 as a function of the Poisson’s ratio for the mesh with
p = 3 and using 10 load increments.

The results confirm that, contrary to two dimensional
plane strain problems, the quality measures Q1 and Q2 are
different. It can be observed that the ILE and CIL approaches

produce meshes of similar quality, irrespective of the mea-
sure considered. In addition, the results illustrate that the
quality measure Q1 is less influenced by the Poisson’s ratio
whereas the quality Q3 shows a major dependence on this
material parameter. Finally, the results shows that for low-
order approximations the non-linear approach can produce
meshes of slightly better scaled Jacobian compared to the ILE
and CIL approaches although when the quality measures Q1
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(a) (b) (c)

Fig. 30 Different quality measures of the generated meshes with p = 3 as a function of the Poisson’s ratio using 10 load increments. a ILE
isotropic. b CIL neo-Hookean. c (Non-linear) neo-Hookean

Fig. 31 Different quality
measures of the generated
meshes with p = 5 as a function
of the Poisson’s ratio using 10
load increments. a ILE
isotropic. b CIL neo-Hookean

(a) (b)

and Q2 are used, the non-linear approach produce the lowest
quality meshes compared to the ILE and CIL approaches.
This is again due to the non-proportional movement of the
nodes in the non-linear approach, which results in distortion
of edges and faces of the element, despite a reasonable vol-
umetric deformation being maintained.

If a higher order of approximation is considered, say p =
5, the non-linear approach fails to converge for any value of
the Poisson’s ratio, as illustrated in Fig. 27. A comparison of
the different qualitymeasures for the ILEandCILapproaches
is shown in Fig. 31.

The results reveal important differences between the ILE
and CIL approaches and illustrate the robustness of the ILE
approach as the quality is significantly less dependent on the
value of the Poisson’s ratio selected, compared to the CIL
approach. In fact, the results show that high quality meshes
can be obtained for the ILE approach with any value of the
Poisson’s ratio, even with a value near 0, whereas a substan-

tial decrease in the quality is observed if a Poisson’s ratio
near 0 is selected for the CIL approach.

Next, the computational time is analysed. Figure 32 shows
the CPU time using the three formulations and different
material models when the boundary displacement is imposed
using five load increments.

As done in previous examples, the CPU time has been nor-
malised with respect to that of classical linear elasticity and
the geometrical mean of 100 run-times, excluding the timing
for the first 10 runs, is reported. Compared to previous two-
dimensional examples, the number of degrees of freedom is
now significantly larger for a single core and, therefore, the
cost of actual computation dominates over secondary effects
such as inlining and branch prediction. The systems of linear
equations are now solved using the Multi-frontal Massively
Parallel Solver (MUMPS). It is interesting to observe that,
despite these differences compared to the two-dimensional
examples, similar conclusions are obtained from the CPU
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Fig. 32 Computational cost of various material models using three different formulations with p = 2 (27,831 degrees of freedom) and p = 3
(90,648 degrees of freedom)

time analysis. Oncemore, both the ILE approaches are found
to be the most competitive and the non-linear approaches
the most computationally expensive. These results, together
with the quality study presented in this section, enables to
conclude that the ILE and CIL approaches are recommended
for producing high-order curvilinear meshes from an initial
linear mesh.

To conclude, p-convergence analysis of the interpolation
error is performed to illustrate the optimal approximation
properties of the produced meshes. Following the strategy
presented in Sect. 6.2, Fig. 33 shows the approximation error
in the L2(Ω) norm as a function of the cubic root of the
number of degrees of freedom for a degree of approximation
ranging from p = 2 up to p = 6.

The results show the expected exponential convergence
in the approximation of a smooth function. In addition, it is
interesting to observe that the error is almost identical for the
ILE and CIL approaches. Once more, the CIL TI approach
shows a slight deterioration in the rate of convergence for
high-order approximations due to the lower quality of the
meshes produced with this approach. This result in fact pin-
points the importance of choosing a well-defined polyconvex
material model, in the context of a posteriori mesh genera-
tion.

6.4 Meshes around full aircraft configurations

The next examples consider meshes around two full air-
craft configurations, showing the capability of the proposed
unified approach for generating meshes around realistic

Fig. 33 Approximation error in the L2(Ω) norm as a function of the
cubic root of the number of degrees of freedom

geometries of interest to the computational electromagnet-
ics and computational fluid dynamics communities.

First, a tetrahedral mesh around a generic Falcon aircraft
is considered. The linear mesh has 185,191 elements, 35,875
vertices and 16,922 triangular faces on the aircraft to be
projected on the true CAD geometry to obtain the Dirich-
let boundary condition for the solid mechanics problem. The
correspondingCADgeometry has 54 surfaceswith 240 inter-
section curves. For an interpolation degree of p = 3, there
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Fig. 34 Isotropic mesh around
a Falcon aircraft. a Linear
surface mesh. b High-order
surface mesh with p = 4. c Cut
of the high-order volume mesh
with p = 3

are 876,988 nodes in the domain and 76,151 nodes on the
aircraft that require projection.

Figure 34 shows the linear surface mesh of the aircraft,
the high-order surface mesh corresponding to a degree of
approximation p = 3 and a cut of the high-order volume
mesh. The problem is solved using the CIL Mooney–Rivlin
approach with ν = 0.45 and 20 load increments. The
minimum Scaled Jacobian for this mesh is Q3 = 0.337
and there are 181,251 elements (i.e. 97.87 percent of the
total number of elements) for which Q3 > 0.9. The mini-
mum values of the other two quality measures, accounting
for fibre and surface deformations, are Q1 = 0.605 and
Q2 = 0.467.

Next, a tetrahedral mesh around the DLR-F6 transport
configuration is considered. The linear mesh has 68,571 ele-
ments, 31,080 vertices and 31,836 tetrahedral faces on the
aircraft to be projected on the true CAD geometry to obtain
the Dirichlet boundary conditions for the solid mechanics
problem.The correspondingCADgeometry has 128 surfaces
with 634 intersection curves. For an interpolation degree of
p = 4, there are 1,601,015 nodes on the domain and 255,584
nodes on the aircraft that require projection. Figure 35 shows
the linear surface mesh of the aircraft, the high-order surface

mesh corresponding to a degree of approximation p = 4 and
a cut of the high-order volume mesh.

The problem is solved using the ILE isotropic approach
with ν = 0.45 and100 load increments. Theminimumvalues
of the three quality measures for this mesh are Q1 = 0.482,
Q2 = 0.377 and Q3 = 0.329. Moreover there are only 11
elements with a quality Q3 < 0.9.

Finally, a boundary layer tetrahedral mesh around the
DLR-F6 transport configuration with a stretching of 317 is
considered. The boundary layer has been constructed such
that the final mesh is suitable for a compressible Navier-
Stokes simulation up to a Reynolds number of approximately
Re = 4 × 107. The linear mesh has 4,482,662 elements,
787,712 vertices and 110,458 triangular faces on the air-
craft. Two curved boundary layer meshes are generated for
this geometry with p = 3 and p = 4, respectively. The
resulting high-order mesh with p = 3 has 20,434,689 nodes
with 498,590 nodes on the aircraft and the p = 4 mesh has
48,279,087 nodes with 885,712 nodes on the aircraft. Both
meshes are produced using the ILE isotropic approach. The
number of increments are chosen such that a balance is kept
between computational cost and final quality of the computa-
tional mesh. This corresponds to 60 and 30 increments with
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Fig. 35 Isotropic mesh around the DLR-F6 transport configuration. a Linear surface mesh. b Cut of the high-order volume mesh with p = 4. c
High-order surface mesh with p = 4

a minimum scaled Jacobian of 0.06 and 0.02 for p = 3 and
p = 4, respectively. However, for both meshes, 99.5 % of
the elements have scaled Jacobian above 0.8.

Figure 36 shows the surface mesh of the aircraft for p = 4
and cuts of the high-order volumemesh for p = 3 and p = 4.

6.5 Meshes of complex mechanical components

Two complex three-dimensional mechanical components
are considered in this section. The Poisson’s ratio for
all the examples considered in this section is chosen as
ν = 0.45.

The first example considers a mechanical valve where the
CAD geometry has 45 surfaces and 260 intersection curves.
The linear mesh has 16,509 elements 4176 nodes and 5364
triangular faces on the boundary. The resulting high order
mesh with p = 5 has 377,994 nodes and 67,047 nodes on
the CAD surfaces. The problem is solved using the ILE
isotropic approach with 5 load increments and the resulting
minimum quality measures are Q1 = 0.917, Q2 = 0.841
and Q3 = 0.768. Moreover, there are only 4 elements for
which Q3 < 0.9. Figure 37 shows two views of the gen-

erated high-order curved surface mesh corresponding to a
degree of approximation p = 5.

The last example considers a more complex mechanical
component and it has been selected to illustrate the robust-
ness and potential of the proposed approach when dealing
with complex geometries formed by a large number of sur-
faces. The corresponding CAD geometry has 638 surfaces
with 3459 intersection curves. The linear mesh has 64,599
elements 17,025 vertices and 23,506 triangular faces on the
CAD boundary. The resulting high order mesh with p = 4
has 784,670 nodes and 187,903 nodes on the boundary. The
problem is solved using the ILE isotropic approach with 200
load increments. The minimum values of the three quality
measures for this mesh are Q1 = 0.719, Q2 = 0.605 and
Q3 = 0.451, respectively. Moreover, there are only 6 ele-
ments forwhich Q3 < 0.9. Figure 38 shows different profiles
of the high-order curved surface mesh corresponding to a
degree of approximation p = 4. Observe that in this mesh,
there are 221 planar surfaces and the nodes lying on these
surfaces require in-plane translations, which the proposed
unified approach is capable of resolving.
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Fig. 36 Boundary layer mesh around the DLR-F6 transport configu-
ration. a High order surface mesh with p = 4. b Cut of the higher order
volume mesh with p = 3. c Cut of the higher order volume mesh with

p = 4. d Curved boundary layer mesh with p = 3 around the wing of
F6. e Cut of the higher order volume mesh with p = 4. f Cut of the
higher order volume mesh with p = 3

7 Conclusions

A unified approach for the generation of high-order curvi-
linear meshes derived via a solid mechanics analogy has
been presented. This proposed theoretical and computa-
tional approach encompasses the incremental linear elastic
approach (wherein only the geometry is updated incremen-
tally) and the fully non-linear approach, both previously
applied in the context of a posteriori high-order mesh
generation. In addition, the new incrementally linearised
elasticity formulation (wherein the geometry, the tangent

operator and the stresses are updated incrementally), not pre-
viously applied to generate curvilinear high-order meshes, is
included within this unified approach. The material parame-
ters are calibrated such that the tangent operators of all the
aforementioned approaches with variousmaterial models are
identical in the reference configuration, i.e. for the (unde-
formed) mesh with planar faces or edges. The derivation of
all the approaches, based on energy principles, is used to pro-
pose mesh quality measures based on independent invariants
of the strain energydensity. The relation of the proposed qual-
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Fig. 37 Two views of the
high-order curved mesh of
mechanical valve

Fig. 38 Two views of the high-order curved mesh of a complex mechanical component

ity measures with indicators previously used in the context
of high-order curved mesh generation is discussed.

Several numerical examples are presented in both two
and three dimensions, including realistic geometries of inter-
est to the solids, fluids and electromagnetics communities.
A detailed comparison of all the methodologies is made,
including the quality of the generated high-order meshes,
the influence of material parameters and load increments
on the resulting meshes, the computational cost and the
approximation properties of the meshes when applied to an
isoparametric finite element formulation.

In terms of the material parameters, the use of a Pois-
son’s ratio near the incompressible limit is generally advised
in order to maximise the quality of the resulting mesh. For
isotropicmeshes, a lownumber of increments (e.g. five incre-
ments) is typically sufficient to obtain the maximum possible

quality, whereas for highly stretched meshes and for high-
orders of approximation (i.e. p > 4) a higher number (e.g. 40
increments) is needed to obtain good quality meshes. Both
factors are in fact related as the results show that a higher
number of increments is needed when the Poisson’s ratio
approaches the incompressible limit.

When the material parameters are kept the same, all the
linearised approaches, in particular, the incremental linear
elastic and the consistent incrementally linearised approach
produce meshes of very similar quality and only small dif-
ferences are observed for highly stretched meshes when
high-orders of approximation are used and the Poisson’s
ratio approaches the incompressible limit. In contrast, the
non-linear approach has been found to produce poor quality
elements when a high-order approximation is utilised. The
non-proportional displacement of interior nodes with respect
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to the imposed displacement of boundary nodes has a signif-
icant negative impact on the convergence of the non-linear
solver. Only for low-order approximations has the non-linear
approach shown robustness and the ability to produce good
quality meshes. The importance of having a well-defined
internal energy for the non-linear material model has been
illustrated using the transversely isotropic hyperelastic mate-
rial. For highly stretchedmeshes, buckling can be expected in
the non-linear analysis and the Dirichlet-driven nature of the
problems demands a sophisticated and expensive arc-length
technique to guarantee convergence, hindering its practical
use in an a posteriori mesh generation framework.

The three quality measures proposed for isotropic materi-
als, namely, Q1 related to fibre maps, Q2 related to surface
maps and Q3 related to volume maps, show a similar trend
with respect to the material parameters. In fact, the first two
quality measures are identical for two dimensional plane
strain problems. For all the examples considered, Q3 is the
most impactful indicator, which corresponds to the so-called
scaled Jacobian traditionally used by the high-order mesh
generation community.

In termsof the computational cost, the non-linear approach
is much more expensive than the linearised approaches.
For highly stretched meshes, where the Newton–Raphson
scheme may lose its quadratic convergence due to ill-
conditioning of the system, a higher number of iterations is
required and the solver time is drastically increased. The lin-
earised approaches are not only much more economical but,
in addition, more robust and produce better quality meshes.

Finally, the approximation properties of the resulting
meshes have been assessed and the results show that a similar
quality of mesh (as indicated by Q1, Q2 and Q3) translates
in similar interpolation errors (i.e. the quality indicators have
been shown to be well chosen).
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